3-29-2022

Management Strategies and Distribution of Aphanomyces Root Rot of Alfalfa (Medicago sativa), a continuing threat to forage production in the United States

Jennifer M. Giles
Dakota State University, jenni.giles@trojans.dsu.edu

Conner L. Tordsen
Dakota State University, conner.tordsen@trojans.dsu.edu

Travis R. Rebstock
Dakota State University, travis.rebstock@trojans.dsu.edu

Bruna Bucciarelli
USDA, Agricultural Research Service

Deborah A. Samac
USDA, Agricultural Research Service

Follow this and additional works at: https://scholar.dsu.edu/anspapers

Part of the [Agricultural Science Commons](https://scholar.dsu.edu/anspapers), [Agronomy and Crop Sciences Commons](https://scholar.dsu.edu/anspapers), and the [Plant Pathology Commons](https://scholar.dsu.edu/anspapers)

Recommended Citation
Giles, Jennifer M.; Tordsen, Conner L.; Rebstock, Travis R.; Bucciarelli, Bruna; Samac, Deborah A.; and Sathoff, Andrew E., "Management Strategies and Distribution of Aphanomyces Root Rot of Alfalfa (Medicago sativa), a continuing threat to forage production in the United States" (2022). *Faculty Research & Publications*. 33.
https://scholar.dsu.edu/anspapers/33

This Article is brought to you for free and open access by the College of Arts & Sciences at Beadle Scholar. It has been accepted for inclusion in Faculty Research & Publications by an authorized administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.
INTRODUCTION

Alfalfa (Medicago sativa), often called the “Queen of Forages,” is grown worldwide as a forage crop for livestock due to its high biomass production and nutritional quality. It is the third most valuable crop in the United States and plays key roles in dairy and beef livestock feeds, protecting water and soil resources, enhancing soil fertility, breaking pest and pathogen cycles and sequestering soil carbon (Fernandez et al., 2019). Alfalfa is used as dry hay, for silage, and in grazing, as well as providing nectar for bees and habitat for wildlife. Early attempts to grow alfalfa in the United States were unsuccessful because of the differing climate from alfalfa’s centre of origin in the Fertile Crescent, acidic soil and interactions with plant pathogens. The first successful alfalfa crops in the United States were produced in the warm, western part of the country. Alfalfa was not widely cultivated in the Midwestern United States until the late 1800s. The crop became successful in the Midwest by the development of varieties that displayed better survival in the region’s harsh winters. Today, autumn dormancy and freezing tolerance are critical characteristics that effect the productivity and persistence of alfalfa in cold climates (Liu et al., 2019).

Early alfalfa breeding efforts focused on improving resistance to root rot and bacterial wilt diseases caused by Phytophthora...
medicaginis and Clavibacter insidiosus, respectively. The development of cultivar Agate and additional P. medicaginis-resistant cultivars uncovered other root rot problems. Recurring issues with establishment of resistant cultivars were found to be caused by diseases incited by Aphanomyces euteiches and Pythium species (Munkvold & Carlton, 1995; Nygaard & Grau, 1989). Aphanomyces root rot (ARR) may be the most economically important alfalfa disease because it is widely distributed and affects alfalfa both at the seedling stage, causing poor stand establishment, and at the mature plant stage, causing yield losses and premature stand thinning (Figure 1). Primary symptoms on infected roots of seedlings are water-soaked grey lesions that become soft and honey-brown in appearance (Figure 2a). Seedlings may also be stunted with chlorotic, purple-tinted cotyledons and have reduced root volume and function. Severe infections lead to postemergence seedling death (Malvick & Grau, 2015).

Adult plants with symptoms are stunted with yellow foliage, lack fibrous and lateral roots and have loss of root nodules (Figure 2b).

