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A System for Detecting

Malicious Insider Data

Theft in IaaS Cloud Environments

Jason Nikolai
College of Business and Information Systems
Dakota State University
Madison, SD 57042 USA
Email: janikolai @pluto.dsu.edu

Abstract—The Cloud Security Alliance lists data theft and
insider attacks as critical threats to cloud security. Our work puts
forth an approach using a train, monitor, detect pattern which
leverages a stateful rule based k-nearest neighbors anomaly
detection technique and system state data to detect inside attacker
data theft on Infrastructure as a Service (IaaS) nodes. We posit,
instantiate, and demonstrate our approach using the Eucalyptus
cloud computing infrastructure where we observe a 100 percent
detection rate for abnormal login events and data copies to
outside systems.

I. INTRODUCTION

On August 25, 2006, Amazon EC2, one of the leading In-
frastructure as a Service (IaaS) cloud offerings, went into beta
[1]. Since then, cloud computing has become a big business.
The largest technology companies in the world now provide
cloud computing offerings and solutions [2][3][4]. However,
cloud computing is not without challenges. According to the
Cloud Security Alliance [5], data theft and insider attacks are
two of the nine critical threats facing cloud security.

Insider attacks fall into three categories: malicious, ac-
cidental, and non-malicious [6]. Malicious insiders conduct
activities such as ip theft, information technology sabotage,
fraud, and espionage, with intent of doing harm or personal
gain. Accidental insider attacks occur when unintentional
misuse of systems is performed by a user without the intent
of harm. And, non-malicious insider attacks are intentional
attacks where the user attempts to perform self-benefiting
activities but without malicious intent.

Technical controls exist for reducing the risk of insider
attacks, including intrusion detection systems, security infor-
mation and event management, data loss prevention, access
control systems, and honey-tokens. In addition, non-technical
controls are used and consist of psychology prediction models,
education and awareness, as well as information security
policies [7]. Although controls exist, not all insider attacks
can be detected. Furthermore, several approaches for address-
ing insider attacks are reactive and not predictive in nature.
Techniques for preventing such attacks are needed [8].

Although no single approach can prevent all insider threats,
a multi-faceted proactive technique can be used to reduce
the risk of damage caused by inside attackers [8]. Several
types of attacks exist, including unauthorized extraction of
data, data tampering, asset destruction, illegal downloading,
eavesdropping, spoofing, social engineering, resource misuse,
and installing of malicious software [9].
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Our work puts forth a new security control for detecting
one type of insider attack, unauthorized extraction of data, or
data theft. The importance of reducing the risk of data theft
gained recent international attention when the National Se-
curity Agency contractor, Edward Snowden, downloaded and
disseminated classified documents about intelligence programs
[7]. A system to detect and possibly thwart such actions has
significant potential to contribute to a successful defense in
depth [10] security strategy and reduce the damage of data
theft from inside attackers.

We posit a system profiling approach for detecting abnormal
login activity and data transfers from laaS cloud computing
nodes hosting tenant virtual machines. This approach aims to
address the problem of rogue administrators as described in
[11] who attempt to steal data from nodes as discussed in [12].
Our approach uses k-nearest neighbors anomaly detection to
detect abnormal variations in bytes sent over the network and
number of active users on the cloud node. Furthermore, we
examine system state data consisting of open files and network
connections to improve detection and provide forensic data for
investigation.

Unauthorized extraction attacks are especially important to
address in IaaS cloud environments to prevent theft of tenant
virtual machine data. Although encryption may reduce risk of
insiders having the ability to use stolen data, encrypted virtual
machine images and data store files may be copied from nodes
and attacked offline.

In our system, agents are installed on cloud nodes hosting
virtual machines and data. The system is trained under normal
cloud operating conditions. Then, the system monitors for
anomalies in transmitted network data and active user logins
using a k-nearest neighbors anomaly detection. This data
is used to detect anomalies that exceed normal operating
thresholds established during training.

Our results suggest that using k-nearest neighbors anomaly
detection to monitor node network transmissions and number
of active users along with system state information can be
used to detect 100 percent of abnormal login activity and data
copies to outside systems by users. Furthermore, we observe
a zero false positive detection rate when anomalies in active
user counts and bytes transmitted are detected along with
supporting system state data.

