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Multi-Criteria Selection of 

Capability-Based Cybersecurity Solutions 

 

 

Abstract 

Given the increasing frequency and severity of cyber 

attacks on information systems of all kinds, there is in-

terest in rationalized approaches for selecting the 

“best” set of cybersecurity mitigations. However, 

what is best for one target environment is not neces-

sarily best for another. This paper examines an ap-

proach to selection that uses a set of weighted criteria, 

where the security engineer sets the weights based on 

organizational priorities and constraints. The ap-

proach is based on a capability-based representation 

for cybersecurity mitigations. The paper discusses a 

group of artifacts that compose the approach through 

the lens of Design Science research and reports per-

formance results of an instantiation artifact. 

1. Introduction 

Cyber systems are ubiquitous across society. Breaches 

to cyber systems continue to be front-page news [1], 

and, despite more than a decade of heightened focus 

on cybersecurity, cyber threats continue to evolve and 

grow [2]–[4]. When threats are insufficiently or incor-

rectly mitigated based on the anticipated threat, expo-

sure remains. Conversely, over-protection wastes re-

sources and can affect system performance; hence, in-

discriminate application of mitigations is ill-advised.  

A key method for prioritizing mitigations is to assess 

the business/mission risks that an organization faces 

due to the anticipated cyber threat. A number of risk 

assessment methods are available (e.g., [5]–[12]) that 

can assist  system security engineers (SSEs) in identi-

fying risks in a particular environment. In addition to 

risk, the SSE must also consider other criteria when 

making mitigation decisions. Deciding upon, 

weighting, and quantifying such criteria is a challenge. 

These decisions are complex, inexact, and involve 

multiple stakeholders with diverse interests. Moreo-

ver, there is no “one size fits all” approach because, for 

example, information environments, business depend-

ence on those environments, relevant cyber threats, 

risk tolerance levels, and security budgets vary from 

one organization to the next [13]. 

The SSE faces an additional challenge when consider-

ing mitigation options: deciding upon those that best 

balance often-competing criteria (e.g., mitigation cost 

vs. trustworthiness vs. effectiveness). Such mitigation 

combinations are often discussed in the context of “Pa-

reto-efficient” solutions. Pareto efficiency is “a state 

of allocation of resources [e.g., defensive cyber solu-

tions that mitigate threats in this context] from which 

it is impossible to reallocate so as to make any one in-

dividual or preference criterion better off without mak-

ing at least one individual or preference criterion 

worse off” [14].  

The contribution of this paper is an approach to miti-

gation selection containing elements of multi-criteria 

decision-making [15] that recommends a candidate set 

of defensive solutions using criteria and associated 

weightings set by the SSE. Primary initial goals are 

three-fold: (1) identify an approach that we would find 

useful as practitioners of cybersecurity risk and miti-

gation analysis, (2) ensure that the approach is com-

patible with cybersecurity threats and mitigations 

modeled as capabilities, and (3) identify a practical 

middle ground between completely ad hoc mitigation 

selection approaches on the one hand, and approaches 

whose computational complexity requires the use of 

sophisticated heuristic algorithms on the other.  

The paper is organized as follows: after reviewing re-

lated work, we summarize the capability-based repre-

sentation for cyber threats and defenses against those 

threats. Next, we use Design Science principles to de-

scribe and analyze the artifacts that make up our ap-

proach. The description includes a discussion of the 

underlying object model, associated methods, and an 

instantiation of the model and methods. Lastly, we 

evaluate the artifacts with a focus on execution perfor-

mance for the instantiation, discuss results, and con-

clude with lessons learned and ideas for future work. 

2. Related Work 

In practice, it is unrealistic to apply all possible miti-

gations (also sometimes called security controls) to 

every threat, due to budget and time pressures, feasi-
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bility, and other organizational concerns. Several re-

searchers have approached the problem of optimizing 

mitigation selections, that is, taking a longer list of 

possible mitigations and down-selecting to a shorter 

list based on some defined criteria or goals. There are 

two interesting dimensions to this area, the criteria 

themselves and the analysis methods. 

Dor and Elovici [16] describe a model of information 

security investment decision-making comprised of 

concepts that they derive from a grounded theory 

study. The authors identify great differences in the 

ways organizations make these decisions influenced 

by a multitude of criteria, including policy, competi-

tive advantage, financial considerations, quality, com-

pliance, customer expectations, and strategy. 

