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Feature Extraction and Analysis of   
Binaries for Classification 

Traditionally, the analysis of PE32 executables is done through the process of static or dynam-
ic analysis. For static analysis this means using software like IDA or Radare2, interactive dis-
semblers and debuggers, to read the file and display the contents of their individual structures 
without executing the program; whereas dynamic analysis requires the analyst to use a debug-
ger or volatility tools to capture artifacts such as live memory, process trees, or file IO during 
execution of the program. Each of these methods has its own benefits; however, only static 
analysis was used for feature extraction for ease of use. Later results will demonstrate that 
solely static analysis is needed for accurate classification. 
 
One way to simplify this format structure is with the following breakdown of a PE32 file, 
which shows what kind of information can be used: 

Any of the extracted information is meaningless without a person to study the contents, which 
is why machine learning methods are implemented. Machine learning is, in essence, the prac-
tice of getting computers to act without being explicitly programmed to make those decisions 
or actions. Classification is a type of machine learning that uses given data points to predict 
the class called labels or categories. These predictive models are used to approximate a map-
ping function from input variables to discrete output variables. They are evaluated using dif-
ferent methods like: precision and recall, receiver operating characteristics (ROC) curve, f1 
score, or even k-fold validation. By applying these mathematical concepts to malware identifi-
cation, we can express the relationships between samples as binary classifiers, such as benign 

The research project, Feature Extraction and, Analysis of Binaries for Classification, provides 
an in-depth examination of the features shared by unlabeled binary samples, for classification 
into the categories of benign or malicious software using several different methods. Because 
of the time it takes to manually analyze or reverse engineer binaries to determine their func-
tion, the ability to gather features and then instantly classify samples without explicitly pro-
gramming the solution is incredibly valuable. It is possible to use an online service; however, 
this is not always viable depending on the sensitivity of the binary. With Python3 and the Pe-
file library, we can gather the necessary features to begin choosing different classifier models 
from the Scikit-learn library for machine learning. This all addresses the issue of local auto-
mated classification, and we present several different classifier models, datasets and methods 
that allow for the classification of unknown binaries with a high degree of accuracy for pre-
dicting malware and benignware. 

Many of the datasets utilized were heavily skewed towards malicious samples. For example, 
one such dataset contained 28,393 malicious samples, while only containing 966 labeled be-
nign samples. Due to this large imbalance we used undersampling. The data was adjusted pri-
or to division into testing/training sets by taking min(m,b) samples from each class, where m is 
the class of samples labeled to be malicious, and b is the class of samples labeled to be benign 
in nature. In general, while this did improve the macro accuracy of several models, its primary 
purpose was to improve the precision and recall scores of the benign class, as some models’ 
benign data was misclassified as malicious. To compare the effectiveness of undersampling at 
redistributing the reliance of the models, we produced the following graphs: 

Random Forest feature ranking w/o undersampling  Adaboost feature ranking w/ undersampling 

 
Here it can be seen how imbalanced the models we created were before undersampling the da-
taset. By evening the samples chosen from both classes, the models we employed were more 
resilient against inconsistencies of heavily relied upon features like AddressOfEntryPoint. 
 
The following graph was an attempt to demonstrate an attribution of different families of 
backdoor malware samples, by creating one node for each sample and edges between those 
nodes, representing a relationship between the two nodes. In this instance, the relationships 
were determined by scoring the jaccard distance similarities, with a threshold of 0.8, of the ex-
tracted import strings, although the clusters are convoluted and could have been represented 
better with a technique that weighs the edges between nodes like, KMeans with ChineseWhis-
pers clustering. The main takeaway is that anomalous samples with fewer common relations 
are shown grouped at an equal distance from the center. 

 
The following chart shows the overall performance evaluation for the models used: 
 

 

In conclusion, the research demonstrates that the combination of static analysis, for feature ex-
traction, with basic supervised machine learning methods is able to achieve a macro accuracy. 

While several different datasets were used over the course of the project, the final results were 
calculated using a combination of binaries taken from Hybrid Analysis and from VirusShare. 
The binaries taken from Hybrid Analysis were obtained via the associated API, and were com-
posed of samples that were previously analyzed for users and determined to be malicious and 
benign. As a form of preprocessing - all samples gathered were verified as PE32 format exe-
cutable by examining the magic bytes field, the first two bytes of an executable binary, as 
’MZ’. Once binaries were obtained, a Python script was utilized to extract a variety of fea-
tures. 
 
To obtain workable data from these binaries, we created a Python script using the Pefile Py-
thon3 library to extract a wealth of features. By feeding each sample as a buffered input we 
can further parse each section using the same structured format. This includes the size of the 
imports directory, the sum of imports from all imported DLLs, as well as the imports’ ordi-
nals. Similarly, the extraction of any features from the PE32 samples follows the format of 
calling the Pefile function ‘pe’ with the appropriate class identifier for the requested field.  
 
The following are the specific properties extracted from the PE header for training: 

Models used were tuned and parameterized using the default guidelines given by Scikit-learn, 
an open source machine learning library that supports supervised and unsupervised learning. It 
also provides various tools for model fitting, data preprocessing, model selection and evalua-
tion, and many other utilities. 
 
 

 FUTURE WORK 

The majority of this research, however, was hindered by the lack of verifiable benign 
(negative) software samples. Given the focus for analysis and identification of malware 
(positive), that difference in availability is almost incomparable because the lack of data is in-
sufficient to correctly form the right bias when training models; this is often referred to as 
overfitting and underfitting, and there are many methods to combat this issue. 
 
One example would be to use Positive Unlabeled (PU) learning. Given a set of samples of a 
particular class P, called the positive class, and a set of unlabeled samples U, which contains 
both class P and non-class P, called the negative class instances, the goal is to build a binary 
classifier to classify the test set T into two classes, positive and negative, where T can be U. In 
this case though, the positive examples are malicious and the set of unlabeled samples can 
contain both malicious and benign samples. This would allow future research to be completed 
without the limits caused by a lack of verified, benign samples previously needed by models 
like, random forest or logistic regression with undersampling. 
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