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Abstract While systematic reviews (SRs) are positioned as an
essential element of modern evidence-based medical practice,
the creation and update of these reviews is resource intensive.
In this research, we propose to leverage advanced analytics
techniques for automatically classifying articles for inclusion
and exclusion for systematic reviews. Specifically, we used
soft-margin polynomial Support Vector Machine (SVM) as a
classifier, exploited Unified Medical Language Systems
(UMLS) for medical terms extraction, and examined various
techniques to resolve the class imbalance issue. Through an
empirical study, we demonstrated that soft-margin polynomial
SVM achieves better classification performance than the
existing algorithms used in current research, and the perfor-
mance of the classifier can be further improved by using
UMLS to identify medical terms in articles and applying re-
sampling methods to resolve the class imbalance issue.

Keywords Healthcare . Medical systematic reviews,
analytics . Support vector machines

1 Introduction

Evidence Based Medicine (EBM) refers to the application of
state-of-the-art medical evidence to improve the quality and

reduce the cost of medical care (Cohen et al. 2010). Although
the classical vision of EBM required physicians to directly
search the relevant medical research for evidence applicable
to their patients, the modern conception of EBM heavily relies
on synthesis of research findings in the form of an evidence
report commonly referred to as a systematic review (SR).
According to Higgins and Green (2011), “a systematic review
is a high-level overview of primary research on a particular
research question that tries to identify, select, synthesize and
appraise all high quality research evidence relevant to that
question in order to answer it”. Each systematic review ad-
dresses a clearly formulated problem. As an example, (Couch
et al. 2008) presents a systematic review of “diabetes educa-
tion for children with Type 1 Diabetes Mellitus and their fam-
ilies”. It synthesizes the findings presented in 80 pertinent
articles. Nowadays, systematic reviews form a key resource
for informing evidence based medical practice. With the in-
creasingly rapid pace by which medical knowledge is created,
researchers, practitioners and policy makers are challenged to
keep pace with state-of-the-art medical evidence and incorpo-
rate such evidence into practice. Systematic reviews respond
to this issue by recognizing, appraising, and synthesizing
research-based evidence frommultiple sources and presenting
it in an accessible format (Mulrow 1994).

Developing a medical systematic review is a much more
demanding, rigorous, and resource-intensive process than de-
velop a literature review in other domains, since systematic
reviews attempt to bring a high level of rigor to reviewing
research evidence and are often developed based on a peer-
reviewed protocol so that they can be replicated if necessary.
Surprisingly, the current workflow for creating and updating
SRs is largely a manual process. An initial search by querying
databases such as Medline, Cochrane and Embase often
returns a large number of articles given a medical topic.
Developing the review presented in (Couch et al. 2008) first
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involves retrieving 12,740 articles based on keywords such as
diabetes, diabetic children, diabetic family members, and dia-
betes education in order to ensure that none of the relevant
articles will be missed. These 12,740 articles were then eval-
uated manually by a team of scientists using highly methodic
procedures. Only 80 of them were selected according to the
inclusion and exclusion guidelines. Finally, the scientists syn-
thesized the research findings in the 80 articles to establish the
best education for children with Type 1 diabetes mellitus and
their families. The articles that need to be included in a sys-
tematic review are usually selected in two steps. The first step
is called abstract triage, where scientists identify “relevant”
articles that can potentially be included in a SR based on the
title and abstract of the articles. This phase of screening arti-
cles usually requires a long time and significant effort as it
involves a group of scientists evaluating thousands of articles
in order to find the relevant ones. The second step is referred to
as full-text triage. It involves full text inspection of the rele-
vant articles selected in the title/abstract triage to determine
those that satisfy the inclusion criteria and will be includ-
ed in a systematic review (Shojania et al. 2007). Due to
the manual workflow of selecting articles for systematic
reviews (SRs), developing SRs requires a significant
investment in time (1139 expert hours on average) and
funds (up to a quarter of a million dollars) from a
dedicated and qualified research team (Allen and Olkin
1999; McGowan and Sampson 2005).

Nowadays, medical knowledge base is growing at an as-
tounding pace. Reports of new clinical trials are being pub-
lished at the rate of over 20,000 per year (Shojania et al. 2007).
This creates an enormous challenge for scientists trying to
develop and update systematic reviews to keep pace with the
development in the medical field. Cochrane Collaboration es-
timates that at least 10,000 new systematic reviews are needed
to cover most of the healthcare problems (Higgins and Green
2011). Unfortunately, fewer than half of this number has been
published even after ten years of focused effort by the EBM
community (Higgins and Green 2011). Once a review is cre-
ated, the job is not done yet - a systematic review needs to be
updated periodically (Cochrane 2013). The median time for a
review to become obsolete is 5.7 years; for some medical
conditions like cardiovascular, a SR may be obsolete in less
than a year (Shojania. et al. 2007). A report published by
Agency for Healthcare Research Quality (AHRQ) indicates
that only 2 % of systematic reviews published in all journals
represent updates of previous reviews (whether conducted by
the same authors or not) (Shojania. et al. 2007). Researchers
have attributed the difficulty of developing and updating sys-
tematic reviews to keep up with medical research advances to
the aforementioned resource intensive manual process needed
to screen articles (Shemilt et al. 2013). We lack highly refined
automated tools that help reviewers sort and prioritize articles,
which has been become a bottleneck that has hitherto

constrained the timely creation and update of systematic
reviews.