2 | LIFE CYCLE OF A. EUTEICHES

A. euteiches is a diploid, homothallic oomycete, which can produce both oospores via sexual reproduction and zoospores via asexual reproduction (Figure 3). Thick-walled oospores serve as the primary inoculum source (Grünwald & Hoheisel, 2006). Oospore germination is triggered by chemical signals released from the host. Germination occurs through the formation of a germ tube that branches to form hyphae that can infect plant roots or that form sporangia (Figure 3) (Hughes & Grau, 2013). Primary spores aggregate at the tip of sporangia, which produce biflagellate zoospores that emerge through a pore in the primary spore. The zoospores are motile and require water to move to host roots. Isoflavone legume root exudates, especially prunetin, chemically attract A. euteiches zoospores to pea (Pisum sativum) roots (Sekizaki & Yokosawa, 1988); however, the attractant from alfalfa roots has not been identified. Research conducted on pea demonstrated that zoospores are drawn to a region directly behind the root cap (Cannesan et al., 2011). Once in contact with roots, the zoospores encyst at the root surface (Gaulin et al., 2007). In alfalfa, zoospores encyst along the entire root and cyst germination is observed on root hairs and the root epidermis (Figure 4). Development of mycelium occurs throughout the root cortex, and the final stages of infection produce oogonia that are fertilized by antheridia to generate oospores (Cannesan et al., 2011), which range from 18 to 25 μm in diameter. Oospores can be visualized in susceptible root tissue under a light microscope (Figure 5). The thick-walled oospores provide a suitable resting state to survive harsh winter conditions (Billard et al., 2019). Oospores survive for years in tissues of infected plants or in soil. Water-saturated soils and temperatures of 24 to 28°C are optimal for infection and disease development, although symptoms are greatest if warm and dry soil conditions occur after infection. Under these conditions, symptoms of disease and production of oospores are usually observed 10 days after infection.

3 | RACE STRUCTURE

A. euteiches is categorized by races that are defined with respect to pathogenicity of A. euteiches isolates against a differential set of alfalfa cultivars (Hudelson & Grau, 1998) (Figure 6). Originally, there was thought to be only one race of the pathogen because alfalfa cultivars did not differ in their reactions to individual pathogen isolates (Delwiche et al., 1987). Resistance to A. euteiches race 1 was established in alfalfa.
cultivars following recurrent selection (Holub & Grau, 1990). However, race 1-resistant alfalfa cultivars performed poorly in some fields infested with *A. euteiches*, which led to the discovery of the race 2 virulence phenotype (Grau et al., 1991). WAPH-1, an alfalfa cultivar with race 1 resistance, was developed as a differential to identify race 1 isolates (Grau, 1992), and WAPH-5 with resistance to both race 1 and race 2 isolates is used as the standard check cultivar to identify *A. euteiches* race 2 isolates (Hudelson & Grau, 1998; Figure 6). Both race 1 and race 2 isolates appear to occur throughout the United States (Malvick & Grau, 2001; Samac et al., 2017). Race 2 did not emerge in response to selective pressure from deploying race 1-resistant cultivars because race 2 isolates have been found in fields with no history of alfalfa cultivation (Malvick et al., 2009). Interestingly, races have not been identified in Europe, although ARR on pea is common in Europe and the *A. euteiches* isolates from pea can infect alfalfa (Gaulin et al., 2007). Genetic analyses to distinguish races have remained inconclusive. According to RAPD gel electrophoresis banding patterns, genetic variation was found to be as similar within race 1 and 2 isolates as it was between the two races (Malvick & Grau, 2001). Races were found not to cluster together in an AFLP analysis nor were there unique bands correlated with races (Malvick et al., 2009).

Currently, the only method of distinguishing races is by performing standardized bioassays on a differential set of alfalfa cultivars. Recently, alfalfa genetic suppliers have been marketing new alfalfa varieties with "race 3" resistance, although at this time there is no differential cultivar approved by the Association of Official Seed Certifying Agencies to identify race 3-resistant cultivars. Performing these bioassays on collected soils sometimes leads to misleading results due poor germination of all check cultivars, which can be partially explained by highly pathogenic *Pythium* species and *Fusarium* species causing seed rot and damping-off (Berg et al., 2017). Strains of *A. euteiches* were isolated from soil samples that inhibited WAPH-5 germination, and all strains were identified as either race 1 or race 2 (Samac et al., 2017). There is currently no way to determine if there are more than two races of *A. euteiches* that infect alfalfa because identifying a race 3 isolate using the standardized bioassay requires a differential for race 3, and there are currently only two differential cultivars of alfalfa, which identify race 1 and race 2 strains.

