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Abstract 
 
Despite more than a decade of heightened focus on 

cybersecurity, the threat continues. To address 
possible impacts, cyber threats must be addressed. 
Mitigation catalogs exist in practice today, but these 
do not map mitigations to the specific threats they 
counter. Currently, mitigations are manually selected 
by cybersecurity experts (CSE) who are in short 
supply. To reduce labor and improve repeatability, an 
automated approach is needed for matching 
mitigations to cyber threats. This research explores the 
application of supervised machine learning and text 
retrieval techniques to automate matching of relevant 
mitigations to cyber threats where both are expressed 
as text, resulting in a novel method that combines two 
techniques: support vector machine classification and 
latent semantic analysis. In five test cases, the 
approach demonstrates high recall for known relevant 
mitigation documents, bolstering confidence that 
potentially relevant mitigations will not be overlooked. 
It automatically excludes 97% of non-relevant 
mitigations, greatly reducing the CSE’s workload over 
purely manual matching.  
 
 
1. Introduction  
 

Cyber systems are ubiquitous in all aspects of 
society. Meanwhile, breaches to cyber systems 
continue to be front-page news and, despite more than 
a decade of heightened focus on cybersecurity, the 
threat continues to evolve and grow. Symantec 
reported that “Cyber attackers revealed new levels of 
ambition in 2016, a year marked by extraordinary 
attacks, including multi-million-dollar virtual bank 
heists, overt attempts to disrupt the US electoral 
process by state-sponsored groups, and some of the 

biggest distributed denial of service (DDoS) attacks on 
record powered by a botnet of Internet of Things (IoT) 
devices” [1]. Regrettably, subsequent years have not 
been less exciting on the cybersecurity front. The years 
2017 and 2018 saw a dramatic rise in ransomware 
along with rapid adoption of cloud and Internet of 
Things technologies for which mitigations1 are still 
immature [2]. 

To address possible impacts due to cyber threats, 
information system (IS) stakeholders must first assess 
the threats they face, then prioritize the risks. After 
completing the risk assessment, stakeholders must 
determine mitigations to counter the threats that pose 
unacceptably high risk. A number of threat-informed 
cyber risk assessment methodologies are described in 
the literature and in use today (e.g. [3]–[5]). At the 
other end of the cyber risk assessment spectrum, 
numerous authors have tackled the problem of 
mitigation optimization analysis; that is, taking a 
longer list of possible mitigations then prioritizing or 
down-selecting to a shorter list based on a set of 
defined objectives (e.g. [6]–[9]).  

Most cyber risk assessment methods stop short of 
recommending mitigations. Meanwhile, optimization 
approaches universally assume that a starting set of 
possible mitigations exists on which to apply the 
optimization techniques. Several mitigation catalogs 
exist in practice today, including the Payment Card 
Industry Data Security Standard (PCI DSS) [10], 
Health Insurance Portability and Accountability Act 
(HIPAA) technical controls [11], and NIST 800-53 
Security and Privacy Controls for Federal Systems 
[12]), but these do not map controls to the specific 
threats they counter. Likewise, a variety of threat 
frameworks exist in practice [13]. Of these, the 

                                                 
1 In this paper we use the term “mitigation” synonymously with 
“countermeasure” and “security control” to mean a tool or technique 
that may counter a cyber threat. 
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Common Attack Pattern Enumeration and 
Classification (CAPEC) [14], and Carnegie-Mellon 
taxonomy of operational cyber security risks [15] 
contain representative mappings of mitigations to 
threats; however, there is currently no comprehensive 
source of threat-mitigation mappings.  

A method to produce this starting set, the initial 
mapping of potential mitigations to cyber threats, is the 
gap this research fills. Accordingly, this research aims 
to devise an automated or semi-automated method for 
matching mitigations to cyber threats expressed as 
English language text documents using machine 
learning and text retrieval techniques in support of 
cyber risk assessment.  