There are efforts that have leveraged text analytics
(Bekhuis and Demner-Fushman 2012; Shemilt et al. 2013;
Adeva et al. 2014) to automate the article screening procedure
for systematic reviews. Most existing literature focuses on
addressing a text classification problem, where medical arti-
cles are classified as relevant or irrelevant to the topic based on
the title and abstract of the articles. As in any text classification
task, we need to enhance both recall (i.e., among the articles
that are deemed relevant and included in a systematic review,
the fraction of those classified as “relevant”) and precision
(i.e., among the articles that are classified as “relevant”, the
fraction of those will actually be included in a review). Any
automated system for identifying relevant articles must main-
tain a very high level of recall since a systematic review
should include most, if not all, articles that provide high qual-
ity evidence relevant to the topic. Any systemwith a low recall
would be of little use (Matwin et al. 2010). Precision is also
essential in this context since a higher precision means that the
articles that are classified as relevant are indeed relevant,
which means that a smaller number of articles needed to be
reviewed during the downstream full-text triage stage. Hence,
in order to resolve the aforementioned bottleneck in the
screening of medical articles, it is necessary to improve preci-
sion while maintaining a high recall. Among the existing re-
search, a few studies such as (Bekhuis and Demner-Fushman
2012; Cohen et al. 2006; Matwin et al. 2010) attempted to
achieve a high recall. Nonetheless, the results of these studies
have shown a tendency for precision to decline as recall in-
creases. Another conspicuous issue that has been largely ig-
nored in existing research is that systematic review datasets
are normally highly imbalanced, which means that among the
thousands of articles to be selected, only a small number of
them will be included in the final systematic review. The im-
balance ratio ranges from 1:10 to 1:1000 (Shemilt et al. 2013).
Class imbalances have been reported to hinder the perfor-
mance of classifiers proposed in existing research. (Bekhuis
and Demner-Fushman 2012; Cohen et al. 2006; Matwin et al.
2010).

The objective of this research is to develop an advanced
analytics-based approach to automatically identifying relevant
articles that could be included in systematic reviews based on
the title and abstract of the articles. The proposed approach is
primarily intended for updating exiting systematic reviews
when a training dataset is readily available. It can also be used
for systematic review creation if researchers can create a train-
ing dataset by manually reviewing a certain number of arti-
cles. Our text analytics based approach aims to improve the
precision of article classification for systematic reviews while
sustaining a very high level of recall. It makes three improve-
ments to the existing methods described in literature. First, we
propose to use the Unified Medical Language Systems
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(UMLS) to extract medical terms as features for article classi-
fication, while the majority of existing research uses the “bag-
of-words” approach (Adeva et al. 2014; Shemilt et al. 2013;
Bekhuis and Demner-Fushman 2012; Wallace et al. 2010;
Cohen et al. 2006). Our study demonstrated that the automat-
ically extracted Unified Medical Language System (UMLS)
terms helped boost classification performance. Second, we
propose to use soft-margin polynomial Support Vector
Machine (SVM) to classify articles. Using different medical
datasets, we showed that soft-margin polynomial SVM
achieved higher precision and recall, compared with several
algorithms proposed in existing research. Third, to deal with
the aforementioned class imbalance problem, we examined
various re-sampling methods to re-sample the training data.
The results of our comparative experiments indicate that a
soft-margin polynomial SVM classifier that leverages more
precise feature representation using UMLS and integrates
the Synthetic Minority Oversampling (SMOTE) method
(Chawla 2010) has the potential to yield significantly im-
proved performance in identifying relevant articles for sys-
tematic reviews.

The remainder of the paper is organized as follows. The
next section summarizes related work, followed by a discus-
sion of the research gap we intend to address, a description of
our research methodology, and a presentation and discussion
of our experimental results. The last section concludes the
article.

2 Related work

There have been some attempts in literature to leverage ana-
lytics to automate systematic reviewer generation and update
(Ananiadou et al. 2009; Bekhuis and Demner-Fushman 2012;
Cohen et al.; Frunza et al. 2010; Shemilt et al. 2013). One of
the most significant research done in this area is one conduct-
ed by Cohen et al. (2006). In this National Institute of Health
(NIH) supported project, Cohen et al. used the perceptron
algorithm to identify journal articles for inclusion in system-
atic reviews based on the title and abstract of the articles.
While the perceptron-based classifier achieved high recall,
precision was consistently low. By fixing recall to be at least
95 %, it produced very low precisions when applied to a
number of datasets such as Antihistamines (precision =0 %),
SkeletalMuscleRelaxants (precision =0 %), and Triptans
(precision =3.65 %).

Adeva et al.’s research (2014) is probably the most com-
prehensive one so far in this area. They conducted experi-
ments that involved multiple classification algorithms (includ-
ing naïve Bayes, KNN, Support vector machines, and
Rocchio) combined with several feature selection methods
(including TF, DF, IDF, etc.) and applied to different parts of
the articles (including the titles alone, abstracts alone and both

titles and abstracts). SVM has been proved to produce the best
performance with respect to the F1 scores. Bekhuis and
Demner-Fushman (2012) also compared different algorithms
including K-nearest neighbor (KNN), naïve Bayes, comple-
ment naïve Bayes (cNB), and evolutionary SVM (EvoSVM)
(implemented in the RapidMiner) and used information gain
as their feature selection method to select features from article
titles and abstract. EvoSVM has been proved to be the most
effective among the algorithm. One reason SVM and its var-
iations often outperform other algorithms is that a medical
document is normally represented as a feature vector with
words or phrases as the features for classification. This feature
vector is often high dimensional and sparse; that is, for each
document, its feature vector only has a few entries that are
non-zero. SVM has the potential to handle large number of
features with overfitting protection (Joachims 1998), and it
works well with problems with sparse features (Kivinen
et al. 1995). Similar to Cohen et al. (2006), Bekhuis and
Demner-Fushman’s study (2012) also proved the inverse re-
lationship between precision and recall. Precision was maxi-
mal when recall was very low, e.g., precision = 100 % and
recall = 7.69 %. When maintaining a high recall (100 % for
two datasets, ameloblastoma and influenza), evoSVM, though
the best among the tested algorithms, produced relatively low
precisions (13.11 % for the ameloblastoma dataset and
10.69 % for the influenza dataset).