A review of the literature confirms the wide variety of 

criteria considered when selecting a security control 

portfolio for a particular situation, including overarch-

ing organizational concerns, attributes of specific as-

sets in the environment, anticipated threats, and prop-

erties of controls. We summarize these criteria below: 

Organizational 

 Business impact/disruption, anticipated loss, 

profit reduction, fines, reputation, decline in 

stock price, damage [17]–[23] 

 Risk tolerance [12], [19], [24]; Budget [19] 

 Legal and regulatory [22] 

 Self-imposed constraints [22] 

Asset  

 Importance/value [13], [24]–[27] 

 Assessed risk [12], [24] 

 Probability of breach, event, or successful at-

tack [13], [24], [26], [28], [29] 

Threat 

 Anticipated [25], [27], [30], [31] 

 Most significant [25] 

 Residual risk [23], [32]; Incident data [17] 

Control 

 Cost, general [12], [13], [30], [32], [18], 

[20]–[23], [26]–[28] 

 Purchase/setup [17], [24], [25], [33]–[35] 

 Number of controls as a proxy for cost [36] 

 Difficulty of implementation [25] 

 Operation, training, and maintenance cost 

[17], [24], [25], [33], [35] 

 Efficiency, effectiveness, performance, de-

gree or number of threats addressed [12], 

[17], [20], [25], [28], [33], [34] 

 Degree of implementation [30] 

 Alignment with applicable standards, laws, 

regulations [33], [34] 

 Availability [12] 

 Number of benefits accessed [37] 

 Controls which, when applied in combina-

tion, provide more benefit than the sum of 

their individual benefits [37] 

 Stakeholder preference [31] 

Multi-criteria decision-making (MCDM) [15], also 

known as multiple-criteria decision analysis (MCDA), 

is widely applied to security portfolio selection [12], 

[19], [22], [24], [28], [29], [36], [38]. MCDM is a dis-

cipline for evaluating multiple conflicting criteria. It is 

used to analyze problems where there are some 

measures of costs and benefits that can be traded off to 

arrive at the best solution under the given constraints. 

Researchers investigate a number of MCDM tech-

niques for this problem, some of which include or are 

based on fuzzy set theory [34], multi-attribute utility 

theory (i.e., value functions, knapsack strategy) [18], 

[27], [30], [37], evolutionary multi-objective optimi-

zation (EMO) also known as genetic algorithms [13], 

[20], [23], [26], [32], [35], analytic hierarchy process 

(AHP) [31], grey relational analysis (GRA) [25], sim-

ple additive weighting (SAW) [17], the technique for 

order preference by similarity to ideal solution (TOP-

SIS) [25], and preference ranking organization method 

for enrichment evaluation (PROMETHEE) [33]. 

Several authors apply game theory to security portfo-

lio selection in combination with MCDM techniques. 

Fielder et al. [30] employs a pure game theoretic ap-

proach in a single massive two-person non-coopera-

tive zero-sum static game where the defender (person 

in charge of choosing defenses) competes against an 

attacker who chooses among various attack targets. 

The Nash equilibrium of the game represents the best 

defensive portfolio. Recognizing that the organization 

may not have sufficient budget to implement the equi-

librium of the pure game, the authors also discuss a 

hybrid approach combining game theory with a knap-

sack strategy. Panaousis, et al. [27] model the cyber-

security posture of an organization and then present a 

series of non-cooperative control-games where each 

game is between the defender (a single control) and 

the attacker. The Nash equilibria of the games are de-

rived in consideration of organizational preferences 

such as costs, anticipated threats, and asset im-

portance. A knapsack approach is subsequently used 

to optimize investment in security controls within the 

organization’s budget. Finally, Wang and Zhu [21] 

used evolutionary game theory to investigate long-

term cybersecurity investment strategies finding that 

firms will invest as long as either the cost to invest is 

low or the cost of a breach is high. 
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3. Capability-Based Representation 

This paper examines defensive solution selection in 

the context of a capability-based representation for 

cyber threats and mitigations to those threats 

[5][39][40]. We define a capability as the ability to 

contribute in some way to the attack or defense of a 

target system and a defensive solution as a coordinated 

set of defensive capabilities. In this approach, the fo-

cus is on (1) the underlying offensive capabilities that 

cyber attackers use to compose attacks and (2) the de-

fensive capabilities composed into defensive solutions 

that mitigate those offensive capabilities. See the Uni-

fied Modeling Language (UML) model [41] in Figure 

1 for the basic entities and relationships.  