The remainder of this paper is organized as follows. Section
IT summarizes related work. Section III explains our system
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and approach for detecting insider attacker data theft. Section
IV describes the instantiation of our system. Section V details
the evaluation and results of our proposed system. And,
Section VI concludes the paper and suggests future works.

II. RELATED WORK

A number of works have been posited to reduce the threat of
insider attacks. Stolfo, Salm, and Keromytis posit an approach
to mitigate attacks using fog computing where they detect
abnormal usage patterns and present potential attackers with
misinformation [13]. Claycomb and Nicoll discuss the threat of
rogue administrators and suggest process based approaches to
deal with the threat. Furthermore, they discuss future research
topics which include predictive models [14]. Colombe and
Stephens suggest an approach to visualize intrusion detection
system data to detect insider attacks [15]. Babu and Bhanu
research an approach for using key stroke dynamics to detect
insiders [16]. A more related and interesting technique for
detecting insider attacks is the use of machine learning and
rule based detection posited by Khorshed and Wasimi [17].
They suggest that rule based learning can be used to detect
insider attacks in a cloud environment and that continuous
cloud monitoring is an important part of cloud security. Sriram,
Patel, and Lakshmanan posit a hybrid protocol using selective
encryption and data cleaning along with user profiling and
decoy technology to address the problem of inside attackers.
One aspect of their work related to our approach is the use of
a neural network that examines volume of data downloaded,
nature of the operations, division of the task, ip address, and
log files. [18]. In previous work, we put forth a system for
detecting attacks from and against virtual machines in an IaaS
cloud environment using anomalies in performance metrics
obtained from the hypervisor [19], and a streaming cloud in-
trusion monitoring and classication system (SCIMCS) to assist
cloud providers with multiple security systems by filtering
noisy alert messages and classifying previously recognized
attacks [20].

To the best of our knowledge, applying the approach de-
scribed in this paper is novel. Although insider attack detection
and prevention is an active research area, we are unable
to find existent works specifically targeting the problem of
insider data theft using anomaly detection, system metrics, and
system state information. Furthermore, we demonstrate our
work through instantiation and experimentation with promis-
ing results.

III. INSIDER DATA THEFT DETECTION SYSTEM

In this section, we describe our approach for detecting data
theft. Such a system could be applied to an overall defense in
depth approach and reduce the risk of insider data theft from
rogue administrators.

A. Overview

An IaaS cloud environment typically consists of virtual
machines hosted on physical nodes which run node controller
agents. A single node may host virtual machine instances of

different tenants. Each tenant may run various applications
and workloads. In addition, virtual machines are dynamic and
may be created and destroyed by tenant requests at anytime
resulting in an ever changing environment.

Our work posits an approach to detect data theft within an
IaaS cloud environment. More specifically, we seek to detect
rogue administrators following the flow in Fig. 1.

Fig. 1. Insider Data Theft Flow Chart

Most production deployment policies restrict administrator
login to systems. Our approach supports these controls by
logging unusual login events. In addition, knowledgeable
attackers are aware of forensic countermeasures. Hence, all
of our detection and analysis must be performed on near real
time data and persisted on a remote system.

The specific pattern that our system detects is shown in Fig.
1 and consists of three steps: attacker logs in node, attacker
copies data to outside system, and attacker logs out from node.
Each event is considered an attack anomaly. In our approach,
we examine the anomaly value for the number of active
users and amount of data sent from the node. This approach
allows the system to adapt to various environments and adjust
to normal fluctuations that can occur in the environment.
Furthermore, we examine system state forensic data for open
connections and open files. In order for data theft to occur,
an external connection must exist and data files are open for
reading.

B. Approach

Our approach for detecting insider data theft uses a three
step technique illustrated in Fig. 2. First, the system is trained.
Then, the system is put into monitoring mode. And, finally,
a state-based rules approach is used to detect signatures of
insider data theft.

1) Train: A goal of training mode is to not burden security
operations with excessive tuning in order to achieve accurate
results. A system with a complicated training requirement



Fig. 2. Insider Data Theft Defection Approach

lacks scalability. To achieve this goal, the system is placed
into training mode while normal IaaS cloud activities occur.
Our assumption is that attacks are not occurring during this
period. Restricted access and additional manual monitoring
may be applied during this period to reduce the likelihood of
an attack.

