
Dakota State University
Beadle Scholar

Faculty Research & Publications Beacom College of Computer and Cyber Sciences

2018

A Malware Analysis and Artifact Capture Tool
Dallas Wright
Dakota State University

Josh Stroschein
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/ccspapers

Part of the Information Security Commons, Programming Languages and Compilers Commons,
Software Engineering Commons, and the Systems Architecture Commons

This Conference Proceeding is brought to you for free and open access by the Beacom College of Computer and Cyber Sciences at Beadle Scholar. It
has been accepted for inclusion in Faculty Research & Publications by an authorized administrator of Beadle Scholar. For more information, please
contact repository@dsu.edu.

Recommended Citation
Wright, Dallas and Stroschein, Josh, "A Malware Analysis and Artifact Capture Tool" (2018). Faculty Research & Publications. 8.
https://scholar.dsu.edu/ccspapers/8

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/ccspapers?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/beacomccs?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/ccspapers?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/ccspapers/8?utm_source=scholar.dsu.edu%2Fccspapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

A Malware Analysis and Artifact Capture Tool

Dallas Wright
Cyber Security

Dakota State University
Madison South Dakota, USA

e-mail: dallas.wright@trojans.dsu.edu

Josh Stroschein, D.Sc
Assistant Professor Cyber Operations

Dakota State University
Madison South Dakota, USA

e-mail:joshua.stroschein@dsu.edu

Abstract— Malware authors attempt to obfuscate and hide their
code in its static and dynamic states. This paper provides a novel
approach to aid analysis by intercepting and capturing malware
artifacts and providing dynamic control of process flow.
Capturing malware artifacts allows an analyst to more quickly
and comprehensively understand malware behavior and
obfuscation techniques and doing so interactively allows multiple
code paths to be explored. The faster that malware can be
analyzed the quicker the systems and data compromised by it can
be determined and its infection stopped. This research proposes
an instantiation of an interactive malware analysis and artifact
capture tool.

Keywords—Malware, Malware Analysis, Windows, Debuggers,
Decompilers, Disassemblers, Obfuscation, Sandbox

I. INTRODUCTION
Malware is malicious software intentionally designed to

harm data, computers, and other devices or people. There are
numerous classifications of malware including ransomware,
trojans, rootkits, keyloggers, backdoors and others [1, 2].
Malware may be used to gather intelligence, alter data or even
hold the files on a device or computer for ransom. It has been
used to compromise individual financial records [3], financial
markets [4], voting [5] and utility infrastructure [6]. The threat
of malware infections has brought about the need for large
investments of capital by utility companies, corporations and
government entities at all levels [7].

Malware analysis is the study of the method of execution
of malware and its effects on host systems. There are two
general types of malware analysis, static and dynamic. Static
analysis is the study of malware, without execution, of the
program in a binary state. This analysis usually requires the
disassembly and/or de-obfuscation of the malware’s source or
binary code. Dynamic malware analysis is the study of
malware while it is executing. This typically involves
executing the malware in a virtual test environment and
studying its behavior [8]. Malware authors employ code
obfuscation to deter both dynamic and static analysis [9]. This
includes obfuscation of code by functionally encrypting source
code, numeric representations of characters, non-base 10
numbers, unused variables, misleading variable names,
unneeded instructions and modifying program flow to confuse,
and encryption.

During the execution of malware numerous artifacts are
often created. The artifacts can be useful in the analysis and

detection of the malware. Some artifacts are often short lived
existing only for brief periods of time making the task of
identifying and capturing such artifacts difficult [9].
Interactive debuggers can be used to stop the execution of the
malware at the moment they exist, but this is a manual
process. It can be quite difficult to identify the precise moment
when an artifact is created and in a non-obfuscated state.