As mentioned previously, class imbalance remains a criti-
cal, yet largely ignored issue in this context. (Shemilt et al.
2013) is perhaps the only research that investigated the use of
re-sampling in selecting articles for systematic reviews. They
used undersampling by drawing a random sample of excluded
records equal in number to the total number records marked as
provisionally eligible for inclusion and proved that
undersampling helps enhance that the performance of the
text-mining based classifiers (Shemilt et al. 2013). In addition
to undersampling, oversampling techniques, though never
used in the area of systematic reviews, have long been proved
to be effective in dealing with class imbalance in data mining
literature. For instance, Ling et al. (1998) combined
oversampling of the minority class with undersampling of
the majority class and concluded that the best results are ob-
tained when both classes are equally represented. A particular
type of oversampling, namely the Synthetic Minority
Oversampling Technique (SMOTE) (Chawla et al., 2010),
creates synthetic examples of the minority class instead of just
randomly duplicating minority examples. Chawal et al. (2010)
conducted various experiments with different datasets and
proved that SMOTE outperforms plain undersampling and
oversampling, and furthermore, the combination of SMOTE
and undersampling performs even better than SMOTE alone.
It is hence intriguing to investigate if re-sampling techniques
such as SMOTE can help improve the performance of article
classification in the context of systematic reviews.
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Overall, the findings of extant research show enough prom-
ise to further consider the possibility of using data analytics
techniques for automatically screening articles for systematic
reviews (Cohen et al. 2006; Frunza et al. 2010; Shemilt et al.
2013; Tsafnat et al. 2014). However, further research is need-
ed to develop appropriate classifiers, resolve the class imbal-
ance problem, and improve the precision of classification
techniques while maintaining a high recall.

3 Research gap

Our literature review indicates that 1) for any automated clas-
sification technique to be of practical use in supporting article
selection for systematic reviews, it is critical for the technique
to achieve a high level of recall, and 2) it is necessary to
improve precision while sustaining a high recall since a higher
precision means that fewer articles would need to be manually
reviewed in the downstream full-text triage stage. Improving
precision while sustaining a high recall, however, is a difficult
task, as shown in existing research. This leads us to the fol-
lowing overarching research question:

1. How can we develop a classification technique that helps
improve precision while sustaining a high recall (above
95 %)?

We plan to address this research question by investigating
which combination of textual analytics techniques is most
valuable in identifying relevant articles that should be includ-
ed in a systematic review.

Existing research into automatic article classification for sys-
tematic reviews has almost exclusively relied on the bag-of-
words approach for feature representation. While this de facto
standard has led to promising results, we feel that other feature
extraction schemes may provide better predictive ability. Prior
research (Liu et al. 2002; Aronson et al. 2007), though not in
the area of systematic reviews, has corroborated the observa-
tion that biomedical text classification can be improved by
enriching raw text with automatically extracted Unified
Medical Language System (UMLS) terms. As an example,
Kilicoglu et al. (2009) demonstrated the feasibility of automat-
ically identifying “scientifically rigorous” articles using multi-
ple features from publications, including “high-level” features
such as Unified Medical Language System (UMLS) terms.
This leads us to the following research question:

2. Can we improve precision while sustaining a high recall
by using automatically extracted Unified Medical
Language System (UMLS) terms as features?

As discussed previously, the issue of class imbalance is
critical, yet not sufficiently addressed in this field. To address

the issue, Cohen et al. (2006) modified the conventional
perceptron algorithm by adjusting the false-negative learning
rate (FNLR) to improve the recall to be over 95 %. Another
possible approach is using re-sampling methods to re-sample
the training data. In the area of data mining, various re-
sampling strategies such as undersampling, oversampling
and SMOTE oversampling, have been proposed to classify
datasets with highly asymmetric positive and negative sample
frequency. It is hence meaningful to investigate:

3. Can we use a re-sampling method to further improve pre-
cision while sustaining a high recall?

4 Methodology

Our analytics approach to identifying relevant articles for sys-
tematic reviews includes three major components: 1) feature
extraction using the UMLS, 2) soft-margin polynomial SVM,
and 3) SMOTE combined with undersampling. We conduct
experiments using four systematic review datasets and com-
pared analytics techniques with others that were proposed in
existing research. In following sub-sections, we describe the
data sources, each component in our analytics approach, and
the methods that we compared our techniques with in detail.

4.1 Data sources

We used four systematic reviews on drug topics including
ACEInhibitors (ACE), Antihistamines (AN), Skeletal-
MusleRelaxants (SKE), and Triptans (TRIP), performed by
AHRQ’s Evidence-based Practice Center (EPC) at Oregon
Health and Science University as our datasets (Cohen 2014).
These four systematic review datasets were also used in
(Cohen et al. 2006). Cohen et al. (2006) defined a new mea-
sure WSS@95 %, i.e., percentage of work saved when recall
is fixed to be at least 95 %, to measure the effectiveness of the
perceptron-based classifier. The perceptron-based classifier
proposed in (Cohen et al. 2006) turned very low
WSS@95 % values (0.00 %, 0.00 % and 3.37) and low pre-
cisions (3.87 %, 0.00 %, and 3.65 %) on three of the four
dataset AN, SKE and TRIP, respectively, when maintaining
the recalls to be over 95 %. We hence used these datasets in
our experiments since we intended to investigate if our pro-
posed approach can help improve the precision and
WSS@95 % values. The perceptron-based classifier achieved
re la t ive ly h igh per fo rmance ( reca l l =95 .61 %;
WSS@95 % = 56.61 %) but low precision (3.87 %) for the
dataset ACE. We included this dataset in our study to investi-
gate if our approach helps achieve comparable or better
WSS@95 % by enhancing precision. The original datasets
include the PubMed Unique Identifiers (PMID) of all the
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articles and the inclusion and exclusion decisions made by
human researchers. Following (Cohen et al. 2006), we focus
on classifying the articles based on the title and abstract of the
articles. We used Medline’s Batch Entrez features to extract
the title and abstract of all the articles based their PMIDs.
Table 1 shows an overview of the datasets. As discussed
above, imbalanced class distributions are the norm for article
selection in systematic reviews. Only a small ratio of articles
has been included in each of the four systematic reviews.
Among the four dataset, SkeletalMuscleRelaxants has the
most serious class imbalance problem with only 9 included
articles. Consequently, the perceptron-based algorithm proves
to be ineffective with precision =0.55 % (classify everything
in one class) and WSS@95 % recall (defined later) = 0.00 %
for the dataset.