 
Figure 1: Capability-Based Representation 

An example of an offensive capability is “Inject 

stealthy software implants” and an example of a re-

lated defensive capability is “Detect and block most 

stealthy implants via software whitelisting.”  

The capability-based approach is in contrast to the his-

torically more common attack-centric approach used 

in cybersecurity analysis that requires one to enumer-

ate and analyze attack possibilities. We find capabil-

ity-based analysis more tractable than attack and vul-

nerability enumeration [42] and justify the approach 

on the hypothesis that the more one mitigates offen-

sive capabilities possessed by the anticipated adver-

sary, the more difficult it is for the adversary to com-

pose viable attacks from remaining, unmitigated capa-

bilities. 

4. Artifacts 

This section discusses the artifacts that compose our 

approach. The artifacts include (1) a model, (2) meth-

ods that employ the model to recommend the best po-

tential defensive solutions subject to constraints, and 

(3) an experimental instantiation (1) and (2). 

We examine the artifacts in the context of Design Sci-

ence (DS) principles as articulated by Peffers, et al., in 

the paper “A Design Science Research Methodology 

for Information Systems Research” [43]. Peffers pre-

sents a series of steps for artifacts evaluation, specifi-

cally: (1) identify the problem and show its im-

portance, (2) define objectives of a solution, (3) design 

and develop the artifact, (4) demonstrate the artifact in 

a suitable context, (5) evaluate the effectiveness and 

efficiency of the artifact, and (6) communicate results. 

The introduction covered steps 1-2. This section lays 

artifact design, and we demonstrate and evaluate the 

artifacts in upcoming sections. Lastly, this paper con-

tributes to the communication requirement. 

Model. The UML model in Figure 2 builds on Figure 

1 and illustrates an object model used in our experi-

mental prototype implementation.  

 

Figure 2: UML Model 
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Brief descriptions of the classes in Figure 2 appear in 

Table 1. 

Table 1: Class Descriptions 

Class Description 

Catalog 

A reusable knowledge management 

repository for capturing the infor-

mation in Figure 1. 

Environ-

ment (E) 

The asset instances and existing miti-

gations mapped to them that make up 

the target environment to be ana-

lyzed.  

Asset 

Instance 

(AI) 

An instance of an asset in the target 

cyber environment. Each asset has a 

corresponding asset type found in the 

Catalog. 

Assigned 

Mitigation 

A mapping of a defensive capability 

from the Catalog to an asset instance 

in the environment.  

AssetType 

(AT) 

The type of an asset. Offensive capa-

bilities map to the asset types they 

threaten. 

Defensive 

Solution 

(DS) 

A collection of defensive capabilities 

that together can mitigate the effects 

of one or more offensive capabilities. 

Defensive 

Capability 

(DC) 

The ability to contribute to the miti-

gation of an offensive capability. 

Fitness 

Criteria 

The set of user-selected weights for 

the fitness criteria. 

Member 
A mapping of a defensive capability 

to a given defensive solution. 

Mitigation 

The mapping of a given defensive so-

lution to an offensive capability that it 

mitigates. 

Offensive 

Capability 

(OC) 

The ability to contribute to the attack 

of an asset in some way. 

Threatens 
A mapping of an offensive capability 

to a given asset type. 

Tradespace 

Simulator 
The main program. 

 

Selection Method. This section uses the abbrevia-

tions for classes introduced above to discuss the selec-

tion method, called findBestSolutions. The method 

uses the model given in Figure 2 and an accessory fit-

ness function that scores criteria introduced below.   

Evaluation Criteria. To evaluate the fitness of DSs 

for their role in potentially mitigating OCs, the method 

employs a set of evaluation criteria shown in Table 2.  

Table 2: Defensive Solution Evaluation Criteria 

Crite-

rion 
Description Max 

Map-

ping 

Severity 

The severity of an offen-

sive capability. Severity 

could be derived, for ex-

ample, from CVSS 

scores stored in the Na-

tional Vulnerability Da-

tabase [44]. 