There are tools that attempt an automatic analysis of
malware including the capture of their artifacts, but these tools
can be costly to set up and use, may not trigger certain
portions of the code and have limited interaction with the
malware analyst. To address these issues, this work proposes a
framework which could be used to automatically detect and
capture malware artifacts, provide for customization, and log
malware activity as well as provide a level of interactivity for
the control of program flow and malware analysis focus. The
artifact produced by this research will be a Malware Analysis
and Artifact Capture Tool (MACT).

II. PAST WORK AND CURRENT CONTRIBUTION
Antivirus scanners attempt to detect malware using

syntactic signature detection. This method is a form of static
analysis that is fast and returns few false positives. One
weakness associated with syntactic signature detection is its
inability to effectively detect new malware or obfuscated
variants of existing malware [10]. Obfuscation is a technique
by which a program’s functionality can remain intact while
making it more difficult to detect and/or understand. Variants
of malware are often modified to appear and execute in a
different manner while still performing the same nefarious
functions. Malware writers attempt to obfuscate their code and
defeat analysis and detection by antivirus scanners [11].

A polymorphic virus transforms itself dynamically to try to
evade detection. Metamorphic viruses attempt to evade
detection techniques by changing their code [9]. Obfuscations
can be employed to hide binary code, prevent accurate
disassembly, and mask flow. There are various methods used
to implement obfuscation including, code unpacking, code
overwriting, ambiguous code and data, obfuscated calls and
returns, call-stack tampering, calling convention violations,
and no-op code [12]. The effect of obfuscation does not limit
itself to antivirus scanner detection of malware it also
complicates malware analysis.

Operating system Application Program Interfaces (API)
are functions employed to abstract and perform common low-

328

2018 IEEE 16th Int. Conf. on Dependable, Autonomic & Secure Comp., 16th Int. Conf. on Pervasive Intelligence &
Comp., 4th Int. Conf. on Big Data Intelligence & Comp., and 3rd Cyber Sci. & Tech. Cong.

978-1-5386-7518-2/18/$31.00 ©2018 IEEE
DOI 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00063

level system functions. API hooking is a method by which
function calls can be intercepted during execution and then
allowing different or additional functionality to be employed.
There are numerous research papers relating to the use of API
hooking to perform malware detection and analysis. It is
claimed that a program can be identified as malware by
looking at the API calls a process makes along with the
parameters used and the frequency and order in which they are
called [13]. The research of Ye, Wang, et al. used API call
analysis to demonstrate a 92% detection rate and a faster
detection time with fewer false positives [14]. Further, it is
claimed by many researchers that by using API analysis it is
also possible to identify the family of malware to which the
program belongs [15]. Lee, Jeong, et al. have proposed
creating a Control Flow Graph (CFG) from the API call
sequence to create a semantic signature representation of a
binary [11]. The authors claim that using this semantic
signature instead of the typical syntactic signature results in
more effective detection of malware.

One class of tools that utilizes API hooking are sandboxes.
Sandboxes are virtual environments used to isolate the effects
of executing programs from the host environment on which
they run. Sandboxes are commonly used tools and are
therefore targeted for evasion by many malware creators [16].
Sandbox evasion techniques and limitations include requesting
human interaction such as dialog boxes, sleeping, masking
processes, limited code traversal, and modifying behavior after
detecting the sandbox or execution in a virtual environment
[17, 18]. Because of sandbox specific evasion techniques and
limitations exploited by malware authors, dynamic analysis
using sandboxes is not as reliable of a technique as it once was
[19].

This research contributes to the analysis of malware by
extending the use of API hooking and combining them with
interactive functionality to overcome some limitations in the
existing tools. A novel malware analysis focused tool that
provides both interactivity during dynamic analysis and
customizable functionality for automated logging, more
comprehensive path execution and artifact capture is proposed.

III. PROBLEM RELEVANCE
Several automatic malware analysis systems and services

exist including Cuckoo Sandbox, ProcMon, Malwr,
ThreatExpert and others. While these tools should be utilized
as they do provide useful information, they lack a high level of
malware analyst interactivity, customization during dynamic
analysis, limited path traversal and have shortcomings that are
exploited my malware authors [19]. A framework that allows
the analyst to control the execution path of the sample,
customize the data logged during interaction with the OS and
pause execution would address significant limitations of these
existing tools.