4.2 Feature extraction

We used the MEDLINE records for each article in the four
datasets to generate the feature set as input to our classification
technique. The feature set includes the features extracted from
the title and abstract as well as the article’s Medical Subject
Headings (MeSH) and MEDLINE publication type. To ex-
tract features from the title and abstract of an article, we pro-
pose to use the UMLS to automatically extract terms and use
them as features. Most of the existing research has relied on
the “bag-of-words” approach to extracting features. We con-
ducted experiments to compare the performance between the-
se two methods for feature extraction (i.e., UMLS vs bag-of-
words). Below we briefly describe both methods.

The features extracted from the bag-of-words approach
used in our comparative experiments included not only
unigrams (i.e., individual words) but also 2-term and 3-term
n-grams. Each document (i.e., a text file including the article
tile and abstract) is represented by a vector of weights m fea-
tures:

d j ¼ w1j;w2j;……;wmj

� �

where m is the number of features, and wi is the weight of the
ith features (including unigrams, 2-g and 3-g). The weight
value of a feature represents howmuch that feature contributes
to the semantics of the document dj. If there are n documents

in total, the corpus is represented by n*m matrix, which is
usually called term-document matrix. In a term-document ma-
trix, if a certain feature (i.e., a word) does not occur in the
document, then the weight of that feature becomes 0 for that
document. Following (Bekhuis and Demner-Fushman 2012),
we used the method TF-IDF(term frequency/inverse docu-
ment frequency) (Robertson 2004) to create the weights. TF-
IDF is a numerical statistic that reveals the importance of a
feature in a document in a dataset. The TF-IDF value of a
word increases as it appears more often in a document; how-
ever, the TF-IDF value is offset by the frequency of the word
in the whole dataset. This helps to mitigate for the fact that
some words such as “patient” are generally more common
than other words in medical documents.

We propose to extract features from the titles and abstracts
using the UMLS Metathesaurus. UMLS allows to extract
terms from different vocabularies, including CPT, ICD-10-
CM, LOINC, MeSH, RxNorm, and SNOMED CT.
Moreover, UMLS enables us to extract the Concept Unique
Identifier (CUIs), semantic types, and synonymous terms used
in medical literature (US National Library of Medicine 2014).
We used the MetaMap program that maps words and phrases
to different UMLS semantic types. An example of UMLS
terms extracted from an abstract is given below.

The free medical text appears as:

“The objective of this study was to examine the relationships of serum
and dietary magnesium (Mg) with prevalent cardiovascular disease
(CVD), hypertension, diabetes mellitus, fasting insulin, and average
carotid intimal-medial wall thickness measured by B-mode ultra-
sound.”

The UMLS terms and their semantic types appear as:

Study Objective [Idea or Concept]
Relationships [Qualitative Concept]
Serum (Specimen Source Codes - Serum) [Intellectual Product]
Serum (Specimen Type - Serum) [Body Substance]
Dietary Magnesium [Element, Ion, or Isotope]
Cardiovascular (Cardiovascular system) [Body System]
disease prevalence (disorder prevalence) [Quantitative Concept]
Hypertension (Hypertension Adverse Event) [Finding]
Diabetes Mellitus [Disease or Syndrome]
fasting (Act Code - fasting) [Intellectual Product]
Insulin [Amino Acid, Peptide, or Protein, Hormone, Pharmacologic

Substance]

Table 1 Overview of Data Corpus

Dataset Total number
of articles

Number of
excluded articles

Number of
included articles

Ratio—Included vs.
Excluded

ACEInhibitors (ACE) 2544 2503 41 1:61

Antihistamines (AN) 310 294 16 1:18

SkeletalMuscleRelaxants (SKE) 1643 1634 9 1:182

Triptans (TRIP) 671 647 24 1:26
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Insulin (Recombinant Insulin) [Amino Acid, Peptide, or Protein,
Hormone, Pharmacologic Substance]

Average [Quantitative Concept]
Carotid [Body Part, Organ, or Organ Component]
Intima [Tissue]
Medial [Spatial Concept]
Wall (Walls of a building) [Manufactured Object]
Thickness (Thick) [Qualitative Concept]
Measured [Qualitative Concept]
ultrasound b mode (B mode ultrasound) [Diagnostic Procedure]
MEASURED (Measured Tumor Identification) [Diagnostic Procedure]
ultrasound b mode (B mode ultrasound) [Diagnostic Procedure]

We used the UMLS-extracted terms as the features for our
classifier. For instance, in the example shown above, the terms
such as “Study Objective”, “Serum (Specimen Source Codes -
Serum)” “Cardiovascular (Cardiovascular system)”, “fasting
(Act Code - fasting)”, etc. have been used as features for
classification. In our experiments, we compared the UMLS-
based feature extraction method with the conventional bag-of-
words approach described above.