The primary contribution of this research to theory 
is the artifact, a novel machine learning method for 
matching mitigations to threats. From a practical 
perspective, an automated approach to matching 
mitigations to threats benefits all threat-informed cyber 
risk assessment approaches by aiding decision-making 
and reducing workload for CSEs whose job it is to 
mitigate the identified cyber threats. Moreover, an 
automated approach can support development and 
maintenance of a knowledge base to make mitigation 
selection more repeatable, facilitate knowledge reuse, 
and extend the reach of cybersecurity experts. The 
approach will be extensible to accommodate the 
continued evolution of both cyber threats and 
mitigations. The selection of mitigations applicable to 
each threat can serve as inputs into analyses of 
alternatives, both automated and manual, thereby 
bridging the gap between cyber risk assessment and 
final mitigation selection.  

The remainder of this paper is organized as follows. 
In the next section, we discuss related literature. Then 
we discuss our research methodology, which is 
grounded in the principles of the Design Science 
Research Methodology (DSRM) [16]. Per the DSRM, 
we identify objectives of a solution to our stated 
research problem, then we discuss the design of the 
solution artifact drawing from the knowledge base of 
applicable research. We demonstrate use of the artifact 
to solve a real-life problem, discuss the results, and 
evaluate success. Finally, we discuss contributions and 
limitations of the present research and propose future 
work. 
 
2. Literature review  
 

During the literature review, we noted a lack of 
existing published research dealing specifically with 
automated matching of mitigation documents to cyber 
threats. Absent this, our literature review instead 
considers supportive analogous research. Casting our 
problem as an information retrieval (IR) problem gives 

rise to three veins of DSS research for investigation: 
(1) using classification to judge whether each item in 
the mitigation corpus should be included in or 
excluded from a particular threat’s mitigation set, (2) 
using a retrieval model such as commonly used in 
search engines to enumerate mitigations ranked 
according to their degree of relevance to the threat, and 
(3) combinations of the two. We survey research for 
these alternatives in the next three sections. 
 
2.1. Classification 
 

Classification is a supervised machine learning 
technique in which a new item is assigned to its 
appropriate category by a classifier, an algorithm or 
model which has been trained to make such decisions 
after learning from training data consisting of items 
whose categories are already known. Classification-
based document selection has been researched 
extensively in the context of medical systematic 
reviews (SRs) underpinning evidence-based medicine 
[17]–[24]. The process for SRs demands high recall to 
ensure all relevant research is considered, but is less 
stringent about precision, tolerating a few false 
positives. The document selection process for updating 
SRs bears stark similarities to the present research 
problem in which we have a large corpus of 
continually-evolving, highly technical cybersecurity 
literature and we want to present the relevant 
mitigation documents for a given threat while omitting 
those that are extraneous. Moreover, like SRs, threat-
mitigation matching operates on an imbalanced corpus 
of candidate mitigations where only a small percentage 
are relevant to any particular threat. A key similarity 
between selecting literature for an SR and selecting 
mitigations for a threat may be the value judgment that 
high recall is more important than high precision. We 
elect to favor recall in the precision-recall tradeoff for 
the same reason this choice was made in the case of 
medical SRs and we assume that a few false positives 
can be manually screened out if necessary.  

 
2.2. Ranked retrieval 
 

Commonly used in search engines, ranked retrieval 
considers relevance between a query and a document 
as a matter of degree. A retrieval model assigns a 
relevance score to each query-document pair via a 
ranking function. When ordered in descending 
sequence by the relevance scores, those documents at 
the top of the list are the documents deemed to be most 
relevant to the query. Unfortunately, in order to make 
binary relevant/non-relevant decisions using ranked 
results, one must determine a cut-off point in the 
ordered list. This is a challenging problem because, in 
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general, the number of relevant results expected  is not 
known in advance [25].  

The Vector Space model and Latent Semantic 
Analysis (LSA) are similarity-based text retrieval 
models. LSA-based text retrieval demonstrates 
substantial improvement over keyword-based retrieval, 
in part because it accommodates language intricacies 
such as synonymy. Moreover, an LSA-transformed 
matrix is considerably smaller than the corresponding 
keyword-based term-document matrix, requiring only 
50-150 factors compared with the hundreds or 
thousands of words typical of a large document corpus 
[26].  