Interactive dynamic debuggers, disassemblers, and
decompilers are available that can be used to pause execution,
examine memory, set breakpoints, examine instructions and
code [9]. These tools include IDA, WinDbg, OllyDbg, Intel
Debugger and others. These are effective tools, but they are
general reverse engineering tools not tailored specifically
toward malware analysis. They are designed to look at binaries
and trace process execution. These tools have functionality

and customization that can be utilized to perform some
functions required during malware analysis. Unfortunately,
some of this customization and associated setup must be
performed each time the tool is used and is not specialized to
malware analysis. Additionally, the data these tools return
must be interpreted, filtered and possibly be reanalyzed with
other tools.

While malware analysis is a form of reverse engineering
there are certain phases, techniques and execution properties
that malware analysts systematically and repeatedly employ
that could be better served with a tool more directly suited to
their needs. Having a tool specifically designed to dynamically
control execution flow, monitor system API’s, monitor
memory, log system events and capture artifacts would allow a
malware analyst to more efficiently and accurately examine
malware. It would increase efficiency by limiting
configuration time with fewer and more malware specific
options and defaults, provide a more functionally direct
interface and more relevant reporting.

IV. DESIGNING MACT
To capture malware artifacts, a Malware Artifact Analysis

and Artifact Capture Tool (MACT) instantiation is proposed.
The general design objectives for the tool are 1) rules that
identify specific calls of an API as calls of interest, 2)
interception of relevant APIs, 3) for each API of interest a
method of information capture must be defined and coded 4)
detailed logging of events and tool actions and 5) user
interactivity.

When performing the injected behavior, injected code will
be programmed to differentiate normal execution behavior
with that of malware. For example, allocation of memory on
the heap with VirtualAlloc may be acceptable and hence its
execution not monitored or logged if it doesn’t attempt to
make memory executable. These rules will need to be
established and coded on a function by function basis.

Figure 1. MACT System Flow

329

Once the Windows APIs of interest are chosen and their
associated functions defined the tool can inject the hooks into
the malware process. During execution, the injected code can
perform the logging, capturing of artifacts and monitoring.

The captured malware artifacts will provide information
useful to a malware analyst. By examining these artifacts,
insight can be gained as to the methods and goals of malware.
The tool can be fine-tuned for a specific sample of malware to
capture additional and more relevant data.

The ability to identify specific artifacts can be used to
simplify the analysis of malware by using previously analyzed
artifact results. By using these more atomic malware artifacts
it will be easier to identify encrypted, metamorphic,
polymorphic and obfuscated versions of the malware. This can
lead to faster analysis and source attribution.

Each injected function will be responsible for performing
relevant logging. This includes standard logging items such as
API name, parameters, event messages and API specific
events such as the launching of a monitor for memory related
APIs. Logging of events can be used to piece together the
method of attack. It can also provide information that can
guide the analyst to focus on different types of calls or process
paths and to modify the hooked function to gather more
relevant information.

Monitoring may need to be established based on specific
API calls. The monitoring can capture what is written at
specific memory locations and then serialize it. It can also be
used to track memory, files, registry settings, and other
processes. The monitoring can be performed by the spawning
of threads from injected functions. For example, if the
malware allocates memory and makes it readable, writable and
executable it would be prudent to monitor writes to that
memory location as it is possible that an artifact is being
created and will be executed from that location.

MACT can also provide the capability to pause process
execution when a Windows API is called. This pause can
allow for the analysis of other processes, memory, files,
system registry and external communication with the MACT
tool or other tools.