4.3 Algorithms

We propose to use soft-margin polynomial SVM to enhance
the classification performance and compare it with other algo-
rithms that have proved to be effective in existing research. In
order to explain soft-margin polynomial SVM, we describe
the regular “hard-margin” SVM algorithm first.

SVM with liner kernel Existing studies such as (Joachims
1998; Liu et al. 2002; Bekhuis and Demner-Fushman 2012)
has proved the effectiveness of SVM with a linear kernel in
text classification in the process of medical systematic re-
views. The optimization problem associated with SVM is
shown below.

minw;b
wTw

2

subject to : yi wTxi þ bð Þ≥1 ∀ data points xið Þ
where for each data point (xi, yi), yi is either 1 or −1, indicating
the class to which the point belongs. The two hyperplanes w ·
x – b = 1 and w · x – b = −1 are called support vectors that
separate the data. SVM maximizes the distance (called “mar-
gin”) between the support vectors.

Soft-margin polynomial SVM We propose to use the soft-
margin Support Vector Machine (SVM) with a polynomial
kernel as a classifier. Soft-margin polynomial SVM is an ex-
tension of the standard “hard” margin SVM described above.

The “hard-margin” SVM sometimes does not work well
since it does not allow data points in the margin. However,
data is not often perfectly linearly separable, and it is neces-
sary to allow some data points of one class to appear within

the region bounded by the support vectors. Soft-margin poly-
nomial SVM provides the flexibility by introducing a slack
variable ϵi ≥ 0, and the optimization problem of soft-margin
polynomial SVM becomes (Stanford 2014):

minw;b;∈
wTw
2

þ C
X

i
∈ i

subject to : yi w
Txi þ b

� �
≥1−∈ i and ∈ i≥0 ∀ data points xið Þ:

where ϵi, the slack variable, represents the degree of error in
classification. The optimization hence becomes a tradeoff be-
tween a large margin and a small error penalty (i.e., ϵi). When
the training set is not linearly separable, and there exists no
hyperplane that can perfectly separate positive and negative
samples, the optimization results in a “soft” margin that may
contain some misclassified data points. The parameter C
known as a regularization term can be seen as a method for
controlling overfitting - it is tradeoff between the importance
of maximizing the margin and fitting the training data. That is,
if the C value is large, than model is better fitted to the training
data (may cause over-fitting), whereas if the C value is small,
SVM fits on the bulk of data (Cortes and Vapnik 1995). In our
experiments, when applying soft-margin SVM to each dataset,
we selected the best performing C and ϵ value that help max-
imize precision while sustaining recall to be over 95 %, based
on cross-validation.

EvoSVM Bekhuis and Demner-Fushmanb (2012) found that
evoSVM achieved best performance, compared with KNN,
naïve Bayes, complement naïve Bayes (cNB) (Bekhuis and
Demner-Fushman 2012). evoSVM is a SVM implementation
using an evolutionary algorithm (ES) to solve the dual opti-
mization problem of a SVM. In our experiments, following
Bekhuis and Demner-Fushmanb (2012), we used the Rapid-
Miner’s implementation of evoSVM and followed the
evoSVM settings recommended by the authors: radial kernel;
Gaussian mutation; gamma = 1.0; epsilon =0.1; and C = 1.

Perceptron Cohen et al. (2006) used a perceptron-based clas-
sifier to predict when articles should be added to existing drug
class systematic reviews. A perceptron is a type of neural
network that finds a linear function to discriminate between
classes. In essence, a single layer perceptron is simply a linear
classifier, which is efficiently trained by a simple rule: It starts
with an initial set of guessed weights (i.e. numerical parame-
ters), and then for all wrongly classified data points, the
weights either increase or decrease to reduce the prediction
errors.

Naïve Bayes Naïve Bayes classifiers are a family of simple
probabilistic classifiers based on applying Bayes’ theorem
with strong (naïve) independence assumptions between the
features. According to Adeva et al. (2014), naïve Bayes
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seemed to provide the best results in terms of false negatives.
We hence also included this algorithm in our comparison.

4.4 Re-sampling methods

We examined four re-sampling techniques for resolving the
aforementioned class imbalance issue.

Undersampling reduces the number of samples in the ma-
jority class in the training set until the ratio between the mi-
nority class and the majority class is at a desired level (Liu
et al. 2009). Theoretically, researchers cannot control what
information of a majority class is thrown away. Also,
undersampling is often problematic since important informa-
tion about the decision boundary between the majority and
minority class may be eliminated (Liu 2004). One of the ben-
efits of undersampling is its very simple implementation. The
overall number of samples in a training set is greatly reduced,
which means that training time is greatly reduced. In our re-
search, we randomly selected a portion of the majority class,
which in our case are the articles excluded from the systems
reviews, so that the number of excluded articles in each sam-
pled dataset is equal to that of the included articles. For exam-
ple, in the ACEInhibitors dataset, there are 1252 excluded
articles that were excluded from and 21 included articles.
We re-sampled the articles in the training dataset and created
a new training set that includes all 21 included articles and 21
randomly selected excluded articles.

Oversampling seeks to increase the number of samples in
the minority class by replicating samples from that class (He
and Ma 2013). The advantage of this approach is that less
information from the majority class is lost, as compared to
undersampling. The primary disadvantage of this approach
is that it tends to overfit the trained model. In our experiments,
we tested different oversampling rates including 100 % (i.e.,
replicating the minority samples once), 200% (i.e., replicating
the minority samples twice), 300 % (i.e., replicating the mi-
nority samples three times), and 400 % (i.e., replicating the
minority samples four times). We stopped at 400 %
oversampling because our experiments showed that the clas-
sifier started to suffer from overfitting on all four datasets. We
then select the best performing oversampling rate (among
100 %, 200 %, 300 % and 400 %) based on cross-validation
for each dataset.