A few authors presented ranked retrieval research 
analogous to our research problem. Swanson et al. 
developed an automated method based on keyword 
searching for linking complementary sets of articles in 
the MEDLINE database [27]. Goldrich et al. applied 
search engine technology, to match cybersecurity 
requirements to descriptions of research projects in 
order to highlight research aligned with the 
requirements [28]. Foltz used LSA to filter a corpus 
looking for new relevant documents based on an 
existing profile of documents that had been previously 
deemed relevant [29].  

 
2.3. Hybrid approaches 

 
A few authors have explored combinations of 

classification and ranked retrieval techniques in text 
mining. For example, Manning et al. [25] and 
Nakamoto [30] discuss classification based on text 
retrieval features, such as cosine similarity and 
PageRank. Wiener et al. [31] utilized LSA for feature 
reduction to identify topics using a neural network 
classifier in a corpus consisting of more than 11,000 
unique terms. Gee [32] described a method for 
classifying email as spam or not-spam using an LSA-
inspired ensemble classifier implemented in three 
stages. 
 
3. Research methodology and objectives 
 

Our research is framed within the Design Science 
Research Methodology [16]. The DSRM is appropriate 
for this research because we want to create an IT 
artifact to solve a challenging problem for which a 
solution will contribute to theory and practice. The 
DSRM emphasizes design and evaluation rigor through 
building upon existing research from the literature. 

In the DSRM, defining the objectives of a solution 
to the research problem at hand is an important 
predecessor to artifact design because it previews the 
desired end state. Objectives also provide the 
foundation on which to build an evaluation strategy. 

Our artifact will: (1) process existing English language 
text documents where each separately describes either 
a threat or a mitigation, (2) provide an automated 
method for recommending relevant mitigations when 
presented with a threat, (3) accommodate new and 
evolving threats and mitigations, and (4) match a high 
percentage of relevant mitigations for a given threat, 
while avoiding selection of irrelevant mitigations.  
 
3.1. Theoretical background of the artifact  
 

Because knowledge about threats and mitigations is 
largely expressed in unstructured or semi-structured 
text documents, our idea is to cast the threat-mitigation 
matching problem as an information retrieval problem, 
using the threat as a query and the mitigation 
documents as the corpus to be searched, and then build 
upon applicable DSS research. Applying techniques 
described in the literature we considered artifact 
designs from three categories for the threat-mitigation 
matcher: (1) classification drawing from medical SRs 
research [17]–[24], (2) ranked retrieval drawing from 
[27]–[29], and (3) hybrid approaches that combine 
techniques from ranked retrieval in conjunction with 
classification: drawing from [25], [30]–[32]. We 
ultimately arrived at a hybrid approach described in 
section 4. 
 
3.2. Evaluation Approach 
 

Evaluating the effectiveness of the artifact is a 
hallmark of the DSRM. Moreover, the ability to 
evaluate the effectiveness of a machine learning 
approach is crucial to ensuring that the results are not 
just a manifestation of chance. As we have cast our 
research as an IR problem, we apply IR evaluation 
methods to judge success. A full treatment of such 
methods is beyond the scope of this paper. Instead, we 
focus here on the methods we elected to use for 
evaluation of our artifact. Precision and recall, defined 
in Equations 1 and 2, are among the most common 
measures of IR effectiveness. In contexts where the 
objective is to correctly identify all positive instances, 
recall is a primary evaluation metric [33]. Specificity is 
the extent to which actual negative instances are 
classified as such [34]. It is a measure used in fields 
such as medicine and behavioral science to judge the 
effectiveness of diagnostic tests. In contexts where the 
objective is to rule out large swaths of negative 
instances, such as in medical SRs and mitigation 
selection, specificity can be an effective evaluation 
measure. The false positive rate is the probability that a 
non-relevant document will be retrieved. According to 
Raghavan et al. the “usefulness of a retrieval system is 
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determined to a great extent by how closely it can 
characterize the dichotomy” of relevant vs non-
relevant documents for its intended purpose [35]. 

 

Eq. 1 
 

Eq. 2 
 

TP=retrieved/relevant; FP=retrieved/not relevant; 
FN=relevant/not retrieved 

 
4. The method  

 
In this section, we discuss our method (artifact). 