V. THEORETICAL FRAMEWORK

The theoretical framework to be used for this research will
be that of a single case mechanism study [20]. Each sample in
a malware sample set will define a unique case for the
purposes of this study. This framework can be used to
emphasize the differences and similarities between selected
commonly used malware analysis tools and the proposed
instantiation that is the artifact created for this research. The
comparisons will be used to evaluate MACT’s effectiveness in
performing malware analysis.

This framework will allow a quantitative comparison of
the artifacts of analysis produced by all the tools involved in
the study. A set of malware samples will be chosen and
analyzed using each tool to extract the artifacts. Each malware
analysis related artifact identified by MACT will be captured
and saved. Counts will be kept by each type of analysis
element produced by tool and sample. A tabular representation
of the results will be created to aid evaluation.

VI. WINDOWS APIS
Microsoft Windows APIs allow user programs to perform

common functions in a uniform way as well as to access
system functionality through the kernel [13]. They abstract the
low-level functionality from an application. These include
creating files, reading files, allocating memory, writing to
memory, accessing the network, accessing the internet,
reading and writing registries. Legitimate applications and
malware both use APIs to perform their functions.

 An application’s functionality determines the types,
parameters and sequences of API calls. There have been
various studies that claim these API characteristics can be
used to classify applications as malware and identify which
class of malware. They can even be used in place of binary
signature detection to identify malware and to improve upon
the success of binary signature detection to identify previously
unregistered polymorphic malware [15].

 Malware often uses specific APIs to form the
framework upon which it builds and obfuscates its attacks.
Some of these API functions include VirtualAlloc to allocate
memory, CreateProcess to create a new process,
AdjustTokenPrivileges to modify access privileges etc. While
these API functions have perfectly legitimate uses in benign
software, a malware analyst may look for these calls in a
program as they are often used by malware to perform its
functions.

VII. API HOOKING
Hooking is the act of redirecting the program flow of a

process by jumping to an address and executing injected code.
Hooking is typically achieved by one of three methods, these
are the Import Address Table (IAT) hook, debugger hook, and
inline hook [13]. The Import Address Table hook modifies the
Import Address Table in the header of the PE file. Inside this
table are pointers to the API code. The pointers are modified
to point to a stub that logs the API calls and returns to the
actual API. The debugger hook occurs when a breakpoint is
set from within a debugger. In this case the entry point is
overwritten with an INT 3 that causes the CPU to throw a
debug exception. Inline hooking modifies the entry point of an
API with code that jumps to a different function called the
detour function. Changing the entry point modifies the
original code so it is important to save the code overwritten so
it can be executed later [21].

Starting with Windows XP SP2, Microsoft introduced a
method by which they could perform hot patching. To
implement hot patching functionality Microsoft added five
bytes of data in the preamble of each API function that they
could use to redirect the flow of processing and execute
different or additional code. This provided an easy mechanism
for inline hooking. The dummy code inserted by Microsoft
was MOV EDI, EDI. By replacing the dummy instruction with
a jump to another address the flow of the process can be
altered [22]. Fig. 2 illustrates the implementation of the patch
code in the preamble.

330

Figure 2. Patch code in the function preamble.

VIII. USING API CALLS TO CAPTURE API ARTIFACTS

As mentioned previously, artifacts created by malware
may only exist for a short time during the execution of a
process before they are modified, deleted or hidden. Capturing
these artifacts during dynamic analysis can be difficult and
time consuming. Halting execution at the exact instruction
during which the artifacts are complete and whole is
challenging.

API hooking allows for altering the flow of a process and
the execution of analyst code to perform other or additional
functionality. After the analyst’s code is executed the flow can
be returned to the original function. Inline hooking can
provide this functionality dynamically while not requiring the
original program to be modified.

The user code jumped to can log API functions that are
indicative of malware. These include allocation of memory,
creation of threads, manipulation of files, modification of the
Windows registry and adjustment of system privileges. With
this information, the user code can further examine what is
occurring and log the relevant information to be examined
later. The user code may also be able to capture artifacts based
on addresses used in memory allocation, process creation or
thread creation.