4 | DISTRIBUTION OF A. EUTEICHES

A. euteiches isolates that infect alfalfa have been reported from the United States, Canada, France, Australia and Sweden (Abbo & Irwin, 1990; Beghdadi et al., 1992; Levenfors et al., 2003; Malvick & Grau, 2001; Munkvold et al., 2001). A recent and extensive study mapped *A. euteiches* infecting pea and lentil across all agricultural regions of Saskatchewan, Canada (Karpinnen et al., 2020). Several field studies have mapped *A. euteiches* in alfalfa stands in the United States (Gibbs, 2009; Malvick et al., 2009; Munkvold et al., 2001). There seems to be no geographical boundaries for the pathogen. The alfalfa-infecting strains of *A. euteiches* may be endemic to North America because they have been detected in native rangeland and infect a wide host range of native prairie legumes (Karpinnen et al., 2020; Malvick et al., 2009).

In these *A. euteiches* surveys, a susceptible alfalfa cultivar is used in bioassays to bait *A. euteiches* from field soil for isolation (Grau et al., 1991; Malvick & Grau, 2001). Selective media have been developed to inhibit the growth of other root rotting pathogens, such as *Pythium*.
spp., which commonly outcompete A. euteiches in culture (Pfender et al., 1984). A. euteiches isolates from alfalfa have large diameter granular hyphae, short side branching hyphae, and main hyphae branch in a Y-shaped junction. Maximal growth occurs at 28°C (Delwiche et al., 1987). Once isolated in pure culture, DNA can be extracted, and specific PCR primers are used to validate A. euteiches to the species level but cannot distinguish between races of the pathogen (Vandemark et al., 2002). Also, a polyclonal antiserum highly specific for A. euteiches has been developed for a root diagnostic ELISA (Kraft & Boge, 1994).

5 | MANAGEMENT

5.1 | Genetic resistance

Planting disease-resistant cultivars of alfalfa is currently the best approach to reduce damage from ARR. Through recurrent phenotypic selection, alfalfa cultivars with high levels of resistance, greater than 50% of plants in a population being resistant, have been developed for race 1 and race 2 of A. euteiches. Heritability of resistance to ARR is high, which suggests that it is generated by a small number of genes (Samac et al., 2021). ARR-resistant cultivars have demonstrated improved seedling health, increased forage yields, and persistence under field conditions. Stands planted with resistant alfalfa varieties have increased dry matter yields up to 0.87 Mg/ha and increased ground cover up to 32% (Vincelli et al., 2000). Most commercial cultivars have resistance to race 1, which was previously thought to be the prevalent race of A. euteiches (Malvick & Grau, 2001). Race 2 of A. euteiches in Iowa and Wisconsin soils limited the yield benefits of race 1-resistant alfalfa cultivars (Munkvold et al., 2001). Resistance of alfalfa to the two races of A. euteiches appears to be controlled by different genes because race 1-resistant cultivars are susceptible to race 2 (Vandemark et al., 2004). In response to A. euteiches inoculation, a rapid hypersensitive response (HR) occurs in both race 1- and race 2-resistant plants in which the epidermal cell dies soon after penetration (Figure 7). This resistance response indicates resistance is mediated by a resistance (R) gene, most probably separate
R genes for each race (Samac et al., 2021), although no R gene from alfalfa has been cloned to confirm activity. In contrast, in susceptible plants, the pathogen rapidly colonizes the cortical cells, grows in the intercellular spaces and causes massive cellular degradation. Resistance is also associated with browning of the infected cell and a few neighbouring cells, which fluoresce under UV light, indicating the presence of phenolic compounds. Transcript profiling found strong up-regulation of genes in the phenylpropanoid pathway, jasmonic acid synthesis, receptor kinase, transcription factor and defence response genes such as those encoding chitinase, glucanase and peroxidases (Samac et al., 2021). Improved understanding of the R gene–race interaction is needed so alfalfa breeders can rationally design crosses to maximize resistance loci and increase the frequency of resistant plants. To protect and enhance the A. euteiches resistance found in alfalfa, it is important to characterize the strains of A. euteiches that can overcome this resistance through frequent disease surveys and selecting alfalfa plants with resistance to highly aggressive strains.