Virtual machines are created and terminated. Tenants run
various workloads. Data is sent from an agent on each cloud
node hosting virtual machines to our system. During this time,
we examine two system metrics for detecting insider attacks:
number of active users on nodes and number of tcp bytes
transmitted to the network from these nodes. Maximum k-
nearest neighbors anomaly scores derived using the IBM™
InfoSphere Streams anomaly detection operator [21] are cal-
culated to be used later in monitoring mode.

Values arrive separately for each metric every second and
are stored in memory. The first 20 values create the reference
pattern. A current pattern of 10 values is compared to a subse-
quence of the reference pattern calculating an anomaly score.
A total score is computed from the subsequence comparison
scores. As each value arrives, a score is computed, and the
window slides to the left. As anomalous events occur, the
score increases. This total score is the anomaly value used
by our system.

The pattern sizes of 20 and 10 are derived through empirical
analysis with a goal of accuracy and performance in mind.
Tuning these values is beyond the scope of this work and
is considered as future work. In addition, although number
of active users and bytes sent over the network are the two
metrics used for insider data theft detection, we collect metric
anomaly data on user space, cpu usage, virtual memory, net-
work connections, input/output read bytes, input/output write
bytes, network bytes received, network bytes sent, number of
users logged into node, and number of processes. In future
work, we plan to investigate machine learning techniques with
the goal of deriving more complex insider attack signatures.

2) Monitor: The system is placed into monitor mode with
no attack assumptions. Similar to training mode, system metric
data is sent from agents on cloud nodes to our system. Virtual
machines are created, terminated, and tenant workloads run.
Anomaly scores are calculated as in training mode. However,
instead of calculating maximum anomalous scores for each
system metric, the calculated values are compared to the
maximum values derived during the training period. Values
that do not exceed the maximum scores are filtered from the
system and ignored.

The plot in Fig. 3 illustrates sample anomaly values for
network transmission over seconds. Fig. 4 shows the anomaly
values compared to the trained reference pattern.
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Fig. 3. Network txbytes Anomaly Scores under Normal Conditions
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Fig. 4. Network txbytes Anomaly Scores under Normal Conditions with
Trained Max

From Fig. 4, one can observe that the trained maximum
anomaly score is greater than the current tcp bytes transmitted
anomaly score. Hence, anomalous activity is not detected.

3) Detect: Detection of insider data theft involves three
events: a login anomaly (El), a data transfer anomaly (E2),
and forensic evidence (E3) as shown in Fig. 5. When all three
events are present (A3), we observe a 100 percent detection
rate with a zero percent false positive rate. In this case, a
login anomaly (E1) is detected followed by an abnormal data
transfer (E2). And, forensic evidence (E3) is detected for both
a network connection to the node and open files being copied.
The forensic evidence is collected by the agent and is analyzed
after E1 and E2 anomaly events occur.

During experimentation, we examine condition Al and A2
in isolation. We reproduce a false positive for condition A2 by
performing denial of service attacks between virtual machines
hosted on nodes in the environment. In the case where E1 is
present, a false positive is generated. To simulate Al, we turn
off forensic evidence detection to examine the false positive
and negative rates. We find that using both El and E2 as a
vehicle to detect insider attacks is mostly successful. However,
instances such as Denial of Service attacks or massive data
transfers from virtual machines hosted on nodes can result in
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Fig. 5. Detection of Insider Data Theft Venn Diagram

false positives and false negatives.

Fig. 6 illustrates one sample from our experimentation for
event E2.
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Fig. 6. Network txbytes Anomaly

Fig. 7 shows a sample from our experimentation for event
El.
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Fig. 7. Active User Anomaly

Both Fig. 6 and Fig. 7 illustrate significant anomaly scores
above the trained maximum for network transmitted bytes and
active user logins. The detection of all three conditions is
required to eliminate false positives.

IV. SYSTEM INSTANTIATION

We demonstrate our system in an IaaS cloud environment
running the Eucalyptus cloud infrastructure shown in Fig. 8.