The Synthetic Minority Oversampling Technique (SMOTE)
proposed in (Chawla 2010) is different from the conventional
oversampling method described above. The conventional
oversampling method oversamples the minority class by ran-
domly replicatingminority examples. This affects the decision
region of the minority class, which results in a similar but
more specific region in the feature space (Chawla 2010). In
the SMOTE, the minority class is oversampled by creating
synthetic examples rather than replicating the minority class
examples. In our experiments, we oversampled the minority

class by taking each minority class example and developing
synthetic examples along the line segments joining any k mi-
nority class nearest neighbors (in our case five neighbors). For
example, if the rate of oversampling is 200%, only two neigh-
bors among the five nearest neighbors will be randomly cho-
sen, and a synthetic sample will be generated for each neigh-
bor. If the oversampling rate is 300 %, then for each example
in the training dataset, three of its neighbors will be randomly
selected, and three synthetic samples will be generated.
Synthetic samples are computed according to the following
procedure described in (Chawla 2010): 1) compute the differ-
ence between the sample under consideration and its nearest
neighbor, 2) multiply the difference by a random number be-
tween 0 and 1, and 3) add the result from 2) to the feature
vector under consideration to create a synthetic sample. We
tested SMOTE using different oversampling rates including
100 %, 200 %, 300 % and 400 % to oversample the minority
class and selected the best oversampling rate for each dataset
based on cross-validation.

A combination of SMOTE and undersampling: We consid-
ered combining both SMOTE and undersampling. We inves-
tigated combinations of different undersampling rates and
SMOTE rates, including 1) 50 % undersampling of the ma-
jority class +100 % SMOTE of the minority class, 2) 50 %
undersampling of the majority class +200 % SMOTE of the
minority class, 3) 75 % undersampling of the majority class
+100% SMOTE of the minority class, 4) 75% undersampling
of the majority class +200 % SMOTE of the minority class,
and 5) undersampling of the majority class +200 % SMOTE
of the minority class to make the ratio between the majority
and minority classes be 1. Again, we selected the best
performing combination of sampling rates for each dataset
based on cross-validation.

4.5 Evaluation methods

We evaluated the classification performance using four met-
rics, precision, recall, F1-score and Work Saved over
Sampling at 95% confidence interval orWSS@95% in short,
a metric proposed in (Cohen et al. 2006). These measures are
defined based on a confusion matrix as shown in Table 2. In
our research, we treated the articles that were included in a
review as positive examples and those that were excluded as
negative examples. TP represents the number of True
Positives, i.e., positive examples that were correctly classified
by our SVM classifier. TN is the number of True Negatives,

Table 2 Confusion Matrix

Predicted Negative Predicted Positive

Actual Negative True negative (TN) False positive (FP)

Actual Positive False negative (FN) True positive (TP)
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i.e., negative examples that were correctly classified, FP the
number of False Positive, i.e., negative examples that were
incorrectly classified as positive, and FN the number of
False Negatives, i.e., positive examples incorrectly classified
as negatives.

The formulas for computing recall, precision, F1 and
WSS@95 % are shown in Table 3. Recall refers to the rate of
correctly classified positives among all positives and is equal to
TP divided by the sum of TP and FN. Precision refers to the
rate of correctly classified positives among all examples classi-
fied as positive and is equal to the ratio of TP to the sum of TP
and FP. F1 means the harmonic mean of recall and precision.
WSS@95% is defined as percentage of examples that meet the
initial search criteria and do not need to be manually reviewed
because they have been correctly classified. Setting recall
above 95 %, WSS can be calculated as the ratio of the sum of
TN and FN to the total number of samples minus 0.05.

It is noteworthy that we do not use accuracy or AUC (area
under ROC curve) as evaluation metrics for two reasons. First,
when the class distribution is imbalanced, the evaluation
based on accuracy breaks down. For instance, in the dataset
SkeletalMuscleRelaxants, if a classifier classifies all articles (4
positive articles and 817 negative articles) as negative, then
the predicted accuracy would be 99.51 %. A very high accu-
racy rate is achieved without detecting any articles that should
be included. Second, classification accuracy assumes equal
misclassification costs (for false positive and false negative
errors), which is problematic because one type of classifica-
tion error often can be more expensive than another. In clas-
sification for systematic reviews, the cost of false negative is
high because we intend to avoid missing any articles that
should be included in a systematic review. According to
Cohen et al. (2006), any analytics models that achieve a recall
less than 95 % is meaningless. Therefore, we preset the recall
of a positive class to be greater than 95 %, and we examined
approaches to improve the precision of the algorithm.
Precision defines the fraction of retrieved documents classi-
fied as relevant that are indeed relevant. The higher the preci-
sion, the smaller number of articles scientists need tomanually
review.

To make the most efficient use of the datasets and to get the
best estimate of system performance on future data, we chose

to follow (Cohen et al. 2006) and used 5 × 2 cross-validation.
In 5 × 2 cross-validation, the data set is randomly split in half,
and then one half is used to train the classifier, and the classi-
fier is scored using the other half as a test set. Then the roles of
the two half data sets are exchanged, with the second half used
for training and the first half used for testing, with the results
accumulated from both halves of the split (Dietterich 1998).
What makes 5 × 2 different from the ten-way cross-validation
more commonly used is that the half-and-half split and score
process is repeated five times. This approach uses each data
sample five times for training and five times for testing among
random splits and averages the results together for all runs.

4.6 Experimental procedures

We conducted two experiments to evaluate the effectiveness
of our approach. The datasets we used in the experiments are
the four datasets we described in section 4.1 including
ACE Inh i b i t o r s (ACE ) , An t i h i s t am i n e s (AN ) ,
SkeletalMuscleRelaxants (SKE) and Triptans (TRIP). The de-
tail of our experiment design is illustrated in Table 4.