 OC 

Effec-

tiveness 

How effective a DS is 

believed to be. A value 

of 0.0 means fully inef-

fective; 1.0 means fully 

effective. 

 

DS to 

OC 

map-

ping 

Assur-

ance 

How trustworthy a 

given DS is believed to 

be. A DS might be con-

sidered more trustwor-

thy, for example, if it 

has been rigorously 

tested by an independent 

testing laboratory [45]. 

 DS 

Cost 

An estimate of the total 

cost of the DS. Cost in-

cludes multiple compo-

nents, such as cost to ac-

quire, integrate, operate, 

and train users, as appli-

cable. 

-- DS 

Time 
Estimated time to inte-

grate the DS. 
-- DS 

Impact 

Impact to mission/busi-

ness performance from 

use of the DS. 

-- DS 

Reuse 

How much of a given 

DS is already imple-

mented in the environ-

ment for a given asset. 

 

DS 

mapped 

to AI in 

E 

Ap-

plicabil-

ity 

The ratio of the number 

of offensive capabilities 

mapped to asset in-

stances in the target en-

vironment that the DS 

can mitigate to the high-

est number of any DS 

mapped. 

 

DS 

mapped 

to E 

Consistent with MCDM, we normalize the range of 

each criterion to values between 0.0 and 1.0 inclusive. 

Some criteria, such as cost, time, and reuse, use an or-

dinal Likert scale mapped to this range. At least ini-

tially, subject matter experts (SMEs) set the values for 

the first six criteria. The findBestSolutions method 

computes the last two criteria based on E. The long-
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term goal is to calibrate SME-determined values with 

empirical reality as such data becomes available.  

The Max column in Table 2 indicates whether we wish 

to maximize (checkmark present) or minimize 

(checkmark absent) the corresponding criterion. For 

example, we wish to maximize use of defensive solu-

tions that more effectively address more severe offen-

sive capabilities, whereas we wish to minimize cost, 

time, and mission impact. The Mapping column in Ta-

ble 2 indicates the mapping of a criterion into the 

model in Figure 2. For example, severity is with re-

spect to the effects of an offensive capability (OC) and 

effectiveness is with respect to the mapping of a de-

fensive solution (DS) to an offensive capability (OC). 

We selected the criteria in Table 2 based on a review 

of the literature and on requirements that stakeholders 

commonly articulate in our experience. Note that the 

risk score for each asset in the target environment is 

not included as a criterion in Table 2 because we use 

the risk score to filter or down-select the asset in-

stances in the target environment for consideration of 

mitigations in the first place. That is, the findBestSo-

lutions method only considers the ‘riskiest’ assets 

based on a SSE-supplied level of risk tolerance. 

Fitness Function. The fitness function, ff, computes a 

fitness score over the criteria from Table 2 and imple-

ments equation (1).  

𝑓𝑓(𝑎𝑖, 𝑜𝑐, 𝑑𝑠) =  

∑  |𝑚𝑓𝑖
− 𝑓𝑖(𝑎𝑖, 𝑜𝑐, 𝑑𝑠)|  ∙  𝑓𝑤𝑖 

𝑛
𝑖=1    (1)  

Elements of equation (1) are as follows: 

 𝑓𝑓 returns a fitness score for a given defensive so-

lution, ds, mapped to a particular offensive capa-

bility, oc that, in turn, is mapped to a particular 

asset instance, ai, in the target environment under 

consideration. ai maps to a particular AT.  

 𝑛 is the number of criteria, 8 in this case. 

 𝑓𝑖(𝑎𝑖, 𝑜𝑐, 𝑑𝑠) is the value of the ith criterion in the 

context of ai, oc, and ds; 0.0 ≤ value ≤ 1.0. 

 𝑓𝑤𝑖  is the weight for the given criterion. The SSE 

assigns a weight based on relative importance of 

the criterion in the context of the target environ-

ment. Criterion weights are relative to one another 

and must be non-negative (𝑓𝑤𝑖 𝜖 ℤ≥).  

 𝑚𝑓𝑖
 follows the Max column in Table 2. If the 

goal is to maximize the given criterion, then 𝑚𝑓𝑖
 

is set to 0.0; otherwise, 𝑚𝑓𝑖
 is set to 1.0.  

findBestSolutions. findBestSolutions is an imple-

mentation of equation (2) and finds the ‘best’ solutions 

for the given criteria and associated weightings. 