Figure 3. API Interception

Additionally, the user code could be used to check the
system state by looking at changes in the Windows registry,
memory, processes, etc. by comparing them to a previous
system state [23][24]. These changes can be serialized,
processes tracked, and malicious changes uncovered thus
giving insight into what the malware is doing and how it is
accomplishing its goals. These state checks could provide a
method to detect malicious activity that is not apparent solely
because of specific API calls.

IX. APIS OF INTEREST
There are numerous APIs malware could use to perform

their tasks. For the purposes of this research, the categories of
APIs for interception will be defined as the following:

 Memory Management: VirtualAlloc, VirtualProtect
CopyMemory, MoveMemory, HeapAlloc, etc.

 Windows Registry Modification: RegReplaceKey,
RegSetValueEx, RegSaveKey, etc.

 Process and Thread Handling: CreateProcess,
GetCurrentProcess, CreateThread, etc.

 File Management: CreateFile, GetTempPath,
ReplaceFile, etc.

 External Communication: connect, recv, send,
TransmitFile, TransmitPackets, etc.

 Dynamic-Link Library Manipulation: LoadLibrary,
GetProcAddress, GetModuleFileName, etc.

These categories include some of the more common APIs
used by malware [25]. The APIs to be intercepted by MACT
can be adjusted to hook more APIs as deemed necessary. The
list used may be tailored and modified during malware
analysis to prevent the unnecessary interception of some calls
or to add additional APIs to intercept.

X. VALIDATING MACT
To validate the Malware Analysis and Artifact Capture

Tool, it will be necessary to verify its results against
traditional malware analysis techniques. For the first phase of
testing, a test program will be written which uses targeted and
other APIs to create artifacts and trigger interception.
Additionally, benign calls will be included in the test program
as well as deploying different code obfuscation and encryption
techniques. The second phase will consist of comparing the
captured artifacts against the known artifacts of malware
samples. These are available through various online
repositories such as virustotal.com.

During the first phase of validation, additional APIs or
enhanced interception functional requirements can be
identified and implemented. Recursive testing, improvement
and re-evaluation can be employed to fine tune the API
interception functions as well as the monitoring and logging
functionality of the tool.

The second phase of validation will consist of comparing
analysis elements. To validate the effectiveness of MACT, it
will be necessary to gather the totals of unique malware
analysis elements identified by the commonly used tools. The
elements captured will be categorized by type. The results of
the research will be presented as shown in Table I for each
sample in the set.

331

Table I. Malware Analysis Tools Comparison

Tool C
la

ss
ifi

ca
tio

n

R
eg

ist
ry

Fi
le

 S
ys

te
m

M
em

or
y

Pr
oc

es
se

s

C
om

m
un

ic
at

io
n

A
PI

A
rt

ifa
ct

MACT c0 r0 e0 m0 p0 u0 i0 a0

ANLYZ c1 r1 e1 m1 p1 u1 i1 o1

CWSandBox c2 r2 e2 m2 p2 u2 i2 o2

HybridAnalysis c3 r3 e3 m3 p3 u3 i3 o3

IDA c4 r4 e4 m4 p4 u4 i4 o4

Malwr c5 r5 e5 m5 p5 u5 i5 o5

Sandbox Pikker c6 r6 e6 m6 p6 u6 i6 o6

ThreatExpert c7 r7 e7 m7 p7 u7 i7 o7

ViCheck c8 r8 e8 m8 p8 u8 i8 o8

WinDbg c9 r9 e9 m9 p9 u9 i9 o9

The analysis elements by type are placed in a set with each
element type per tool.

 Classification = {c1...cn} with f(c) representing the
malware effect on the classification

 Registry = {r1...rn} with f(r) representing the malware
effect on the registry.

 File System = {e1...en} with f(e) representing the
malware effect on the file system.

 Memory = {m1…mn} with f(m) representing the
malware effect on the memory.

 Processes = {p1…pn} with f(p) representing the
malware effect on the processes.