Experiment 1 consists of two steps. First, we used the
unigrams, 2-g and 3-g extracted from article titles and ab-
stracts using the bag-of-words approach plus the Medical
Subject Headings (MeSH) and MEDLINE publication type
as the features and compared soft-margin polynomial SVM
with other algorithms including SVM with linear kernel,
evoSVM, naïve Bayes, and perceptron. Second, we used the
automatically extracted UMLS terms plus the MeSH and
MEDLINE publication type as the features. Experiment 1
was designed to compare the performance of soft-margin
polynomial SVM against the other algorithms. We also com-
pared the effectiveness of the UMLS-based feature extraction
against the bag-of-words method.

After identifying soft-margin polynomial SVM as the most
effective algorithm in Experiment 1, we conducted
Experiment 2 to investigate if different re-sampling methods
including undersampling, oversampling, SMOTE, and
SMOTE combined with undersampling can further enhance
the classification performance.We also conducted Experiment
2 in two steps. In Step 1, we used features extracted using the
bag-of-words approach, and in Step 2, we used the UMLS
extracted features. In both steps, we used soft-margin polyno-
mial SVM as the classifier, combined with different re-
sampling methods.

5 Experimental results and discussion of findings

5.1 Experiment 1 results

Step 1 In this step we compared multiple algorithms with the
features extracted using the bag-of-words approach plus the

Table 3 Evaluation metrics

Evaluation Metric Formula

Recall TP/(TP + FN)

Precision TP/(TP + FP)

F1 (2*recall*precision)/(recall + precision)

WSS@95 % (TN + FN)/N – 0.05

N = Total Number of Samples in Positive and Negative Classes.

WSS@95 % = Work Saved over Sampling at 95 % confidence interval.
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MeSH and MEDLINE publication type. The results of this
step are shown in Table 5 with the highest performance mea-
sures for each dataset being highlighted.

As discussed previously, we intend to improve precision
while sustaining a high recall. According to (Cohen et al.
2006), a recall of 0.95 or greater is required for an automated
classification system to identify an adequate fraction of the
relevant articles. However, among the five algorithms we in-
vestigated, two of them, naïve Bayes and evoSVM, do not
have sufficient configuration options that allow us to fix recall
to be over 95 %. We fixed recall to be at least 95 % for the
other three algorithms including soft-margin polynomial
SVM, SVM with linear kernel and perceptron. To do so,

drawing upon (Cohen et al. 2006), we fixed the false-
positive learning rate at 1.0 and adjusted the false-negative
learning rate (FNLR) to optimize performance for each
dataset. We tested different FNLRs in a consistent manner
across for each dataset and applied cross-validation to identify
the optimal FNLR that resulted in an as-high-as-possible pre-
cision while maintaining over 95 % recall.

Among the three algorithms where we achieved recall of at
least 0.95, including soft-margin polynomial SVM, SVMwith
linear kernel (shown as SVM in Table 5), and perceptron, the
soft-margin polynomial SVM was prominent in achieving
100 % recall for three of the four datasets (including AN,
SKE and TRIP) and 95.45 % for the dataset ACE. SVM with

Table 4 Overview of experiments

Features Algorithms Sampling method

Exp. 1 Step 1 Bag-of-words (up to 3-g) extracted from titles
and abstracts + Medical Subject Headings
(MeSH) + MEDLINE publication type

Soft-margin polynomial SVM, SVM,
EVO-SVM, Perceptron, Naïve Bayes

N/A

Step 2 UMLS terms extracted from titles and
abstracts + Medical Subject Headings
(MeSH) + MEDLINE publication type

Exp. 2 Step 1 Bag-of-words (up to 3-g) extracted from titles
and abstracts + Medical Subject Headings
(MeSH) + MEDLINE publication type