𝑓𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠(𝐴𝐼𝑒 , 𝑂𝐶, 𝐷𝑆) = 

⋁ ⋁ ⋁ 𝑓𝑓(𝑎𝑖, 𝑜𝑐, 𝑑𝑠)

 𝑑𝑠 ∈ 𝐷𝑆𝑜𝑐  𝑜𝑐 ∈ 𝑂𝐶𝑡𝑦𝑝𝑒(𝑎𝑖) 𝑎𝑖 ∈ 𝐴𝐼𝑒

 

(2) 

Equation (2) considers each asset instance, ai, in the 

set of assets instances, AI, in the target environment, 

e. For each ai, it considers each offensive capability 

from the set of offensive capabilities, OC, mapped to 

the asset type, AT, corresponding to the ai. Then for 

each defensive solution mapped to oc, it applies the 

fitness function, ff, from equation (1) to ds (in the con-

text of oc and ai).  

Instantiation. We call our instantiation of the model 

and methods described above TradespaceSimulator. 

To allow us to assess performance, the simulator gen-

erates a synthetic sample catalog and a sample target 

environment using a configurable set of size parame-

ters. Example output from the simulator appears in 

Figures 3, 4, and 5. Figure 3 is sample output from the 

findBestSolutions method.  

 

Figure 3: Sample output from findBestSolutions 

In the Figure 3 sample, the output is for asset instance, 

AI0, which is of type AT3. The offensive capability 

threat under consideration is OC4, which has a sever-

ity of 0.6. OC4 has seven candidate defensive solu-

tions, each with a fitness score computed by ff. For ex-

ample, defensive solution DS36 has fitness score of 

5.67, which is the sum of the weighted criterion values 

given in column 5 of Table 3.  

Table 3: DS36 score derivation 
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Figure 4 shows a small sampling of the best solutions 

resulting from application of the findBestSolutions 

method and the asset instances to which they apply.  

 

Figure 4: ‘Best’ solutions mapped to asset instances  

This output provides information for the SSE to con-

sider when making mitigation decisions. To simplify 

the output, the method does not show the offensive ca-

pabilities mitigated by each defensive solution (this in-

formation appears elsewhere, such as in Figure 3). 

Note that the method computes fitness for all defen-

sive solutions mapped to a given threat/asset instance 

combination, but retains only the highest scoring de-

fensive solution.  The collection of highest scoring so-

lutions is then the recommended architecture.  

To go along with the output in Figure 4, the simulator 

performs additional bookkeeping during execution of 

findBestSolutions to allow it to later provide an ‘ag-

gregate’ view of each defensive solution, a sampling 

of which appears in Figure 5. 

 
Figure 5: Aggregate Score View 

For example, the fifth line of the sample output in Fig-

ure 5 shows that defensive solution DS62 has an ag-

gregate score of 265.4, which is the sum of the solu-

tion’s fitness scores for all the places that it applies in 

E, which is 32 unique combinations of asset instances 

and offensive capabilities. The output also shows that 

DS62 was the ‘best’ solution in 30 of those cases, giv-

ing it an overall ‘best’ percentage of 93.8%. If we scale 

the aggregate score of 265.4 by this percentage, the ad-

justed aggregate score is 248.8. 

In combination, figures 4 and 5 provide a local and 

global view, allowing the SSE to see defensive solu-

tions asset-by-asset, threat-by-threat, but also the over-

all value of defensive solutions as they pertain to the 

target environment as a whole. 

5. Evaluation and Discussion 

This section evaluates the artifacts introduced above.  

Model. While the object model is suitable for repre-

senting the problem space of interest in this paper, one 

could enhance the model for broader use, e.g., organ-

izing asset types into a taxonomy to better represent 

and organize asset type possibilities and expanding the 

model to include named asset groupings. 

Methods. The fitness function, ff, and findBestSolu-

tions method artifacts together select the ‘best’ solu-

tion based on a given set of weighted criteria. The au-

thors chose to relate the criteria in a linear combination 

instead of arranging criteria into a more general poly-

nomial equation, as a linear combination produced re-

sults that we considered to be useful for informing de-

cisions. However, the SSE is free to assign weights 

along a non-linear scale, if desired.  

