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ABSTRACT 

Brain-Computer Interfaces (BCIs) facilitate communication 

between brains and computers. As these devices become 

increasingly popular outside of the medical context, research 

interest in brain privacy risks and countermeasures has bloomed. 

Several neuroprivacy threats have been identified in the literature, 

including brain malware, personal data being contained in 

collected brainwaves and the inadequacy of legal regimes with 

regards to neural data protection. Dozens of controls have been 

proposed or implemented for protecting neuroprivacy, although it 

has not been immediately apparent what the landscape of 

neuroprivacy controls consists of. This paper inventories the 

implemented and proposed neuroprivacy risk mitigation 

techniques from open source repositories, BCI providers and the 

academic literature. These controls are mapped to the Hoepman 

privacy strategies and their implementation status is described. 

Several research directions for ensuring the protection of 

neuroprivacy are identified. 

CCS Concepts 
• Security and privacy➝Human and societal aspects of 

security and privacy➝Privacy protections 

Keywords 

Brain-Computer Interfaces; Brain Hacking; Neural Data 

Protection; Neurosecurity; Neuroprivacy; Privacy Controls 

1. INTRODUCTION 
Privacy concerns have come to the fore of public consciousness in 

recent years, with strict privacy regulations such as the California 

Consumer Privacy Act and the European Union’s General Data 

Protection Regulation making headlines and privacy controversies 

such as the Snowden revelations and Facebook’s Cambridge 

Analytica scandal roiling popular trust in government and 

commercial institutions. In recent decades, researchers have 

shown heightened interest in anticipating and documenting 

privacy threats to the human brain and mind involving the use of 

Brain-Computer Interfaces (BCIs). There is much discussion of 

neurosecurity and neuroprivacy risks and controls, although it is 

unclear what is being done to develop and make widely available 

privacy controls for protecting the privacy of people who utilize 

BCIs. 

This paper seeks to summarize the current state of neuroprivacy 

controls implementation, utilizing the Hoepman privacy strategies 

as its control taxonomy [21]. Although brain security and privacy 

scholars have identified many privacy controls for the brain, there 

has yet to be an inventory of theoretical and implemented 

neuroprivacy controls that are classified into privacy control 

families. This study found that few privacy controls have moved 

beyond their theoretical formulations and that no open source 

solutions exist for individuals wanting to protect themselves from 

brain hackers. A novel classification and inventory of BCI privacy 

controls is offered, along with discussion of research gaps in 

developing compensating controls for neuroprivacy risk. 

Brain-Computer Interfaces (BCIs) are devices that enable 

bidirectional or unidirectional communication between brains and 

computers [33]. These devices may or may not be additionally 

classifiable as neuroprosthetics depending on whether they are 

integrated into the neural circuitry of the organism [19]. 

Applications of BCIs range from diagnosing diseases and 

restoring bodily functions to remotely controlling robots, lie 

detection, authentication and gaming, among others [33]. 

Electroencephalography (EEG) is a low-cost and non-invasive 

method for obtaining neural data, in use by various consumer BCI 

headset providers such as Muse, NeuroSky and Emotiv. Various 

other methods for obtaining neural data as well as methods for 

stimulating the brain with BCIs were discussed in [4]. 

Brain-computer interfaces can be classified according to the 

direction(s) communication flows – BCIs can record from the 

brain, stimulate the brain or both record from and stimulate the 

brain [33]. These interfaces can also be ranked according to their 

invasiveness in relation to the brain – invasive BCIs are situated 

within the brain, semi-invasive BCIs on the brain surface or 

nerves and non-invasive BCIs outside of the skin of the head and 

skull [33]. A design classification for BCIs – between passive, 

active, reactive and hybrid – also exists, which makes distinctions 

according to whether the initiator of the neural data acquisition is 

the device or the person and the nature of their interaction [4]. A 

novel five-phase BCI cycle was proposed that explains the high-

level signal processing steps involved with neural data acquisition 

and neural stimulation, which is useful for neurosecurity threat 

modeling [4]. 