A few DNA markers associated with ARR resistance have been identified in alfalfa. Marker-assisted recurrent selection has made little improvement at increasing alfalfa broad-spectrum resistance to A. euteiches (Audy et al., 2017). A genotyping-by-sequencing analysis was performed on 373 alfalfa plants, and highly significant single-nucleotide polymorphism (SNP) markers, possibly for race 2 resistance, were identified at the top of chromosome 2 (Samac et al., 2017). For race 1 resistance, SNP markers were identified at the top of chromosome 1, around 38 kb away from a cluster of R genes in the Cultivated Alfalfa at the Diploid Level (CADL) genome sequence (Samac et al., 2017). To our knowledge, marker-assisted selection for
increased resistance to any alfalfa disease has not been used in any commercial alfalfa breeding programmes.

The model legume *Medicago truncatula* has emerged as the genetic system to study *A. euteiches* resistance in legumes. The broad host range of *A. euteiches* and high levels of synteny between *M. truncatula* and alfalfa suggest that resistance may be conserved between these two species (Choi et al., 2004). However, ARR resistance is a complex trait. *A. euteiches* race-specific resistance that has been identified in alfalfa has not been detected in *M. truncatula* (Djebali et al., 2009; Pilet-Mayel et al., 2009). *M. truncatula* usually displays quantitative disease resistance (QDR) where a few quantitative trait loci (QTLs) with large effects and numerous QTLs with small-to-intermediate effects interact to form the resistance phenotype (Bonhomme et al., 2019). Bulk segregant analysis (BSA) on *M. truncatula* inoculated with a pea isolate of *A. euteiches* was used to identify and map AER1, a major dominant
ARR resistance gene, to a nucleotide-binding site leucine-rich-repeat (NBS-LRR)-rich region of chromosome 3, and most classical R genes encode proteins that contain a central NBS domain and a carboxy-terminal LRR domain (Pilet-Nayel et al., 2009). The same locus was identified when *M. truncatula* was inoculated with both race 1 and race 2 alfalfa isolates (Hamon et al., 2010). Identified *M. truncatula* resistance mechanisms include increased lignin deposition, frequent pericycle cell divisions to protect the central root cylinder and accumulation of soluble phenolic compounds (Djebari et al., 2009, 2011).

5.2 | Fungicides

Alfalfa seeds are frequently treated with mefenoxam (Apron XL; Syngenta), which inhibits the growth of some alfalfa root rotting pathogens (*Pythium* spp. and *P. medicaginis*) but fails to control *A. euteiches*. Pyraclostrobin (Stamina; BASF) is labelled for use as a seed treatment against *A. euteiches* and also inhibits the growth of *Rhizoctonia solani*, *P. medicaginis* and *Fusarium* species. Pyraclostrobin prevents fungal respiration, depriving the pathogen of energy for growth and development (Venanco et al., 2003). It was suggested that race 2 isolates of *A. euteiches* were more sensitive to Stamina treatments than the race 1 isolates but increasing concentrations of Stamina inhibited growth of *A. euteiches* in both race 1 and 2 strains (Smith & Watson, 2014). This implies that certain *A. euteiches* strains may be more resistant to some fungicides than others.

Ethaboxam (INTEGO Solo) is used as a legume seed coating to suppress early season root and seed rots. Ethaboxam treatments have activity against *Phytophthora* spp., *Pythium* spp. and *A. euteiches* (Wu et al., 2019). Three fungicide treatments, INTEGO Solo, BAS 516F (pyraclostrobin, boscalid) and BAS 720F (metalaxyl, pyraclostrobin, fluxapyroxad), increased pea plant health and reduced disease severity significantly, compared with the inoculated control under greenhouse conditions (Wu et al., 2019). However, no fungicide was found to limit ARR severity in pea field tests. Evaluating these fungicides as alfalfa seed treatments may lead to improved ARR management.

