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Abstract— Malware authors attempt to obfuscate and hide their 
code in its static and dynamic states. This paper provides a novel 
approach to aid analysis by intercepting and capturing malware 
artifacts and providing dynamic control of process flow. 
Capturing malware artifacts allows an analyst to more quickly 
and comprehensively understand malware behavior and 
obfuscation techniques and doing so interactively allows multiple 
code paths to be explored. The faster that malware can be 
analyzed the quicker the systems and data compromised by it can 
be determined and its infection stopped. This research proposes 
an instantiation of an interactive malware analysis and artifact 
capture tool. 

Keywords—Malware, Malware Analysis, Windows, Debuggers, 
Decompilers, Disassemblers, Obfuscation, Sandbox 

I. INTRODUCTION 
Malware is malicious software intentionally designed to 

harm data, computers, and other devices or people. There are 
numerous classifications of malware including ransomware, 
trojans, rootkits, keyloggers, backdoors and others [1, 2].  
Malware may be used to gather intelligence, alter data or even 
hold the files on a device or computer for ransom. It has been 
used to compromise individual financial records [3], financial 
markets [4], voting [5] and utility infrastructure [6]. The threat 
of malware infections has brought about the need for large 
investments of capital by utility companies, corporations and 
government entities at all levels [7]. 

Malware analysis is the study of the method of execution 
of malware and its effects on host systems. There are two 
general types of malware analysis, static and dynamic. Static 
analysis is the study of malware, without execution, of the 
program in a binary state. This analysis usually requires the 
disassembly and/or de-obfuscation of the malware’s source or 
binary code. Dynamic malware analysis is the study of 
malware while it is executing. This typically involves 
executing the malware in a virtual test environment and 
studying its behavior [8]. Malware authors employ code 
obfuscation to deter both dynamic and static analysis [9]. This 
includes obfuscation of code by functionally encrypting source 
code, numeric representations of characters, non-base 10 
numbers, unused variables, misleading variable names, 
unneeded instructions and modifying program flow to confuse, 
and encryption. 

During the execution of malware numerous artifacts are 
often created. The artifacts can be useful in the analysis and 

detection of the malware. Some artifacts are often short lived 
existing only for brief periods of time making the task of 
identifying and capturing such artifacts difficult [9]. 
Interactive debuggers can be used to stop the execution of the 
malware at the moment they exist, but this is a manual 
process. It can be quite difficult to identify the precise moment 
when an artifact is created and in a non-obfuscated state. 

There are tools that attempt an automatic analysis of 
malware including the capture of their artifacts, but these tools 
can be costly to set up and use, may not trigger certain 
portions of the code and have limited interaction with the 
malware analyst. To address these issues, this work proposes a 
framework which could be used to automatically detect and 
capture malware artifacts, provide for customization, and log 
malware activity as well as provide a level of interactivity for 
the control of program flow and malware analysis focus. The 
artifact produced by this research will be a Malware Analysis 
and Artifact Capture Tool (MACT). 

II. PAST WORK AND CURRENT CONTRIBUTION 
Antivirus scanners attempt to detect malware using 

syntactic signature detection. This method is a form of static 
analysis that is fast and returns few false positives. One 
weakness associated with syntactic signature detection is its 
inability to effectively detect new malware or obfuscated 
variants of existing malware [10]. Obfuscation is a technique 
by which a program’s functionality can remain intact while 
making it more difficult to detect and/or understand. Variants 
of malware are often modified to appear and execute in a 
different manner while still performing the same nefarious 
functions. Malware writers attempt to obfuscate their code and 
defeat analysis and detection by antivirus scanners [11].   

A polymorphic virus transforms itself dynamically to try to 
evade detection. Metamorphic viruses attempt to evade 
detection techniques by changing their code [9]. Obfuscations 
can be employed to hide binary code, prevent accurate 
disassembly, and mask flow. There are various methods used 
to implement obfuscation including, code unpacking, code 
overwriting, ambiguous code and data, obfuscated calls and 
returns, call-stack tampering, calling convention violations, 
and no-op code [12]. The effect of obfuscation does not limit 
itself to antivirus scanner detection of malware it also 
complicates malware analysis.  