Privacy is difficult to define, but at a high level can be thought of 

as “the relief from a range of kinds of social friction” [35]. 

Adapting this definition to BCIs, neuroprivacy can be thought of 

as relief from social friction stemming from the processing of 

neural data. The original neuroprivacy article defined 

neuroprivacy as privacy concerns of neurodiagnostic and 

neuroimaging techniques [31]. “Privacy of thoughts and feelings” 

has been identified as one of the seven types of privacy, inspired 

by the privacy issues of neurotechnology [17]. Another author has 

identified issues related to BCI-enabled blackmail and decisional 

interference (loss of autonomy), which are privacy harms within 

Solove’s taxonomy [23]. Since insecurity is a privacy harm, 

neurosecurity issues that result in social friction for the data 

subject can also be thought of as neuroprivacy issues. 
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Neuroprivacy concerns represent a unique and pressing challenge 

for privacy professionals as the mind becomes ever more 

connected and discernible with advances in neurotechnology. 

There is uncertainty as to whether data protection regimes can 

adequately address neuroprivacy concerns [20], and other scholars 

have identified a lack of basic privacy protections such as 

applications having excessive access to personal information in 

popular BCI headsets [39]. There was one application that sent 

users’ raw EEG data to cloud storage, potentially allowing 

unknown parties to extract sensitive personal information from 

users’ brainwaves at some point in the future. Obtaining informed 

consent from the users of BCIs is particularly difficult due to 

previously collected EEG data having the potential to later be 

processed in novel ways that allows extraction of information that 

was not possible before due to advancements in the methods used 

to process EEG signals [37]. The neural data extracted with BCIs 

is inherently personal – each person’s brainwaves are unique [37] 

and change little over their lifetime [14] and may contain sensitive 

information such as religiosity [25], drowsiness levels [40] and 

“guilty knowledge” [33], among other aspects of cognition. 

The original neurosecurity paper defined neurosecurity as “the 

protection of confidentiality, integrity, and availability of neural 

devices from malicious parties with the goal of preserving the 

safety of a person’s neural mechanisms, neural computation, and 

free will” [13]. Another researcher has proposed the term 

“neurocrime” to refer to criminal activities that involve neural 

information [23]. “Brain spyware” has been demonstrated in the 

lab, illustrating that brain hackers can deduce private information 

such as banking information, recognized faces, PIN numbers, 

location of residency and month of birth from the brains of BCI 

users by showing them visual stimuli and using a machine 

learning model to detect familiar information based on the brain’s 

response [28]. This type of attack can also be performed 

subliminally, without the conscious awareness of the target [18]. 

Brain hacking scholars are anticipating the growing significance 

and complexity of these privacy and security threats [4], as novel 

architectures for neurotechnology enable technology-assisted 

telepathy [7], using thoughts to remote-control animals [41] and 

the emergence of a global “Internet of Neurons” [34]. 

Hoepman distilled the privacy design literature into eight distinct 

kinds of strategies made up of 26 tactics, which address various 

high-level requirements of data protection regulation [10, 11, 21, 

22]. His privacy design strategies and tactics have been proposed 

as a potential control taxonomy for mitigating privacy risks [11]. 

Although intended to categorize privacy design patterns, 

Hoepman envisioned that his taxonomy could be used to analyze 

the privacy impact of information systems more generally [21], 

suggesting that it is an appropriate framework for understanding 

neuroprivacy risks and controls. 