IBM™ Streams

. Node 1 Node 3
Clowd | —— |
Controller -_

Fig. 8. Cloud Environment

A. Cloud Environment

Fig. 8 provides a conceptual view of the experimentation
environment. The Eucalyptus cloud framework is used because
of its similarities to the popular Amazon cloud infrastructure.
Furthermore, IBM™ InfoSphere Streams provides a scalable
infrastructure with built-in analytical functions. Both technolo-
gies are available free of charge for research purposes.

The physical environment consists of five multi-core sys-
tems connected over Gigabit Ethernet on a private network.
The Cloud Controller contains the management components
for the Eucalyptus cloud infrastructure [22]. The Nodes con-
tain Eucalyptus node controllers and our agent written in
Python to gather system metrics. And, Insider Data Theft
Detector runs IBM™ InfoSphere Streams and the implemen-
tation of our system.

B. Insider Data Theft Detection System Implementation

Our system implementation consists of two components, the
agents that gather system metrics from cloud nodes and the
detector which analyzes the data.

1) Agent: The Agent component is written in Python and
runs on every node hosting virtual machines. It uses the psutil
package along with calls to netstat to gather, format, and
send data to the detector using a UDP socket connection. The
output includes system metrics as described earlier and open
connections as well as file state data.

2) Detector: The Detector is written in two programming
languages: Python and Streams Processing Language (SPL).
The Python script has two modes of operations, training and
monitoring. Similarly, two SPL programs are used for training
and monitoring.



In training mode, the Python script ingests metric data from
agents and sends it to the SPL program. The anomaly detector
operator is used to calculate an anomaly score and maximum
training data is persisted in a JSON formatted file.

In monitoring mode, the Python script loads the json file
into memory and enriches agent data with maximum anomaly
values established during training. The SPL program ingests
the data from the Python script and calculates the anomaly
score similar to training mode. However, instead of saving
scores to a file, anomaly values are compared with the max-
imum values established during training. Values that exceed
the maximum anomaly value for a given metric are passed to
an alert script written in Python. System state data is persisted
to a file as it arrives from each agent and acts as a forensic
trail.

The alert Python script listens for abnormal login events and
data transfer events. When an event is detected, the forensic
data associated with the event is retrieved from the data file. If
forensic data related to open connections and files is retrieved
from the data file for the event, an alert is logged indicating
that a data theft attack occurred. Login events are always
logged.

V. EVALUATION AND RESULTS

This section details training the system, data theft attacks
executed, attack messages reported, and summarizes our re-
sults.

A. Training the System

Training of the system occurred over a one hour period
of time. To test the effectiveness of our approach, we refrain
from applying tenant virtual machine workloads during the
training period. Instead, we train the system by launching and
terminating several different virtual machines. We create up to
12 medium and small virtual machines with Centos 6, Centos
7 and Ubuntu precise images. After the virtual machines
become accessible, they are terminated. This approach creates
a baseline of activity for the Eucalyptus environment without
attempting to predict the workload of users. Furthermore,
this meets to the goal for a practical and simplistic training
approach.

B. Normal Operating Conditions

Under normal operating conditions, tenant virtual machines
are randomly created and terminated placing the cloud envi-
ronment into various states consisting of starting, stopping,
and running virtual machines under load and idle state. Fur-
thermore, at times, tenant virtual machines place excessive
network traffic load on 50 percent of the virtual machines
transferring data to and from nodes. Load is placed on the
virtual machines using system updates and web data transfers.

C. Data Theft Attacks

The goal of our experimentation is to demonstrate the
effectiveness for using our system to detect data theft of tenant
data on IaaS cloud nodes and virtual machines. We use copies

of actual virtual machine data approximately five gigabytes in
size. In addition, we test the system with smaller data theft
events, including the theft of data files 500 megabytes and
100 megabytes in size. Various data sizes provide supporting
evidence for the effectiveness of the system.

D. Attack Messages Reported

We conduct 48 attacks during our experimentation. An
attack is considered an unapproved login or data transfer
event. Of these attacks, 48 are detected and reported. A
sample of the system output is shown below in the following
format: [node reporting], [date reported], [time reported],
[alert message], [forensic data]. The forensic data is reduced
because of space constraints.

...’nodel .cloud.res”,”2016-03-12","14:09:42” ’[INSIDER]
[Node: nodel.cloud.res] [Attack Detected: Abnormal user
login activity detected] 7, ”@sconn(...laddr=( 192.168.1.98
22) raddr=( 192.168.1.110 52925)...”