Operating system Application Program Interfaces (API) 
are functions employed to abstract and perform common low-
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level system functions. API hooking is a method by which 
function calls can be intercepted during execution and then 
allowing different or additional functionality to be employed. 
There are numerous research papers relating to the use of API 
hooking to perform malware detection and analysis. It is 
claimed that a program can be identified as malware by 
looking at the API calls a process makes along with the 
parameters used and the frequency and order in which they are 
called [13]. The research of Ye, Wang, et al. used API call 
analysis to demonstrate a 92% detection rate and a faster 
detection time with fewer false positives [14]. Further, it is 
claimed by many researchers that by using API analysis it is 
also possible to identify the family of malware to which the 
program belongs [15]. Lee, Jeong, et al. have proposed 
creating a Control Flow Graph (CFG) from the API call 
sequence to create a semantic signature representation of a 
binary [11]. The authors claim that using this semantic 
signature instead of the typical syntactic signature results in 
more effective detection of malware. 

One class of tools that utilizes API hooking are sandboxes.  
Sandboxes are virtual environments used to isolate the effects 
of executing programs from the host environment on which 
they run. Sandboxes are commonly used tools and are 
therefore targeted for evasion by many malware creators [16]. 
Sandbox evasion techniques and limitations include requesting 
human interaction such as dialog boxes, sleeping, masking 
processes, limited code traversal, and modifying behavior after 
detecting the sandbox or execution in a virtual environment 
[17, 18]. Because of sandbox specific evasion techniques and 
limitations exploited by malware authors, dynamic analysis 
using sandboxes is not as reliable of a technique as it once was 
[19]. 

This research contributes to the analysis of malware by 
extending the use of API hooking and combining them with 
interactive functionality to overcome some limitations in the 
existing tools. A novel malware analysis focused tool that 
provides both interactivity during dynamic analysis and 
customizable functionality for automated logging, more 
comprehensive path execution and artifact capture is proposed.  

III. PROBLEM RELEVANCE 
Several automatic malware analysis systems and services 

exist including Cuckoo Sandbox, ProcMon, Malwr, 
ThreatExpert and others. While these tools should be utilized 
as they do provide useful information, they lack a high level of 
malware analyst interactivity, customization during dynamic 
analysis, limited path traversal and have shortcomings that are 
exploited my malware authors [19]. A framework that allows 
the analyst to control the execution path of the sample, 
customize the data logged during interaction with the OS and 
pause execution would address significant limitations of these 
existing tools. 

Interactive dynamic debuggers, disassemblers, and 
decompilers are available that can be used to pause execution, 
examine memory, set breakpoints, examine instructions and 
code [9]. These tools include IDA, WinDbg, OllyDbg, Intel 
Debugger and others.  These are effective tools, but they are 
general reverse engineering tools not tailored specifically 
toward malware analysis. They are designed to look at binaries 
and trace process execution. These tools have functionality 

and customization that can be utilized to perform some 
functions required during malware analysis. Unfortunately, 
some of this customization and associated setup must be 
performed each time the tool is used and is not specialized to 
malware analysis. Additionally, the data these tools return 
must be interpreted, filtered and possibly be reanalyzed with 
other tools.  

While malware analysis is a form of reverse engineering 
there are certain phases, techniques and execution properties 
that malware analysts systematically and repeatedly employ 
that could be better served with a tool more directly suited to 
their needs. Having a tool specifically designed to dynamically 
control execution flow, monitor system API’s, monitor 
memory, log system events and capture artifacts would allow a 
malware analyst to more efficiently and accurately examine 
malware. It would increase efficiency by limiting 
configuration time with fewer and more malware specific 
options and defaults, provide a more functionally direct 
interface and more relevant reporting.     

IV.   DESIGNING MACT 
To capture malware artifacts, a Malware Artifact Analysis 

and Artifact Capture Tool (MACT) instantiation is proposed. 
The general design objectives for the tool are 1) rules that 
identify specific calls of an API as calls of interest, 2) 
interception of relevant APIs, 3) for each API of interest a 
method of information capture must be defined and coded 4) 
detailed logging of events and tool actions and 5) user 
interactivity. 

When performing the injected behavior, injected code will 
be programmed to differentiate normal execution behavior 
with that of malware. For example, allocation of memory on 
the heap with VirtualAlloc may be acceptable and hence its 
execution not monitored or logged if it doesn’t attempt to 
make memory executable. These rules will need to be 
established and coded on a function by function basis. 