The first four strategies – Minimize, Separate, Abstract and Hide 

– are data-oriented strategies, dealing with the architectural 

considerations of privacy described in [36]. Architectures that 

support less identifiability and less centricity promote stronger 

privacy. Identifiability is the ease with which personal data can be 

linked to a natural person, while centricity is the degree to which 

an organization’s network systems enable control over the data 

subject’s information [36]. The tactics within these four strategies 

can be thought of as specific techniques for reducing centricity 

and identifiability in an organization’s architecture. The remaining 

four strategies – Inform, Control, Enforce and Demonstrate – are 

process-oriented, or privacy-by-policy, strategies [21]. They are 

organizational processes and procedures for promoting strong 

privacy [22]. Inform and Control are strategies that focus on 

empowering the data subject, whereas Demonstrate and Enforce 

focus on the role of the data controller in maintaining privacy 

protections. 

The existing brain hacking literature identifies numerous privacy 

and security controls that could be deployed to mitigate risks 

related to the use of BCI technology. However, these controls 

have not been organized under a privacy control taxonomy such 

as the Hoepman strategies. The rest of this paper is as follows: 

Section 2 discusses the methodology for inventorying the 

neuroprivacy controls; Section 3 contains the results; Section 4 

discusses the results, while concluding remarks are in Section 5. 

2. METHODOLOGY 
For a piece of research to be included in this inventory, it had to 

contain at least one concrete, specific action an individual or 

organization could take to protect neuroprivacy; be from an 

academic database; be available for reading, either through library 

subscriptions or be openly available for download; and be readily 

traceable from the neurosecurity and neuroprivacy literature or 

from searches for relevant keywords in the titles of the articles. 

Only controls mentioned within the context of BCIs were 

included in the inventory – the neuroprosthetics literature was not 

included, such as the neurosecurity controls mentioned in [19]. 

Controls were classified into four categories: academic, 

commercial, open source and theorized. Academic controls have 

been demonstrated in research labs; commercial controls were 

countermeasures that were known to be in use by BCI providers; 

open source controls were tools that were hosted on openly 

available repositories; and theorized controls were those 

mentioned in the literature, but had not been implemented in 

academia, in industry or by individuals maintaining open source 

solutions. For theorized controls, only the earliest citation was 

used, and all citations were presented if multiple independent 

researchers proposed or implemented the control during the same 

year. The Hoepman strategies were loosely interpreted when 

possible, which included counting security tools that could be 

used to indirectly protect personal data as privacy tools. Security 

controls that were not classifiable as Hoepman controls were 

given a “Non-Hoepman” security control designation. The 

Smartphone Brain Scanner openPDS system described in [37] was 

accounted for as a collection of separate, constituent privacy 

controls rather than one large privacy control that spanned 

multiple Hoepman tactics and families. 

Mentions of security or privacy controls for BCI devices on 

certain code repositories and commercial BCI provider websites 

were also included in this study. The following BCI provider 

domains were searched for security, privacy and data protection in 

the context of BCIs or neural data: 

• BioSemi (https://www.biosemi.com) 

• Emotiv (https://www.emotiv.com) 

• Halo Neuro (https://www.haloneuro.com) 

• Kokoon (https://kokoon.io) 

• Muse (https://choosemuse.com) 

• MyndPlay (https://myndplay.com) 

• NeuroOptimal (https://neuroptimal.com) 

• NeuroSky (http://neurosky.com) 

• OpenBCI (https://openbci.com) 

These providers’ privacy policies and other web pages from the 

domains listed above were analyzed for any sort of privacy 

protections that specifically dealt with neural data or BCI device 

privacy protections. Only four of the nine providers listed above 

dealt specifically with neuroprivacy issues in their privacy 
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notices: Emotiv, Kokoon, Muse and NeuroSky. For NeuroSky, 

neural data processing was discussed in the privacy notice of the 

Effective Learner App, but not in the main privacy notice. With 

regards to all privacy notices, protections that explicitly 

generalized to covering all personal data of which EEG data was a 

specified type were included in the inventory by default, even if it 

was unlikely that those protections applied to neural data. For 

instance, a BCI provider that stated that EEG data is personal data 

and that they will allow the data subject to correct inaccuracies in 

their personal data were classified in the inventory as allowing the 

correction of EEG data unless there was an explicit exception for 

EEG data. Thus, for the purposes of this paper, all privacy notices 

were interpreted literally. In addition to BCI provider websites, 

the following code repositories were searched for mention of open 

source privacy or security tools that are explicitly for protecting 

EEG data or BCI devices: 