We introduce the data source, summarize the design 
iterations which lead to the artifact, discuss the 
machine learning techniques used, and explain the 
rationale for the method ultimately selected.  To arrive 
at this method, we explored a number of designs, 
including various classifiers, feature sets, and feature 
reduction techniques. We used precision, recall, and 
the rate of false positives to judge the merits of each 
design. We emphasized recall (i.e. to present all 
relevant mitigations) and tolerated a few false 
positives.  
 
4.1. Data source 
 

We used version 2.11 of the Common Attack 
Pattern Enumeration and Classification [14] as the data 
source for this research. CAPEC is an existing corpus 
of descriptions of attack patterns (threats) expressed in 
English language documents. Although mitigation 
mapping is not the focus of CAPEC, some CAPEC 
attack patterns include illustrative mitigations, 
providing a convenient source of labeled data for our 
research. CAPEC is a hierarchical representation of 
attack patterns (i.e. threats), consisting of meta, 
standard, and detailed patterns. For our purpose, we 
focused on the standard patterns because their level of 
specificity is similar to that of threats in cyber risk 
assessments. There are approximately 125 standard 
threats in CAPEC. There are approximately 600 
mitigation texts in the corpus. The number of 
mitigations mapped to each standard threat varies from 
0 to about 10. 

CAPEC has existed in the cybersecurity community 
since at least 2007. We consider the CAPEC threat-
mitigation mappings to be ground truth. We recognize 
that data quality is key to our results and we accept 
CAPEC’s heritage as an indicator of sufficient quality 
for this proof of concept research. By personal 
inspection, we searched CAPEC for threats which had 
at least a paragraph of descriptive text and about ten 
relevant mitigations for use as labeled data. We 
selected five threats and associated mitigations which 
were suitable test cases for our experimentation, 

starting with threat 49, password brute force guessing. 
We also added a few additional mitigation documents 
drawn from the Internet to bring the number of relevant 
mitigation instances up to about 20 for each test threat. 
 
4.2. Summary of designs considered 

 
We had an intuition that the best approach for one 

threat would also work for other threats. Figure 1 
shows a summary of the precision, recall, and false 
positive rates (cross-validation statistics) for five 
designs for threat 49. The designations [C], [TR], and 
[H] in the design names indicate the design concept: 
classification, text retrieval, or hybrid. For the 
classification and hybrid approaches, we show the 
cross-validation statistics for both the relevant (R) and 
non-relevant (NR) classes. For the text retrieval 
designs, it is customary to evaluate based solely on 
relevant results retrieved.  

 

 
Figure 1. Summary of Designs 

 
For our classification designs, we initially tested 

several classifiers before finally deciding on support 
vector machines (SVM) for reasons discussed in 
section 4.4. We experimented with two classification 
strategies, one using the full text of the mitigations 
(tokenized and represented via the Vector Space 
Model) and the other using threat keywords/phrases 
extracted with TextRank [36]. As shown in Figure 1, 
the full text model had high precision (0.92), no false 
positives, but unacceptably low recall (0.48) on the R 
class. The keyword/phrase model had high precision 
(0.97), no false positives, and improved recall (0.74) 
on the R class. On the NR class, precision and recall 
were very high (>0.99) for both but with high false 
positive rates.  

We investigated two ranked retrieval approaches 
to matching, one based on the Vector Space Model and 
the other based on LSA. LSA outperformed the Vector 
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Space Model, retrieving 23 of 25 relevant items versus 
15 of 25. To calculate precision and recall, we cut the 
ranked list off at 25 entries and applied the formulas in 
section 3.2. The main issue with this approach was lack 
of a general strategy for implementing the R vs NR 
cut-off point as discussed in section 2.2.  

Finally, we experimented with a hybrid approach 
that combined ranked retrieval and classification. This 
design was ultimately the one we selected for our 
artifact. We discuss it in greater detail in section 4.3.  