 

 
Figure 1. MACT System Flow 
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Once the Windows APIs of interest are chosen and their 
associated functions defined the tool can inject the hooks into 
the malware process. During execution, the injected code can 
perform the logging, capturing of artifacts and monitoring. 

The captured malware artifacts will provide information 
useful to a malware analyst. By examining these artifacts, 
insight can be gained as to the methods and goals of malware.  
The tool can be fine-tuned for a specific sample of malware to 
capture additional and more relevant data. 

The ability to identify specific artifacts can be used to 
simplify the analysis of malware by using previously analyzed 
artifact results. By using these more atomic malware artifacts 
it will be easier to identify encrypted, metamorphic, 
polymorphic and obfuscated versions of the malware. This can 
lead to faster analysis and source attribution. 

Each injected function will be responsible for performing 
relevant logging. This includes standard logging items such as 
API name, parameters, event messages and API specific 
events such as the launching of a monitor for memory related 
APIs. Logging of events can be used to piece together the 
method of attack. It can also provide information that can 
guide the analyst to focus on different types of calls or process 
paths and to modify the hooked function to gather more 
relevant information. 

Monitoring may need to be established based on specific 
API calls. The monitoring can capture what is written at 
specific memory locations and then serialize it.  It can also be 
used to track memory, files, registry settings, and other 
processes.  The monitoring can be performed by the spawning 
of threads from injected functions. For example, if the 
malware allocates memory and makes it readable, writable and 
executable it would be prudent to monitor writes to that 
memory location as it is possible that an artifact is being 
created and will be executed from that location.   

MACT can also provide the capability to pause process 
execution when a Windows API is called. This pause can 
allow for the analysis of other processes, memory, files, 
system registry and external communication with the MACT 
tool or other tools. 

V. THEORETICAL FRAMEWORK 

The theoretical framework to be used for this research will 
be that of a single case mechanism study [20]. Each sample in 
a malware sample set will define a unique case for the 
purposes of this study. This framework can be used to 
emphasize the differences and similarities between selected 
commonly used malware analysis tools and the proposed 
instantiation that is the artifact created for this research. The 
comparisons will be used to evaluate MACT’s effectiveness in 
performing malware analysis. 

This framework will allow a quantitative comparison of 
the artifacts of analysis produced by all the tools involved in 
the study. A set of malware samples will be chosen and 
analyzed using each tool to extract the artifacts. Each malware 
analysis related artifact identified by MACT will be captured 
and saved. Counts will be kept by each type of analysis 
element produced by tool and sample. A tabular representation 
of the results will be created to aid evaluation.  

VI. WINDOWS APIS   
Microsoft Windows APIs allow user programs to perform 

common functions in a uniform way as well as to access 
system functionality through the kernel [13]. They abstract the 
low-level functionality from an application. These include 
creating files, reading files, allocating memory, writing to 
memory, accessing the network, accessing the internet, 
reading and writing registries. Legitimate applications and 
malware both use APIs to perform their functions. 

 An application’s functionality determines the types, 
parameters and sequences of API calls. There have been 
various studies that claim these API characteristics can be 
used to classify applications as malware and identify which 
class of malware. They can even be used in place of binary 
signature detection to identify malware and to improve upon 
the success of binary signature detection to identify previously 
unregistered polymorphic malware [15]. 

 Malware often uses specific APIs to form the 
framework upon which it builds and obfuscates its attacks.  
Some of these API functions include VirtualAlloc to allocate 
memory, CreateProcess to create a new process, 
AdjustTokenPrivileges to modify access privileges etc. While 
these API functions have perfectly legitimate uses in benign 
software, a malware analyst may look for these calls in a 
program as they are often used by malware to perform its 
functions. 

VII. API HOOKING 
Hooking is the act of redirecting the program flow of a 

process by jumping to an address and executing injected code. 
Hooking is typically achieved by one of three methods, these 
are the Import Address Table (IAT) hook, debugger hook, and 
inline hook [13]. The Import Address Table hook modifies the 
Import Address Table in the header of the PE file. Inside this 
table are pointers to the API code. The pointers are modified 
to point to a stub that logs the API calls and returns to the 
actual API. The debugger hook occurs when a breakpoint is 
set from within a debugger. In this case the entry point is 
overwritten with an INT 3 that causes the CPU to throw a 
debug exception. Inline hooking modifies the entry point of an 
API with code that jumps to a different function called the 
detour function. Changing the entry point modifies the 
original code so it is important to save the code overwritten so 
it can be executed later [21]. 