• GitHub (https://github.com) 

• GitLab (https://gitlab.com) 

• BitBucket (https://bitbucket.org) 

• SourceForge (https://sourceforge.net) 

• LaunchPad (https://launchpad.net) 

3. RESULTS 
This section begins with a general overview of the findings, 

followed by six subsections describing the controls, sorted by 

their Hoepman classifications. In total, 94 neuroprivacy controls 

were identified from the literature, BCI provider websites and in 

code repositories. Figures 1 through 3 were generated from this 

collected data and were designed to answer the following research 

questions: 

• What proportion of neuroprivacy controls have 

implementations and what is the relative distribution of 

implementation types? 

• What is the relative control distribution among the eight 

Hoepman privacy strategies? 

• What is the proportion of each control group that has 

been implemented? 

Figure 1 illustrates the relative distribution of controls based on 

whether they were theorized, academic, commercial or open 

source. This inventory revealed that most neuroprivacy controls 

are theoretical, with 30% in use by BCI providers. There were two 

controls, blockchain and Secure Multiparty Computation, that 

have been implemented in the lab [1-3]. There was a single open 

source solution, Open Brain Consent, which is a template for 

obtaining consent from research participants for research that 

involves neural data collection [32]. Figure 2 shows the relative 

distribution of the 94 controls according to their Hoepman 

classifications. There were seven controls that could not be 

classified under the Hoepman strategies, so were given the 

“Security” designation. The most represented techniques were 

those in the Hide and Demonstrate strategies, making up 18% and 

22% of the controls respectively. Enforce, Separate and Abstract 

were the least represented controls, with five or fewer controls 

each. Figure 3 shows the relative distribution of neuroprivacy 

controls that have been implemented. Implemented controls were 

any controls that were not categorized as theorized. In total, just 

under 30% (28) of the 94 controls identified were implemented. 

Of the privacy strategies, only the Abstract strategy lacked any 

implemented controls, and the Enforce strategy had the highest 

proportion of implemented controls (80%). 

There were seven controls identified that were not classifiable as 

Hoepman controls, none of which have been implemented in the 

context of BCIs. Adversarial training, architecture modifications, 

defense distillation and ensemble method are techniques for 

hardening machine learning models against exploitation [4]. 

These techniques would involve protecting the algorithm(s) 

responsible for decoding intentions in neural data acquisition and 

those responsible for encoding neural firing patterns in 

neurostimulators. Other proposed neurosecurity controls included 

utilizing robust programming languages, malware visualization 

and compilation techniques and options [4]. 

 

 

Figure 1. Distribution of Existing Neuroprivacy Controls by 

Type 

 

Figure 2. Distribution of Controls by Hoepman Strategy 
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Figure 3. Distribution of Controls by Implementation Status 