 
4.3. Artifact design 
 

Our artifact is designed to leverage SVM combined 
with LSA. Model building is a three-step process as 
illustrated in Figure 2.  Note that a model is built for 
each threat; thus, the mitigation documents input into 
the indexing stage are labeled as R/NR to the specific 
threat. For each mitigation text, we removed stop 
words, then tokenized, lower-cased, and stemmed the 
text. We computed a TF-IDF (term frequency-inverse 
document frequency) representation of the corpus, then 
transformed it to an LSA semantic space. The semantic 
space and the R/NR labels were saved for reuse. 

 

 
Figure 2. Artifact Design and Flow 

In the balancing stage, we utilized LSA similarity 
scores as a means to balance the training data. We 
queried the mitigation LSA space using the full text of 
the threat document (tokenized, stemmed, lower-cased, 
and transformed to the semantic space) as the query. 
Then, the top 100 mitigation entries based on similarity 
to the threat text were retained. This balanced the data 
for input into training by reducing the number of NR 
instances. 

During iterative design, we observed that the 
corpus was highly imbalanced in favor of NR 
instances. We initially experimented with methods to 
improve the balance, such as random undersampling of 
the NR class and oversampling of the R class with the 
Synthetic Minority Oversampling Technique 

(SMOTE) [37], [38]. SMOTE creates new instances of 
the minority class by drawing and combining features 
from K nearest minority neighbors. We intuited that 
our LSA-based balancing approach was better than 
simply undersampling at random because 
undersampling at random could drop relevant instances 
of which we already have too few. We also posited that 
ingesting the most similar entries during training, i.e. 
keeping the relevant entries plus the non-relevant 
entries that were most difficult to discriminate, aided 
the classifier in finding a good decision boundary. 

In the training stage, we built an SVM classifier 
using the top 100 instances from the balancing stage 
and saved the model for later use to predict the classes 
of new unlabeled potential mitigations on a per-threat 
basis. Using LSA afforded a feature reduction from 
1,500 features in the plain text to 200 LSA topics. This 
fits with optimal LSA dimensionality findings in 
Bradford [39]. We selected the low end of Bradford’s 
range because our corpus is much smaller than his. 
Thus, the training data per document consisted of the 
200 LSA topics augmented with the relevant or not 
relevant labels. We saved the models. 

Finally, we utilized the saved model in the 
predicting stage to classify new potential mitigations 
as relevant or not relevant to the threat associated with 
the model. To do so, the new text was first transformed 
to LSA features relative to the saved LSA space. Then 
the saved threat-specific classifier was applied to label 
the LSA-transformed mitigations. A demonstration and 
evaluation of the method is discussed in section 5. 

 
4.4. Design rationale 

 
In the following paragraphs we provide insights 

into why we selected particular elements in the design 
of our artifact. 

Why LSA? LSA has been shown to outperform 
retrieval of relevant documents from a corpus [26] 
when compared to keyword search because LSA 
accounts for inherent complexities of natural language, 
including the issue of synonymy, by evaluating the 
entire corpus for word patterns. In our experiments, we 
observed that LSA improved the matching of 
mitigations to threats over keyword-based matching. 

Why Classification? Two-class classification of 
text documents has been successfully demonstrated in 
the medical SRs literature as well as in our experiments 
for threat-mitigation matching. Moreover, 
classification does not have the ambiguous cut-off 
problem encountered in text retrieval. 

Why SVM? SVM has been shown to perform 
favorably for text classification, especially when the 
number of positive instances per category is small [40] 
and the feature set is large [41]. None of our 
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experiments with other classifiers gave us reason to go 
against these findings.   

Why combine LSA and SVM? We used LSA in 
combination with SVM in our artifact for three 
reasons: (1) to balance the training data so as to reduce 
the tendency of the NR class to dominate the model 
(from >99.99% NR before balancing to about 75% NR 
after), (2) as a feature reduction technique (from >1500 
features before LSA to 200 features after), and (3) 
because the LSA features are semantically richer, 
accounting for synonymy. 

We crafted this design for the above reasons and 
selected it because of its high precision and recall and 
low false positive rate on the R class based on cross-
validation statistics, excellent discrimination of the NR 
class, and the ability to fully automate construction of 
the “per threat” classifiers. The latter is a practical 
consideration related to scalability; if we operationalize 
this approach, we will have to build more than a few 
classifiers and we prefer not to do so manually. 
Building a classifier, i.e. the indexing, balancing, and 
training stages illustrated in Figure 2, can be scripted to 
run automatically per threat. The process for a single 
classifier takes less than a minute and the process for 
building many per-threat classifiers will scale linearly. 
 