”nodel.cloud.res”,’2016-03-12",14:13:49” ”[INSIDER]
[Node: nodel.cloud.res] [Attack Detected: Abnormally large
data transfer detected] ”,”...popenfile(path= /root/theftl...”

The forensic data reveals the ip address of the attacker
and the file being copied.

E. Results

The goal of our work is to detect insider data theft in [aaS
cloud environments. Our approach uses three events, login
anomalies, data transfer anomalies, and forensic data to detect
attacks. During experimentation, we perform attacks using all
three events for attack detection and observe a 100 percent
detection rate in under 60 seconds with zero false positives
for 48 attacks contained in 233,829 data sets sent by node
agents. The results are shown in Table I.

We also examine each event in isolation and find flaws in
the use of single events:

1) Login Events (EI) Only: Examining login events in
isolation using our approach detects 100 percent of anomalous
user login and logout activity. However, this cannot be used
to detect insider data theft.

2) Data Transfer Anomaly Events (E2) Only: Data transfer
anomalies can be solely used to detect data theft events.
However, we observe an unacceptably high 22.6 percent
false positive rate under extreme operating conditions. These
extremes occur during excessive starting and stopping of
all virtual machines in the cloud environment and under
heavy cloud tenant data transfer workload. Furthermore, when
performing denial of service attacks between tenant nodes, we
observe a 100 percent false positive rate using these events in
isolation.

3) Forensic Data (E3) Only: System state data for open
connections and open files also can be used to detect both
abnormal login activity and data theft attacks. However, this



system state events results in a 100 percent detection rate for
insider data theft attacks with a zero percent false positive rate.

To expand on our work, three areas should be explored.
First, scalability of the approach needs to be tested in a large
IaaS cloud environment. Second, various anomaly detection
approaches should be explored. And, third, leveraging machine
learning techniques to find rules may reveal combinations of

TABLE I
EXPERIMENTATION RESULTS
TaaS State VM Work- | Type of | Number | Percent
load Attack of Detected
Attacks

No Virtual Ma- | None Login 3 100%
chines Running
No Virtual Ma- | None Five GB | 3 100%
chines Running Data

Theft
10 Virtual Ma- | None Login 3 100%
chines Starting
10 Virtual Ma- | None Five GB | 3 100%
chines Starting Data

Theft
10 Virtual Ma- | None Login 3 100%
chines Running
10 Virtual Ma- | None Five GB | 3 100%
chines Running Data

Theft
10 Virtual Ma- | None Login 3 100%
chines Stopping
10 Virtual Ma- | None Five GB | 3 100%
chines Stopping Data

Theft
10 Virtual Ma- | Five VM | Login 3 100%
chines Running workload
10 Virtual Ma- | Five VM | Five GB | 3 100%
chines Running workload Data

Theft
10 Virtual Ma- | Five VM | Login 3 100%
chines Stopping workload
10 Virtual Ma- | Five VM | Five GB | 3 100%
chines Stopping workload Data

Theft
10 Virtual Ma- | Five VM | Login 3 100%
chines Running workload
10 Virtual Ma- | Five VM | 500 MB | 3 100%
chines Running workload Data

Theft
10 Virtual Ma- | Five VM | Login 3 100%
chines Running workload
10 Virtual Ma- | Five VM | 100 MB | 3 100%
chines Running workload Data

Theft

approach is unreliable. During our experimentation, we ob-
serve normal connection activity between the node controller
and the cloud controller. While rules could be created to
filter out known connections, the complexity of creating rules
and filters would complicate the system and not meet our
requirement for usability and ease of use.

VI. CONCLUSION

We put forth a train, monitor, detect pattern for detecting in-
sider data theft attacks. Our system profiling approach utilizes
a combination of system metric anomalies and system state
data. More specifically, we use a k-nearest neighbors anomaly
detection algorithm to score the number of active users on
nodes and bytes sent over the network. Excessive scores com-
pared to scores calculated during training indicate an attack
event. In addition, system state data on open connections and
files is collected and analyzed. Our experimentation suggests
that the combination of login events, data transfer events and

system metrics for better detection of insider attacks.
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