5.3 | Biological control

With no current fungicides providing successful ARR management in field trials, using biological control agents as seed treatments may be useful in reducing ARR severity. Biological control agents are often discovered in naturally occurring disease-suppressive soils. From suppressive soils for ARR of pea in New Zealand, four bacterial isolates were found to inhibit *A. euteiches* in both mycelial growth and zoospore germination (Wakelin et al., 1998). In western Canada, bacteria from 18 different genera isolated in soil samples from pea fields also demonstrated inhibition of *A. euteiches* mycelial growth and zoospore germination (Gobedo et al., 2020).

Antagonistic effects against ARR in pea plants have been demonstrated by multiple bacterial species including *Streptomyces* spp. (Brahim et al., 2018), *Lysobacter capsici* K-HF-H2 (Gobedo et al., 2020), *Bacillus mycoides* MW27 (Wakelin et al., 2002) and *Bacillus velezensis* UCMB5513 (Lagerlöf et al., 2020). Isolates OB21 and BA15 of *Streptomyces* spp. applied as a seed treatment reduced disease by 33% and 47%, respectively, compared to untreated control pea seeds (Brahim et al., 2018). In a field study, seed treatments containing *Bacillus mycoides* MW27 increased pea plot stands by approximately 9% in an *A. euteiches*-infested field (Wakelin et al., 2002). These promising biocontrol agents have yet to be tested against alfalfa-infecting isolates of *A. euteiches*.

Combining biocontrol treatments with other management strategies may provide effective disease control. In greenhouse experiments, the association of *B. velezensis* UCMB5513 seed treatments with earthworms (*Lumbricus terrestris*) resulted in taller, healthier pea plants in *A. euteiches*-infoculated soils (Lagerlöf et al., 2020). A limited set of plant defensins, plant antimicrobial peptides, failed to inhibit *A. euteiches* growth even though they displayed activity against other alfalfa pathogens (Sathoff et al., 2019). Further surveys of plant defensins for activity against *A. euteiches* are warranted because these peptides have widespread antimicrobial activity and could potentially be developed into a novel seed treatment.

5.4 | Cultural control

A. euteiches is a persistent pathogen due to its thick-walled oospores and longevity; at high inoculum levels it can remain a threat to susceptible species for up to 10 years (Gaulin et al., 2007). A common strategy used for disease management is cropping system diversification. Soil- or residue-borne pathogens can be avoided by selecting and rotating crops with nonhost plants. The cultivated legume hosts *A. euteiches* includes pea, alfalfa, snap bean (*Phaseolus vulgaris*), red kidney bean (*P. vulgaris*), fava bean (*Vicia faba*), red clover (*Trifolium pratense*), white clover (*T. repens*) and lentil (*Lens culinaris*) (Wu et al., 2019). By planting legume species with high resistance to *A. euteiches*, the inoculum potential of the soil was reduced in greenhouse conditions (Moussart et al., 2013). But, in order to eliminate inoculum potential in pea fields, the recommended length of rotation between host and nonhost crops is more than 6 years (Hossain et al., 2012). Growers may find this amount of time unsustainable for their practices.

Although *A. euteiches* infects a wide range of plants, a relationship has been found between the host from which a strain was isolated and virulence. Approximately 20% of *A. euteiches* isolates obtained from alfalfa soil showed high virulence on both pea and alfalfa, whereas 80%–100% of isolates obtained from pea/alfalfa soil were found to be highly virulent to pea and alfalfa (Holub et al., 1991). An increase in inoculum concentration is also suggested to occur due to the ability of *A. euteiches* to infect other plants, releasing a new batch of viable oospores into the soil (Papavizas & Ayers, 1974). Alfalfa cultivars are synthetic mixtures
of heterozygous plants. Even when using an ARR-resistant cultivar of alfalfa, there is still a proportion of susceptible plants, so there is always the potential for disease and an increase in pathogen inoculum when growing a resistant cultivar.