5. Demonstration and evaluation of results 

 
5.1. Analysis of the text 
 

Success in classifying textual data is heavily 
influenced by the characteristics of the text itself. 
During design we used diagnostic tools to identify the 
mitigations commonly misclassified for threat 49. We 
investigated these false positives (FP) and false 
negatives (FN) to better understand how they differed 
from the correctly classified instances. One thing the 
correctly classified instances had in common was that 
they contained text explaining how the mitigation 
addresses the threat. The false negatives lacked this 
explanatory text. The false positives fell into two 
categories: (1) some described password vulnerabilities 
but not specifically password brute force guessing and 
(2) others dealt with brute force guessing but not of 
passwords.  

We hypothesized that improving the mitigation 
texts to include an explanation of how each one 
addresses the threat would improve the match results 
by reducing the FNs. Doing so also has practical 
benefits, allowing the CSE to better understand the 
reason a mitigation is relevant to the threat, to 
determine its applicability in context, and to better 
convey the rationale to the decision-makers who fund 
mitigations.  

A comparison of the cross-validation statistics for 
models trained on the unimproved and improved text is 
shown in Figure 3 and discussed in section 5.3. In 
general, models trained with the improved text 
demonstrated better precision and recall in cross-
validation statistics than models trained on the 
unimproved text. 

 
5.2. Results for threat 49 
 

We built an SVM classifier for threat 49 (and later 
for 4 other threats), inputting the top 100 instances 
(200 LSA-transformed features) from the balancing 
stage and their relevant or not relevant labels into the 
learning process. We saved the models for later use to 
predict the classes of new unlabeled potential 
mitigations. For threat 49, the model offered high 
precision (0.96) and recall (0.92) with minimal 
positives (1%) on the R class based on cross-validation 
statistics. On the NR class, precision and recall were 
very high (0.97 and 0.99 respectively) with an 8% false 
positive rate. 

 
5.3. Extensibility to Other Threats 
 

 
Figure 3. Comparison for 5 Threats 

Having seen promising cross-validation statistics 
for threat 49 for the selected design, we wanted to 
know if this outcome would extend to other threats. 
We chose threats 66 (SQL injection), 134 (email 
injection), 268 (audit log manipulation), and 593 
(session hijacking) as additional test cases. We 
compared cross-validation statistics for models trained 
for the five test cases before and after the text 
improvement discussed in section 5.1. Cross-validation 
statistics for models built for the five test threats are 
shown in Figure 3. 

The left-most five sets of bars in Figure 3 show the 
precision, recall, and false positive rates for models 
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trained for the five test threats before and after the text 
improvement. In the figure, “U” and “I” stand for 
unimproved text and improved text, respectively. The 
rightmost set of bars shows the mean precision, recall, 
and false positive rate averaged across the five test 
threats. At a glance, this figure shows that the cross-
validation measures are better after the text 
improvement, except for threat 268. Because threat 268 
had 1.0 precision before the text improvement, 
precision declined slightly when recall went up after 
the text improvement. 

As illustrated in Figure 3, precision is between 0.86 
and 1.0 and recall is between 0.86 and 0.95 for all five 
test threats for improved text with false positive rate of 
4% or less. Overall, although not a guarantee of 
generality, these classifier cross-validation statistics are 
favorable for the test threats and improved text. 

 
6. Discussion 
 

Demonstration and evaluation work together to 
show that the artifact effectively solves the problem. In 
the present research, we demonstrated and evaluated 
the artifact by applying instantiations of it for five test 
threats to predict the labels for new potential mitigation 
documents that were held aside and not used during 
training. The test data set consisted of 276 documents, 
261 of which were extracted from the CAPEC 
mitigations for threats other than 49, 66, 134, 266, and 
593.  The remaining 15 were drawn from the Internet - 
3 new relevant mitigations for each of the five test 
threats. We discuss the evaluation of the artifact in the 
next few paragraphs by revisiting the solution 
objectives (Section 3). Quantitative machine learning 
and IR performance metrics are shown in Figure 4.  