The Minimize strategy limits as much as possible the processing 

of personal data [11]. Of the twelve Minimize controls identified, 

only one was implemented: BCI providers stating in their privacy 

notices that personal data is retained only as long as necessary, 

which presumably applies to neural data as well [26, 29, 30]. A 

similar and cheaper control would be deleting neural data 

regularly as it becomes unnecessary [6]. Limiting retention of 

neural data was not universal among the BCI providers, as Emotiv 

explicitly stated in their privacy notice that they retain EEG data 

indefinitely [15]. Minimize can also be realized by selectively 

choosing what personal data to process or by refusing to process 

personal data. The use of directional antennas and low 

transmission power could limit the processing of personal data in 

physical space [4]. Utilizing whitelists, running apps with lowest 

privileges and designing platforms to only have necessary features 

are methods for being selective about which neural data will be 

processed and limiting the processing to relevant parties and 

applications [4]. Methods for not processing certain neural data 

included blacklists [4], traffic filtering [34] and input sanitization 

and validation [34]. Safe APIs and languages were proposed as a 

way to automate input sanitization and validation [4]. Most of the 

proposed Minimize controls are familiar from the cybersecurity 

field, with the exception of the BCI Anonymizer [5, 9]. This tool 

has been proposed as a way to remove private information from 

EEG data before they are stored or transmitted [5], although it has 

not been invented as suggested by the abandoned status of the 

BCI Anonymizer patent application [9]. Several issues with the 

BCI Anonymizer idea have been identified, including resource 

constraints in BCI devices, lack of access to proprietary 

algorithms, lack of a clear method for separating private 

information from intentions and a general lack of any 

implementation details [39]. 

Separate involves isolating or distributing the processing of 

personal data as much as possible to prevent correlation [11]. 

Only five Separate controls were identified in this inventory. 

Keeping the data subject’s pseudonymization ID separate from 

their neural data was the only Separate control with a real-world 

implementation [15]. Other proposed techniques for promoting 

isolation in BCIs included application sandboxing [34] and 

segmented application architectures [4]. Suggestions for 

distributing neural data processing across physical locations 

included utilizing an external device for authorizing neural 

stimulation [4] and keeping EEG data under the control of the end 

user through the use of a locally hosted Personal Data Store (PDS) 

[37]. Abstract techniques limit the detail in which personal data is 

processed [11]. This strategy had the fewest proposed controls of 

any strategy and was the only one that did not have any real-world 

implementations. Adding noise to EEG data before applications 

can process it could decrease the risk of personal data leaks [28]. 

Differential privacy is a specific application of noise addition that 

could be deployed in BCIs to deidentify brainwaves [39]. Personal 

Data Stores could be equipped with capabilities for aggregate 

computation of neural data across multiple PDS instances and 

summarizing EEG data into high-level attributes by reducing the 

dimensionality of the data [37]. 

The Hide strategy reduces the identifiability of personal data and 

prevents it from becoming public or known [11]. This strategy 

had a total of six implementations, five commercial and one 

academic. Emotiv encrypts neural data at rest and in transit [15]. 

There were two BCI providers that anonymize neural data by 

removing any associated identifying information [29, 30]. Emotiv 

utilizes pseudonymization, which involves processing neural data 

with a unique identifier rather than directly attributing the neural 

data to the data subject [15]. NeuroSky, Muse and Kokoon limit 

access to neural data based on a “need to know” [26, 29, 30]. 

Secure Multiparty Computation was demonstrated in the lab to 

allow estimation of driver drowsiness without exposing any 

individual user’s EEG data [1, 2]. Proposed Hide techniques 

included fine-grained context-based access control [27], 

maintaining different permission granularity [4] and restricted 

APIs [28], all of which could be used to limit access to neural 

data. Functional encryption and homomorphic encryption have 

been suggested as potential methods for obfuscating raw EEG 

data or the extracted features [39]. Application hardening could be 

used to make BCI software more difficult to reverse engineer, 

increasing the difficulty of brain exploitation [4]. Mix techniques 

reduce the risk of unwanted correlation and could include 

randomization [39], utilizing mix networks such as The Onion 

Router [34] and using spread spectrum for enhanced wireless 

security [4]. Mental firewalls and mental encryption are 

theoretical controls unique to neuroprivacy. As BCIs are equipped 

with advanced brain-to-brain communication capabilities, there 

will be a need to protect against “malicious brainwaves,” which 

could compromise the integrity of the mind [34]. Restricting 

access to the mind or specific parts of the mind could be achieved 

with a firewall that is designed to filter brainwaves. Mental 

encryption would involve using a person’s cognition as part of an 

algorithm for encrypting their brainwaves, although it is unclear 

how this would work in practice [34]. 