 Communications = {u1…un} with f(u) representing the
malware effect on the communications.

 API = {i1…in} with f(i) representing the malware effect
on the API calls.

 Artifact = {a1…an} with f(a) representing the malware
effect on the artifacts.

The set of all analysis element type counts as listed above
for each sample, is:

 E = {cn, rn, rn, mn, pn, un, in, an} (1)

Z is the set of analysis element counts by type of all
samples, and n is the number of malware samples.

 Z = {E1…En} (2)

The set of all existing tools is:

 Y = {A, C, H, I, L, S, T, V, W} (3)

 A = ANLYZ
 C = CWSandBox

 H = Hybrid Analysis
 I = IDA
 L = Malwr
 S = Sandbox Pikker
 T = Threat Expert
 V = ViCheck
 W = WinDbg

MACT is represented by the variable M representing the
set of all malware elements identified by MACT.

 M = {c0, r0, f0, m0, p0, u0, i0, a0} (4)

Ideally there will be an overall increase across the many
elements of Z but the minimal level of success for MACT will
be determined when any element count for MACT is greater
than that of any existing tool or MACT identifies an element
not found by the other tool. This will be represented by

 {Mx|x∈E1..n,(#Mx>#Ex) ||(Mx\Ex>∅)} (5)

When this equation is satisfied then the tool can be
considered as contributing something unique to the malware
analysis activity.

XI. CONCLUSION

Research shows that some currently used malware analysis
tools can be difficult to configure, use, have limited code
traversal, and due to a lack of interactivity provide limited
ability to direct execution of malware during analysis. Other
malware analysis tools in use are designed to focus on and
perform debugging or reverse engineering of programs. The
lack of malware analysis focus by these tools limits their
ability to efficiently capture useful malware analysis data.

The use of APIs by malware provides an opportunity to
enable interactive dynamic analysis, change the flow of
processing, automated logging of system events, and
document process activity. This functionality will assist in the
analysis of malware by reducing the time and financial cost of
the analysis. It can also enable the detection of artifacts not
found using other automated methods or techniques. It is
unlikely to be able to capture all artifacts for any given sample
of malware but the capture of a relevant subset of captured
artifacts will save hours or possibly days of analysis.

MACT will be able to adapt to changing malware behavior
through its ability to inject new or modified analyst defined
API interception functions. An archive of predefined
interception functions could be established, added to and
maintained by malware analysts. As malware changes and the
approaches of its authors evolve so too can the tool adapt
through these intercept functions.

REFERENCES
[1] D. Uppal, V. Mehra, and V. Verma, "Basic survey on malware

analysis, tools and techniques," International Journal on
Computational Sciences & Applications (IJCSA), vol. 4, no. 1, p.
103, 2014.

[2] M. Wagner et al., "A survey of visualization systems for
malware analysis," in EG Conference on Visualization
(EuroVis)-STARs, 2015, pp. 105-125.

332

[3] R. Lawler. (2017, 10/01/2017). Equifax security breach leaks
personal info of 143 million US consumers. Available:
https://www.engadget.com/2017/09/07/equifax-hack-143-
million/

[4] D. J. Lynch. (2017, 10/05/2017). Hackers tapped personal
information in SEC breach. Available:
https://www.ft.com/content/d767d516-a78a-11e7-ab55-
27219df83c97?mhq5j=e6

[5] N. Y. Times. (2017). U.S. Tells 21 States That Hackers Targeted
Their Voting Systems. Available:
https://www.nytimes.com/2017/09/22/us/politics/us-tells-21-
states-that-hackers-targeted-their-voting-systems.html

[6] A. Greenberg. (2017, 10/01/2017). Your Guide to Russia’s
Infrastructure Hacking Teams. Available:
https://www.wired.com/story/russian-hacking-teams-
infrastructure/

[7] M. Amin, "A Survey of Financial Losses Due to Malware,"
presented at the Proceedings of the Second International
Conference on Information and Communication Technology for
Competitive Strategies, Udaipur, India, 2016.