Starting with Windows XP SP2, Microsoft introduced a 
method by which they could perform hot patching. To 
implement hot patching functionality Microsoft added five 
bytes of data in the preamble of each API function that they 
could use to redirect the flow of processing and execute 
different or additional code. This provided an easy mechanism 
for inline hooking. The dummy code inserted by Microsoft 
was MOV EDI, EDI. By replacing the dummy instruction with 
a jump to another address the flow of the process can be 
altered [22].  Fig. 2 illustrates the implementation of the patch 
code in the preamble. 
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Figure 2. Patch code in the function preamble. 

VIII.   USING API CALLS TO CAPTURE API ARTIFACTS 

As mentioned previously, artifacts created by malware 
may only exist for a short time during the execution of a 
process before they are modified, deleted or hidden. Capturing 
these artifacts during dynamic analysis can be difficult and 
time consuming. Halting execution at the exact instruction 
during which the artifacts are complete and whole is 
challenging. 

API hooking allows for altering the flow of a process and 
the execution of analyst code to perform other or additional 
functionality. After the analyst’s code is executed the flow can 
be returned to the original function. Inline hooking can 
provide this functionality dynamically while not requiring the 
original program to be modified. 

The user code jumped to can log API functions that are 
indicative of malware. These include allocation of memory, 
creation of threads, manipulation of files, modification of the 
Windows registry and adjustment of system privileges. With 
this information, the user code can further examine what is 
occurring and log the relevant information to be examined 
later. The user code may also be able to capture artifacts based 
on addresses used in memory allocation, process creation or 
thread creation. 

 

 

Figure 3. API Interception 

Additionally, the user code could be used to check the 
system state by looking at changes in the Windows registry, 
memory, processes, etc. by comparing them to a previous 
system state [23][24]. These changes can be serialized, 
processes tracked, and malicious changes uncovered thus 
giving insight into what the malware is doing and how it is 
accomplishing its goals. These state checks could provide a 
method to detect malicious activity that is not apparent solely 
because of specific API calls. 

IX.   APIS OF INTEREST 
There are numerous APIs malware could use to perform 

their tasks. For the purposes of this research, the categories of 
APIs for interception will be defined as the following: 

 Memory Management: VirtualAlloc, VirtualProtect 
CopyMemory, MoveMemory, HeapAlloc, etc. 

 Windows Registry Modification: RegReplaceKey, 
RegSetValueEx, RegSaveKey, etc. 

 Process and Thread Handling: CreateProcess, 
GetCurrentProcess, CreateThread, etc. 

 File Management: CreateFile, GetTempPath, 
ReplaceFile, etc. 

 External Communication: connect, recv, send, 
TransmitFile, TransmitPackets, etc. 

 Dynamic-Link Library Manipulation: LoadLibrary, 
GetProcAddress, GetModuleFileName, etc. 

These categories include some of the more common APIs 
used by malware [25]. The APIs to be intercepted by MACT 
can be adjusted to hook more APIs as deemed necessary. The 
list used may be tailored and modified during malware 
analysis to prevent the unnecessary interception of some calls 
or to add additional APIs to intercept. 

X.   VALIDATING MACT 
To validate the Malware Analysis and Artifact Capture 

Tool, it will be necessary to verify its results against 
traditional malware analysis techniques. For the first phase of 
testing, a test program will be written which uses targeted and 
other APIs to create artifacts and trigger interception.  
Additionally, benign calls will be included in the test program 
as well as deploying different code obfuscation and encryption 
techniques. The second phase will consist of comparing the 
captured artifacts against the known artifacts of malware 
samples. These are available through various online 
repositories such as virustotal.com. 

During the first phase of validation, additional APIs or 
enhanced interception functional requirements can be 
identified and implemented. Recursive testing, improvement 
and re-evaluation can be employed to fine tune the API 
interception functions as well as the monitoring and logging 
functionality of the tool.  