 

 
Figure 4. Test Results – Improved Text 

Objective: Process existing English language 
text documents where each separately describes 
either a threat or a mitigation. By testing, we 

demonstrated that the method accepts English language 
text documents, such as from CAPEC. 

Objective: Provide an automated method for 
recommending relevant mitigations when presented 
with a threat. By testing, we demonstrated that the 
method proposes matching mitigations for a threat. 

Objective: Accommodate new and evolving 
threats and mitigations. The method can accept new 
mitigations which it will match to existing threats 
using a stored model trained from labeled data. The 
method can also accommodate new threats with the 
caveat that adequate labeled data consisting of known 
relevant mitigations for the threat would be needed so 
that a threat-specific model can be trained. 

Objective: Match most of the relevant 
mitigations for a given threat while avoiding 
selection of irrelevant mitigations. We experimented 
with several artifact designs to see which attained the 
best performance. Thus, we needed some objective 
measures for comparison. During iterative design, we 
used 10-fold cross-validation, comparing recall, 
precision, and false positive rate to decide which 
designs to advance or leave behind. Although suitable 
for comparing models, cross-validation measures are 
not definitive for new document instances.  

During the evaluation stage, we re-evaluated the 
classifiers on test data held aside and not used during 
training as is customary in machine learning 
evaluation. We computed the recall, precision, false 
positive rate, and specificity by comparing the 
predicted and actual labels for the test instances. As 
Powers points out, focusing solely on precision and 
recall tends to obscure a method’s prowess in correctly 
identifying non-relevant instances [33]. This is 
measured using specificity, and we think it is important 
for threat-mitigation mapping because ruling out non-
relevant instances can lead to substantial workload 
reduction for the CSE over purely manual matching.  

Figure 4 shows the test results on the improved text 
for five threats. Because the training measures yielded 
precision and recall greater than 0.93 for the NR class, 
this foreshadowed excellent discernment of the NR 
class. Although we are most interested in the R class, 
the model’s ability to discriminate NR instances is also 
a benefit. Test results for precision and recall on the 
NR class lived up to the promises made by the training 
statistics. In addition, all five models had high 
specificity (97-100%) on the NR class meaning at least 
97% labor savings for the CSE in ruling out non-
relevant mitigations when compared to totally 
manually matching efforts. With recall of the R class 
registering 1.00 on test data for all five models, we can 
be confident that the model will not overlook relevant 
mitigations. This is desirable because we do not want 
to obscure any relevant mitigations from the CSE. 
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Precision is lower than we anticipated (between 0.27 
and 0.75, mean 0.40) and with this comes a few (up to 
3%) false positives. In our application, a false positive 
means we will recommend a mitigation that does not 
actually counter the threat resulting in a false sense of 
security. In practice, this shortfall can be addressed by 
providing CSE screening of the recommended matches 
before they are made available for use in a knowledge 
base.  

In summary, excellent recall on the R class 
combined with high precision (1.00), recall (>0.97), 
and specificity (1.00) of the NR class means the 
models will not overlook relevant mitigations and will 
accurately eliminate 97% of the non-relevant 
mitigations without manual intervention, greatly 
reducing the CSE workload when compared to purely 
manual matching while leaving just a few false 
positives for the CSE to remediate. 

 
7. Conclusions 
 

Mitigation selection to remediate cyber threats has 
heretofore been primarily a manual process done by 
human experts using disparate textual sources. 
Reliance solely on human experts brings issues of 
scalability, consistency, and repeatability. The ongoing 
shortage of cybersecurity experts combined with a 
burgeoning cyber threat landscape compelled us to 
look for a way to improve this situation.  

In this research, we set out to devise a method for 
matching mitigations to cyber threats expressed as 
English language text documents using machine 
learning and text retrieval techniques in support of 
cyber risk assessment. We ultimately arrived at a 
matching method that achieves the stated objectives 
and we instantiated five examples as SVM “per threat” 
classifiers based on LSA. We rigorously evaluated the 
instantiations for our five test cases and were 
encouraged by the results. 