[8] C. Willems, T. Holz, and F. Freiling, "Toward Automated
Dynamic Malware Analysis Using CWSandbox," IEEE Security
& Privacy, vol. 5, no. 2, pp. 32-39, 2007.

[9] M. Christodorescu and S. Jha, "Testing malware detectors,"
SIGSOFT Softw. Eng. Notes, vol. 29, no. 4, pp. 34-44, 2004.

[10] C. K. Patanaik, F. A. Barbhuiya, and S. Nandi, "Obfuscated
malware detection using API call dependency," presented at the
Proceedings of the First International Conference on Security of
Internet of Things, Kollam, India, 2012.

[11] J. Lee, K. Jeong, and H. Lee, "Detecting metamorphic malwares
using code graphs," presented at the Proceedings of the 2010
ACM Symposium on Applied Computing, Sierre, Switzerland,
2010.

[12] K. A. Roundy and B. P. Miller, "Binary-code obfuscations in
prevalent packer tools," ACM Comput. Surv., vol. 46, no. 1, pp.
1-32, 2013.

[13] S. Z. M. Shaid and M. A. Maarof, "In memory detection of
Windows API call hooking technique," in 2015 International
Conference on Computer, Communications, and Control
Technology (I4CT), 2015, pp. 294-298.

[14] Y. Ye, D. Wang, T. Li, and D. Ye, "IMDS: intelligent malware
detection system," presented at the Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, San Jose, California, USA, 2007.

[15] V. P. Nair, H. Jain, Y. K. Golecha, M. S. Gaur, and V. Laxmi,
"MEDUSA: MEtamorphic malware dynamic analysis
usingsignature from API," presented at the Proceedings of the
3rd international conference on Security of information and
networks, Taganrog, Rostov-on-Don, Russian Federation, 2010.

[16] J. A. Marpaung, M. Sain, and H.-J. Lee, "Survey on malware
evasion techniques: State of the art and challenges," in Advanced
Communication Technology (ICACT), 2012 14th International
Conference on, 2012, pp. 744-749: IEEE.

[17] A. Singh and Z. Bu, "Hot knives through butter: Evading file-
based sandboxes," Threat Research Blog, 2013.

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, "Ether: malware
analysis via hardware virtualization extensions," presented at the
Proceedings of the 15th ACM conference on Computer and
communications security, Alexandria, Virginia, USA, 2008.

[19] M. Mehra and D. Pandey, "Event triggered malware: A new
challenge to sandboxing," in 2015 Annual IEEE India
Conference (INDICON), 2015, pp. 1-6.

[20] R. J. Wieringa, Design Science Methodology for Information
Systems and Software Engineering. 2014.

[21] A. Kumar and S. Goyal, "Advance Dynamic Malware Analysis
Using Api Hooking."

[22] B. Mariani, "Inline hooking in windows," by High-Tech Bridge
SA dated Sep, vol. 6, p. 26, 2011.

[23] Y. Han, Z. Hao, L. Cui, C. Wang, and Y. Sang, "A Hybrid
Monitoring Mechanism in Virtualized Environments," in 2016
IEEE Trustcom/BigDataSE/ISPA, 2016, pp. 1038-1045.

[24] R. Mosli, R. Li, B. Yuan, and Y. Pan, "Automated malware
detection using artifacts in forensic memory images," in 2016
IEEE Symposium on Technologies for Homeland Security
(HST), 2016, pp. 1-6.

[25] M. Griffin, Assessment of run-time malware detection through
critical function hooking and process introspection against real-
world attacks. The University of Texas at San Antonio, 2013.

333

	Dakota State University
	Beadle Scholar
	2018

	A Malware Analysis and Artifact Capture Tool
	Dallas Wright
	Josh Stroschein
	Recommended Citation

	A Malware Analysis and Artifact Capture Tool