The Inform strategy empowers the data subject by informing them 

about the processing of their personal data [11]. Inform was the 

third most represented Hoepman strategy with 14 controls, of 

which eight were implemented. Having a privacy notice that 

discusses neuroprivacy concerns can be thought of as the 

foundational control in this strategy. The four BCI providers that 

mentioned neuroprivacy issues in their privacy notices – Emotiv, 

Kokoon, Muse and NeuroSky – each disclose neural data 

processing details, inform data subjects of changes to the notice, 

and direct data subjects with privacy questions to the proper 

contact [15, 26, 29, 30]. Other Inform controls that were present 

in BCI provider privacy notices included explaining why neural 

data is processed [15, 26, 30] as well as stating that regulators [26, 

30] and the data subjects [15, 26, 30] may be notified in the case 
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of a breach. The Open Brain Consent form is an open source 

template for a privacy notice and consent form that can be 

furnished to research participants whose neural data will be 

collected [32]. Researchers have identified a need for using 

accessible language in BCI privacy disclosures [6] and explaining 

all neural data processing in clear and plain language [37], 

although only dedicated research, such as analyzing the reading 

difficulty of BCI provider privacy notices, could discern whether 

this has been carried out in practice. The data subject could also 

receive regular reminders of the status of the neural data 

processing that affects them [37]. End user BCI security training 

[24], security demos and serious games [24] and subliminal 

stimuli awareness [18] have been proposed as controls for 

informing the data subject about brain hacking risks and defense. 

These measures can be considered Inform controls insofar as they 

provide information on how the data subject’s brains could be 

manipulated by adversaries, as this manipulation is a form of 

neural data processing. 

Control techniques allow data subjects to control aspects of the 

processing of their personal data [11]. The majority of Control 

techniques, six of nine, were implemented. The BCI providers had 

statements regarding revocation of consent and the rights of the 

data subject to access, port and update or correct personal data, 

which presumably apply to neural data as well [15, 26, 29, 30]. 

Kokoon stated that all neural data processing was explicitly opt-in 

[26], and all providers besides Emotiv implied that neural data 

could be retracted [26, 29, 30]. Proposed controls in this strategy 

include easy opt-out mechanisms for data subjects [6], obtaining 

informed consent for neural data processing [6] and allowing the 

data subject to retain control of their neural data through the use 

of a Personal Data Store [37]. Obtaining informed consent was 

marked as unimplemented due to the concerns that have been 

raised over whether this is theoretically possible for raw EEG data 

[37]. The Enforce strategy is concerned with the privacy policy of 

the organization [11]. Enforce had the highest percentage of 

implemented controls at four of five of those identified. Privacy 

notices and privacy policies are two different pieces of 

documentation – the former informs the data subject about data 

processing [8] and the latter is an internal piece of governance 

documentation [12]. Every BCI provider that discussed EEG data 

processing in its privacy notice was assumed to have also 

implemented an internal privacy policy that covers EEG data 

processing to some degree [15, 26, 29, 30]. Other implemented 

Enforce controls included ensuring employees comply with the 

privacy notice [15], ensuring service providers comply with the 

privacy notice [15, 26, 29, 30] and training all employees on 

requirements under legal regimes [16]. The privacy addendum 

was proposed as a mechanism for managing neuroprivacy risk 

associated with third parties such as BCI application developers 

[6]. The addendum requires adherence to a set of BCI Privacy 

Principles and would be included as a contractual requirement in 

various circumstances. 

Demonstrate controls involve verifying and showing that personal 

data is being processed in compliance with privacy expectations 

[11]. It was the most represented Hoepman strategy in this 

inventory with 21 unique controls, only two of which have been 

implemented: Emotiv conducts internal audits for compliance 

with their privacy notice [15] and a blockchain platform that is 

capable of detecting violations of EEG data integrity was 

demonstrated in the lab [3]. Similar methods for ensuring neural 

data integrity could include those familiar from the cybersecurity 

field, namely checksums, digital signatures, hash functions and 

message authentication codes [34]. Brain antivirus would prevent, 

detect and respond to brain malware [4]. An external stimuli 

monitor would allow the data subject to review stimuli for 

malicious content [4] and “detecting rapid screen changes” 

through the use of a subliminal stimuli detector would allow for 

the detection and review of malicious subliminal content [18]. 