The second phase of validation will consist of comparing 
analysis elements. To validate the effectiveness of MACT, it 
will be necessary to gather the totals of unique malware 
analysis elements identified by the commonly used tools. The 
elements captured will be categorized by type. The results of 
the research will be presented as shown in Table I for each 
sample in the set. 
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Table I.  Malware Analysis Tools Comparison 

Tool C
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MACT c0 r0 e0 m0 p0 u0 i0 a0 

ANLYZ c1 r1 e1 m1 p1 u1 i1 o1 

CWSandBox c2 r2 e2 m2 p2 u2 i2 o2 

HybridAnalysis c3 r3 e3 m3 p3 u3 i3 o3 

IDA c4 r4 e4 m4 p4 u4 i4 o4 

Malwr c5 r5 e5 m5 p5 u5 i5 o5 

Sandbox Pikker c6 r6 e6 m6 p6 u6 i6 o6 

ThreatExpert c7 r7 e7 m7 p7 u7 i7 o7 

ViCheck c8 r8 e8 m8 p8 u8 i8 o8 

WinDbg c9 r9 e9 m9 p9 u9 i9 o9 

 

The analysis elements by type are placed in a set with each 
element type per tool. 

 Classification = {c1...cn} with f(c) representing the 
malware effect on the classification 

 Registry = {r1...rn} with f(r) representing the malware 
effect on the registry. 

 File System = {e1...en} with f(e) representing the 
malware effect on the file system. 

 Memory = {m1…mn} with f(m) representing the 
malware effect on the memory. 

 Processes = {p1…pn} with f(p) representing the 
malware effect on the processes. 

 Communications = {u1…un} with f(u) representing the 
malware effect on the communications. 

 API = {i1…in} with f(i) representing the malware effect 
on the API calls. 

 Artifact = {a1…an} with f(a) representing the malware 
effect on the artifacts. 

The set of all analysis element type counts as listed above 
for each sample, is: 

 E = {cn, rn, rn, mn, pn, un, in, an} (1) 

Z is the set of analysis element counts by type of all 
samples, and n is the number of malware samples. 

 Z = {E1…En} (2) 

The set of all existing tools is: 

 Y = {A, C, H, I, L, S, T, V, W} (3) 

 A = ANLYZ 
 C = CWSandBox 

 H = Hybrid Analysis 
 I = IDA 
 L = Malwr 
 S = Sandbox Pikker 
 T = Threat Expert 
 V = ViCheck 
 W = WinDbg 

MACT is represented by the variable M representing the 
set of all malware elements identified by MACT. 

 M = {c0, r0, f0, m0, p0, u0, i0, a0} (4) 

Ideally there will be an overall increase across the many 
elements of Z but the minimal level of success for MACT will 
be determined when any element count for MACT is greater 
than that of any existing tool or MACT identifies an element 
not found by the other tool.  This will be represented by  

 {Mx|x∈E1..n,(#Mx>#Ex) ||(Mx\Ex>∅)} (5) 

When this equation is satisfied then the tool can be 
considered as contributing something unique to the malware 
analysis activity.  

XI.   CONCLUSION 

Research shows that some currently used malware analysis 
tools can be difficult to configure, use, have limited code 
traversal, and due to a lack of interactivity provide limited 
ability to direct execution of malware during analysis. Other 
malware analysis tools in use are designed to focus on and 
perform debugging or reverse engineering of programs. The 
lack of malware analysis focus by these tools limits their 
ability to efficiently capture useful malware analysis data. 

The use of APIs by malware provides an opportunity to 
enable interactive dynamic analysis, change the flow of 
processing, automated logging of system events, and 
document process activity. This functionality will assist in the 
analysis of malware by reducing the time and financial cost of 
the analysis. It can also enable the detection of artifacts not 
found using other automated methods or techniques. It is 
unlikely to be able to capture all artifacts for any given sample 
of malware but the capture of a relevant subset of captured 
artifacts will save hours or possibly days of analysis. 

MACT will be able to adapt to changing malware behavior 
through its ability to inject new or modified analyst defined 
API interception functions. An archive of predefined 
interception functions could be established, added to and 
maintained by malware analysts. As malware changes and the 
approaches of its authors evolve so too can the tool adapt 
through these intercept functions. 
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