This research contributes to theory by taking steps 
towards a novel machine learning method for 
automatically mapping mitigations to threats, both 
expressed as English language text, and by 
demonstrating instantiations of the method. This 
method fills a research gap in the cyber risk assessment 
literature by providing a semi-automated method to 
produce a starting list of possible mitigations to cyber 
threats which can flow into mitigation optimization 
techniques. It is extensible to accommodate the 
continued evolution of both cyber threats and 
mitigations, an important consideration in light of the 
dynamic cyber landscape. We have also demonstrated 
a way to improve the textual descriptions of threats and 
mitigations to better support automated matching.  

In practice, an automated approach to matching 
mitigations to threats benefits all threat-informed cyber 
risk assessment approaches by providing a means to 
recommend relevant mitigations to remediate specific 
threats thereby aiding decision-making for IS 
stakeholders and CSEs. This is important because 
under-mitigating the actual threats provides a false 
sense of security, while over-mitigating is costly and 
wasteful.  

When operationalized into a knowledge base that 
can save and reuse matches, this method may make 
mitigation selection more repeatable, facilitate 
knowledge reuse, reduce manual labor, and extend the 
reach of CSEs. The list of mitigations applicable to 
each threat can serve as input into analyses of 
alternatives, both automated and manual, enabling 
practitioners to leverage a large body of mitigation 
optimization research. Finally, because this method can 
respond to the evolutionary nature of cyber threats and 
mitigations, while also reducing the time and effort 
required for manual matching, it may improve overall 
security of cyber systems when used as part of a risk 
assessment and mitigation cycle by making more 
frequent reassessments of cyber systems more feasible. 
 
8. Limitations and future work 
 

For this initial work, we bounded the scope, 
providing ample opportunities for incremental 
improvements. First, the artifact we developed is based 
on English language documents. It would be 
interesting to extend it to other languages. Also, we 
made no effort to address redundant threats and 
mitigations from our corpus. In order to ingest 
documents from additional sources, the method should 
be preceded by an automated approach for dealing with 
duplication.  

The method could be improved by exposure to 
more threat and mitigation sources. In addition, further 
analyses of the structure and semantics of threat and 
mitigation documents from various sources could lead 
to discovery of more ways to improve the document 
content and by extension the matching method.  

We only dealt with existing threats and 
corresponding labeled mitigation data. This work could 
be extended by investigating semi-supervised learning 
classification techniques to build classifiers for new 
threats where labeled data does not yet exist. 
Moreover, it is possible that semi-supervised learning 
could also be used to improve the classifiers initially 
trained for existing threats by taking into account new 
matches that come about as new mitigation documents 
are added. 

We focused our research on the defensive aspect of 
cybersecurity, starting from the threat and identifying 
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relevant mitigations. It is possible that our method may 
be applicable or extensible to the “white hat” offensive 
cybersecurity characterized by starting with a 
mitigation and then considering threats against it, such 
as to better understand attacker behavior or residual 
exposure. While we established a degree of utility by 
demonstrating that the artifact solves the problem for 
five examples, survey research to investigate the 
perceived utility by actual CSEs would be beneficial. 

Finally, we identify several long-range goals. 
Improving the ways that threat and mitigation texts are 
written could make them more amenable to automated 
matching, such as by devising standards for how to 
rigorously express mitigations. For example, in section 
5.1, we noted that improving the mitigation texts to 
include an explanation of how each one addresses the 
threat improved the match results by reducing the false 
negatives.  Furthermore, devising a robust structure 
(e.g. [13], [42], [43]) to capture the intricacies of 
threat/mitigation relationships would offer great 
potential to improve the matches, helping to tease out 
complexities such as overlapping threats and one to 
many mitigation-threat mappings. This structure could 
be used as metadata to improve the matching models. 
In the long term, we envision the artifact as a 
component of an overarching architecture with a 
reusable, continually evolving, peer-reviewed 
knowledge base of threat-mitigation mappings with 
contributions coming from many sources, including 
threat frameworks, mitigation catalogs and vendor 
literature.  
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