Another control that could screen stimuli for malicious content is 

code analysis techniques that can determine the legitimacy of any 

stimuli presented [38]. Analyzing the physical medium for 

exploitation attempts could help thwart jamming attacks [4]. 

Various other types of detection have been proposed, such as 

intrusion detection systems [4], malicious noise detection [24], 

inconsistent classification detection [24], machine learning-based 

anomaly detection of malware [4] and machine learning-based 

inconsistency detection of processing [4]. Feedback mechanisms 

for undesired and uninitiated output would allow BCI users to 

alert BCI providers, law enforcement or other outside parties to 

potential neural tampering or device malfunction, which may be 

desirable for sensitive uses of neurotechnology such as 

rehabilitation where the risk of physical or psychological harm is 

high [24]. Auditing techniques could include periodic 

configuration reviews and updates [4], verifying the legitimacy of 

BCI software [6] and ensuring a Personal Data Store system 

allows for the auditing of neural data access [37]. Tracking neural 

data access, usage and flow throughout systems could promote 

accountability [27]. 

4. DISCUSSION 
It was not apparent prior to this study that nearly one hundred 

neuroprivacy controls have been discussed or implemented, and 

that neuroprivacy controls spanning all eight Hoepman strategies 

have been proposed, with at least one real-world implementation 

in each control family except for Abstract. There were 

unimplemented controls in each of the eight strategies and there 

may be many more controls that have not been theorized yet 

within each strategy. Implemented controls could be improved by 

deploying tools that are purely academic such as Secure 

Multiparty Computation [1, 2] and the blockchain platform [3]. 

As malware and privacy attacks become more severe and 

commonplace in the context of BCIs, it is imperative that robust 

security and privacy solutions such as intrusion detection systems 

and brain antivirus are developed, widely deployed and made 

available to all data subjects and BCI providers. 

The most difficult controls to actualize may be those in the 

Minimize and Abstract strategies, as both control families face 

research challenges. Minimize controls such as the BCI 

Anonymizer, blacklists and whitelists require being able to make a 

distinction between necessary and unnecessary EEG data, with no 

proposed methods existing in the literature for making this 

distinction. Even if algorithms are developed for classifying 

neural data in this way, BCI devices may not be able to support 

the control due to BCI resource constraints or BCI providers not 

wanting to reveal their proprietary feature extraction algorithms 

[39]. Abstract controls that involve adding noise to EEG data, 

such as differential privacy, face theoretical challenges. The 

accuracy of EEG data may be important to the BCI application in 

question, meaning these controls would directly conflict with the 

primary functionality of the system [28]. 

Perhaps one of the hard problems of neuroprivacy is that of 

obtaining informed consent for neural data processing. 

Adequately informing the data subject about neuroprivacy risks 

related to raw EEG data processing may be impossible due to the 

complexity of neural data and unforeseen advancements in data 

extraction [37]. If obtaining informed consent for raw neural data 
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processing is impossible, then perhaps informed consent can only 

practically be achieved by alerting the data subject to this 

impossibility. A related problem is deciding whether and how to 

inform the data subject about brain hacking risks, such as the 

possibilities of brain malware and subliminal probing. Providing 

such information to users of BCI headsets, although a potentially 

disturbing or frightening subject for some, may be important 

information for data subjects to consider when making an 

informed decision to use a BCI headset. Privacy notices could 

limit such discussion to the attacks that have been demonstrated 

by researchers, such as those in [18, 28], and include information 

about what the BCI provider is doing to prevent, detect and 

respond to such brain hacking threats. 