While the set of criteria chosen in this approach has 

utility to the authors, we recognize that obtaining val-

ues for certain criteria can be a challenge. The use of 

ordinal scale data that SMEs assign based on their gen-

eral knowledge partially ameliorates this problem, but 

ultimately, we would like to introduce, for example, 

actual cost estimates for the cost attributes associated 

with defensive capabilities and solutions. 

The findBestSolutions method proceeds asset instance 

by asset instance, considering offensive capabilities 

that each instance faces. The method includes a more 

global view as well by computing the applicability cri-

terion value. In addition, and as discussed in the In-

stantiation section above, the simulator sums up fit-

ness scores for each applicable offensive solution 

score from the catalog and scales the result based on 

the percentage of time the solution had the best score.  

Instantiation. We were interested in performance 

characteristics of the Java-based instantiation under 

increasing sizes of catalog and target environment.  

Table 4: Variables in Sample Output 

Variable Description 
Trial Trial number (1 to 15) 

Sec Time to generate solutions in seconds 

E-AI Environment: asset instances 

E-Mit Environment: existing mitigations 

C-OC Catalog: offensive capabilities 

C-DS Catalog: defensive solutions 

C-DC Catalog: defensive capabilities 

C-AT Catalog: asset types 

C-Mit Catalog: mapped mitigations 

C-Mem Catalog: solution members (a member is a 

defensive capability) 
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With this in mind, we ran 15 trials on a Windows 10 

Dell Latitude E5570 laptop with 15 GB of memory 

and an Intel Core i7-6820 processor. Table 4 describes 

the variables of interest in a run of the simulator. Table 

5 shows the values of each of the variables tracked for 

each trial execution. Each successive trial used a larger 

total generated data set for both the Environment (E-

prefixed variables) and Catalog (C-prefixed varia-

bles). For example, trial 2 had an environment consist-

ing of 70 asset instances and 208 mitigations. 

Table 5: Trials and associated data per trial 

 

The second column shows the total time in seconds 

that the findBestSolutions method took to run, which 

includes calls to the ff method.  

As Figure 6 shows, time increases nearly linearly for 

the catalog and environment sizes that we sampled. 

We expect non-linear performance in the long run (for 

very large catalogs and target environments for analy-

sis) based on the three nested loops of the implemen-

tation of equation (2). That said, the catalog and envi-

ronment sizes in trial #15 are larger than any catalog 

or target environment we have ever evaluated in our 

work to date assessing real-world systems. 

 

Figure 6: Execution time in seconds per run 

The overall approach has certain limitations. For ex-

ample, one cannot specify “do not exceed” values 

(e.g., a given budget) or “do not fall below” (e.g., a 

given level of trustworthiness) values for selected cri-

terion. Other limitations are: the approach does not 

take into consideration the uncertainty of values for 

criteria and the approach offers no special assistance 

for conducting sensitivity analysis beyond manual re-

executions that use revised weightings. 

6. Conclusions and Future Work 

We used Design Science principles in our conception 

and evaluation of an approach to mitigation selection 

based on a capability representation for offensive and 

defensive abilities possessed by attackers and defend-

ers, respectively. The approach uses a set of weighted 

criteria that are customizable by the SSE based on or-

ganizational priorities and constraints. We learned that 

the approach yielded acceptable performance results 

for the size of target environments that we commonly 

see. We also found that we could readily generalize the 

results to a more global view, specifically a defensive 

solution’s overall contribution to a target environment.  

Future work possibilities include: (1) consider poten-

tially augmenting the approach with more sophisti-

cated methods (e.g., genetic algorithms, linear pro-

gramming) that can help with the first limitation listed 

earlier; (2) formally assess the utility of the artifacts to 

working SSEs, including a survey of SSEs about the 

solution selection criteria they think are, on average, 

the most useful and how they would set default 

weights for those criteria; (3) explore ways to incorpo-

rate uncertainty and sensitivity analysis into the ap-

proach; (4) apply the artifacts to non-synthetic data 

sets; (5) compare SSE-selected mitigations to that of 

the simulator for the same target system and investi-

gate to understand the differences in outcomes; (6) in-

corporate additional criteria, such as the ability to pre-

fer or avoid certain vendor implementations of given 

defensive solutions/capabilities and criteria described 

in the related work section, such as favoring solutions 

that align to certain standards; and (7) break out the 

cost criteria into explicit sub-criteria so they can be re-

ceive separate weights.  
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