In addition to crop rotations and diversification strategies, other possible methods to reduce A. euteiches soil population densities include ensuring proper drainage using subsurface drainage tiles, avoiding clay-heavy soils and using conservation tillage methods to reduce waterborne inoculum spread (Sturz et al., 1997). Alfalfa growth is restricted in poorly drained, wet soils by pathogens that cause root disease. These poorly drained soils are favourable for pathogen growth and frequently have problems with alfalfa stand establishment. Soil moisture, total and organic carbon and total nitrogen contents were found to be positively correlated with A. euteiches abundance in lentil and pea fields (Karppinen et al., 2020). A. euteiches was found not to be limited to any specific soil or land use type (annual cropland, roadside ditches or rangeland; Karppinen et al., 2020). Overall, it is unlikely that there is a single A. euteiches management strategy to entirely control ARR. A collective approach integrating genetic host resistance with seed treatments and crop diversification will probably be necessary to control ARR in alfalfa.

6 FUTURE PERSPECTIVES

With the goal of improving genetic resistance, several genome-wide association studies (GWAS) have been performed in M. truncatula, which identified causative SNPs for loci that impart quantitative resistance to ARR (Bonhomme et al., 2014). These markers may be used to identify race-nonspecific resistance in alfalfa. Quantitative resistance is controlled by multiple genes that impart partial resistance and is predicted to be more durable than R gene-mediated resistance (Palloix et al., 2009). SNPs highly associated with variation in resistance to A. euteiches in M. truncatula were identified in the promoter and coding region of an F-box protein encoding gene located inside the 440 kb AER1 genomic region (Bonhomme et al., 2014). Alleles corresponding to a nonfunctional F-box were associated with resistance, indicating that the protein acts as a negative regulator of disease resistance. A local score approach, which takes advantage of cumulative association signals of small effect, was applied to a GWAS study and used to uncover many minor QTLs for A. euteiches resistance in M. truncatula (Bonhomme et al., 2019). Potentially, these genes from M. truncatula could be transferred to alfalfa, which may confer race-nonspecific resistance.

With improved pathogen detection methods, resistant alfalfa cultivars can be selectively deployed in areas with A. euteiches-infested soil, which should reduce the selective pressure on the pathogen. Previous surveys have relied on the inefficient process of baiting pathogens from collected soil samples using susceptible seedlings to determine the inoculum potential. Also, soil sampling strategies may lead to false negatives because A. euteiches of pea appears in clusters of disease foci (Moussart et al., 2009). A quantitative PCR assay can detect A. euteiches at concentrations as low as 10 oospores per gram of soil (Gangneux et al., 2014). Frequent A. euteiches soil surveys will provide growers with the essential pathogen distribution data so current integrative management strategies to combat ARR can be used only when necessary.

The genome of a pea-infecting isolate of A. euteiches was recently sequenced, annotated and deposited in AphanoDB (Gaulin et al., 2018). AphanoDB is a genomic database used for the study of A. euteiches containing a collection of gene sequences and annotations from Aphanoymyces species along with tools for comparative genomic approaches (Madoui et al., 2007). The sequenced pea isolate of A. euteiches possesses a large and diverse suite of small secreted protein (SSP)-encoding effector genes, including cell wall-degrading enzymes, that are strongly expressed upon M. truncatula inoculation (Gaulin et al., 2018). Draft genome sequences of a race 1 and race 2 strain of alfalfa isolates of A. euteiches have been assembled and are available in AphanoDB. New long read DNA sequencing methods and bioinformatics tools should facilitate the development of more complete genome sequences for A. euteiches. The addition of new sequences will facilitate gene prediction, which can be used as a tool in understanding genes involved in pathogenicity and race specificity.

ACKNOWLEDGEMENTS

The authors would like to thank Brooklyn Goosen for her graphic design work on Figures 3 and 6. Mention of any trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer. This work was supported by Mustang Seeds and South Dakota EPSCoR RII Track-1 (OAI-1849206).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no data sets were generated or analysed in this study.

ORCID

Andrew E. Sathoff https://orcid.org/0000-0001-9965-7034

REFERENCES