Secure file deletion for neural data, secure neural data deletion, 

could be deployed for decreasing the likelihood of forensic 

recovery of neural data from storage devices. Expanding the 

current suite of Control techniques could involve allowing the 

data subject granular choices regarding the neural data that will be 

processed, which could involve allowing the data subject to 

customize which personal information contained in their EEG 

data they want to share or limiting data acquisition to a specific 

time of day, location or context. If a BCI application is a 

neurogame whose business model is monetizing the collected 

neural data of the players instead of charging a fee to participate, 

the application could offer a paid alternative for any privacy-

conscious users who want to opt out of the monetization of their 

brainwaves. A novel Inform control could involve layering the 

privacy notice based on the type of personal data under 

discussion, with a dedicated section or page for neural data 

processing details. Ordering the notice in this manner would allow 

concerned data subjects to quickly learn about the neural data 

processing practices of the BCI provider without having to 

consume the whole privacy notice. Other potential Enforce 

controls include pursuing strong neuroprivacy as a strategic goal 

for the organization, treating neural data as a business asset and 

regularly reviewing the privacy policy for alignment with the 

organization’s neuroprivacy strategy. 

5. CONCLUDING REMARKS 
The future is full of research opportunities for protecting 

neuroprivacy, with the majority of controls proposed in the 

literature without publicly known implementations. Several future 

work possibilities were identified for implementing and 

improving upon cybersecurity and privacy solutions for protecting 

the brain. Those in charge of neuroprivacy risk management could 

benefit from extensive control catalogs, including a vibrant 

ecosystem of competing providers and open source solutions 

when deciding how to allocate resources for privacy controls. 

Brain-computer interface users who want to mitigate their own 

neuroprivacy risk could also benefit from a plethora of open 

source solutions or paid options. Future work could adapt insights 

from various areas of technical privacy – including smartphone 

privacy controls, medical device privacy controls and the broader 

privacy-enhancing technologies literature – to brainstorm novel 

neuroprivacy controls and eventually establish a comprehensive 

library of neuroprivacy controls. 

More research could be done to evaluate how current BCI 

providers handle neuroprivacy risks. For instance, in-depth studies 

could be performed to determine whether the reading level of 

current BCI privacy notices is accessible to the majority of BCI 

users and whether those notices accurately reflect the risks of 

neural data processing. Researchers could also investigate the 

current usability of neuroprivacy mechanisms such as opt-outs 

within BCI apps to better understand if maintaining neuroprivacy 

is challenging from the data subject’s perspective. Additionally, 

more clarification is needed regarding what traditional data 

protection rights, such as those involving data portability, access 

and deletion, consist of in the context of neuroprivacy. The right 

to have inaccuracies in one’s personal data corrected is 

particularly challenging to conceptualize in the context of neural 

data [20]. Dialogues such as these could help spur innovations in 

neuroprivacy whilst illuminating the most pressing neuroprivacy 

challenges of today. 

Preemptively addressing neuroprivacy risks through the 

development and deployment of BCI privacy controls is key to 

protecting the rights and freedoms of the data subjects. Perhaps 

most importantly, it will help avert brain hacking versions of 

traumatic privacy violations, such as the Snowden revelations or 

Facebook’s Cambridge Analytica scandal, whatever a “neuro” 

version of such events would look like. Brain-computer interface 

providers, as part of their privacy risk management efforts, will 

need neuroprivacy control taxonomies and catalogs to 

operationalize privacy protections for their users. Regulators will 

need assurance that data protection regimes are being adhered to 

with regards to neural data processing, and data subjects will want 

assurance that their minds and brains are safe from privacy 

violations. This paper inventoried the existing neuroprivacy 

controls, serving as a starting point for researchers, BCI 

companies, data subjects and regulators to understand what 

mechanisms currently exist for mitigating brain privacy risks and 

indicated gaps where further innovation and research is necessary. 
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