Soft-margin polynomial SVM No sampling
Undersampling, Oversampling,

SMOTE, SMOTE + Undersampling
Step 2 UMLS terms extracted from titles and

abstracts + Medical Subject Headings
(MeSH) + MEDLINE publication type

Table 5 Experiment 1 step 1 results

Dataset Algorithm N TP TN FP FN Precision Recall F1-sore WSS@95 %

ACE Soft-margin SVM 1273 21 809 442 1 4.53 95.45 8.65 58.55

SVM 1273 21 81 1171 1 1.76 95.45 3.46 1.44

Perceptron 1273 21 775 476 1 4.23 95.45 8.10 55.87

evoSVM 1273 14 635 617 8 2.22 63.64 4.29 0.00

Naïve Bayes 1273 7 1245 7 15 50.00 31.82 38.89 0.00

AN Soft-margin SVM 156 9 28 119 0 7.03 100.00 13.14 12.95

SVM 156 9 16 131 0 6.43 100.00 12.08 5.26

Perceptron 156 0 0 147 9 0.00 0.00 0.00 0.00

evoSVM 156 4 42 105 5 3.67 44.44 6.78 0.00

Naïve Bayes 156 2 142 5 7 28.57 22.22 25.00 0.00

SKE Soft-margin SVM 809 5 191 613 0 0.81 100.00 1.61 18.61

SVM 809 0 804 5 0 0.00 0.00 0.00 0.00

Perceptron 809 0 0 804 5 0.00 0.00 0.00 0.00

evoSVM 809 3 318 486 2 0.61 60.00 1.21 0.00

Naïve Bayes 809 1 803 1 4 50.00 20.00 28.57 0.00

TRIP Soft-margin SVM 338 13 107 218 0 5.62 100.00 10.64 26.65

SVM 338 13 74 254 0 4.19 100.00 8.042 16.89

Perceptron 338 13 28 297 0 4.19 95.83 8.02 3.28

evoSVM 338 7 117 208 6 3.26 53.85 6.15 0.00

Naïve Bayes 338 9 283 42 4 17.65 69.23 28.13 0.00
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linear kernel returned high recalls in three datasets (including
ACE, AN, and TRIP), but failed to identify any positive ex-
amples, thus resulting in 0 % recall and precision for SKE.
The Perceptron algorithm achieved high recalls (95.45.61 %
and 95.83 %) for ACE and TRIP, but produced 0 % recall and
precision for the other two datasets. Among these three algo-
rithms with fixed recall, soft-margin polynomial SVM
achieved the highest precision (4.53 % in ACE, 7.03 % in
AN, 0.81 % in SKE, and 5.62 % in TRIP) and the highest
F1 scores for all four datasets. Soft-margin polynomial SVM
also returned the highest WSS@95 % (56.9 % in ACE, 13 %
in AN, 18.6 % in SKE, and 26.65 % in TRIP) for all four
datasets. Perceptron returned the second highest
WSS@95 % (55.87 %) for the dataset ACE, and SVM with
linear kernel returned the second highest WSS@95 %
(16.83 %) for TRIP. It is noteworthy that in the case of the
dataset SKE, where both SVM with linear kernel and
perceptron failed to identify any true positive (TP) examples
(see Table 5) and hence returned 0 % precision and 0 %
WSS@95 %, soft-margin polynomial SVM was able to pro-
duce 18.61 % work reduction. Also, for the dataset AN, soft-
margin SVM produced 12.95 %WSS@95%. It was followed
by SVM with linear kernel with a much lower WSS@95 %
(5.26 %). Among the four datasets we used, SKE and AN
have a smaller number of positive examples (16 and 9 respec-
tively). Our soft-margin SVM appeared to be more effective
than the other algorithms in dealing with datasets with a small
number of positive articles.

If we consider all of these five algorithms, soft-margin
polynomial SVM produced the second highest F1 scores for
all four datasets. On the surface, naïve Bayes appeared to have
achieved higher precisions and F1 scores. For instance, naïve
Bayes returned a high precision (28.57 %) and the highest F1
score (25.00%) but a low recall (22.22%) when applied to the
dataset AN. However, a close investigation revealed that it
returned only two true positive predictions, which means
among the nine articles that were included in a systematic
review, the naïve Bayes classifier has classified only two of
them to be positive. Similarly, for the dataset SKE, naïve
Bayes achieved relatively high precision (50 %) and highest
F1 score (28.57 %), but made only one true positive predic-
tion. This proves that for asymmetrically distributed datasets,
precisions and F-scores are not meaningful when a high recall
cannot be obtained. The experimental results in Step 1 clearly
showed that among the five algorithms we have compared,
soft-margin polynomial SVM achieved the best performance
when we used the features extracted using the bag-of-words
approach.Moreover, soft-margin polynomial SVMperformed
significantly better than the other algorithms for the datasets
that have a small number of positive examples.

Step 2 In this step, we compared multiple algorithms with
features including the automatically extracted UMLS terms

plus the Medical Subject Headings (MeSH) and MEDLINE
publication type. Table 6 shows the performance of the five
algorithms. Again, evoSVM and naïve Bayes returned recall
values below the acceptable level (95 %) for all datasets.
Among the other three algorithms with over 95 % recall,
soft-margin polynomial SVM had the highest precision across
all four datasets. It also had 100 % recall for three datasets
(AN, SKE and TRIP) and 95.45 % recall for the ACE dataset.
SVM with linear kernel produced 95.45 % recall for the ACE
dataset, but soft-margin polynomial SVM achieved higher
precision (10.14 % vs. 2.72 %) and much higher
WSS@95 % (78.74 % vs. 34.36 %). Among the three algo-
rithms with fixed recall, soft-margin polynomial SVM again
produced the highest precisions and F1 scores for all of the
four datasets. Soft-margin SVM distinguished itself from the
other algorithms when applied to the dataset SKE that has
only 9 positive examples. While all the other algorithms re-
sulted in 0 % work saved, soft-margin SVM produced
48.89 % WSS. Naïve Bayes had the highest precision and
F1 scores; however, the low recalls rendered the precisions
and F1 scores hardly meaningful. Our findings in step 2 of
experiment 1 are consistent with those obtained in step1. Soft-
margin SVM performed better than the other algorithms
across all four datasets when we used the automatically extract
UMLS terms as the features. It was the optimal algorithm that
could provide an improved precision and enhanced percent-
age of work saved, especially when applied to datasets with
few positive examples.

Comparing the results obtained in step 1 vs. step 2, we
found that when applied to three datasets including ACE,
SKE and TRIP, all three algorithms with recall fixed to be at
least 95 % achieved higher precisions, F1 scores and
WSS@95 % when UMLS was used to extract features.
These three algorithms, however, achieved overall worse re-
sults for the dataset AN. Table 7 shows the performance of
soft-margin polynomial SVM using the UMLS terms as fea-
tures vs. using bag-of-words. For the dataset AN, soft-margin
SVM successfully identified all included articles in the
dataset, but it performed slightly worse with a larger FP value
(123 vs. 119), which is not critical given that reviewers just
need to manually review 4 additional articles. Using UMLS to
extract features significantly enhanced the performance of the
soft-margin SVM classifier when applied to the other three
datasets. A possible reason behind the UMLS-based feature
extraction method outperforming the bag-of-words approach
is that the bag-of-words features are created by extracting n-
grams from articles without considering the semantics of the
words. UMLS (used in conjunction with vocabularies such as
CPT,MeSH, SNOMEDCT, etc.), on the other hand, identifies
the semantic type for each extracted term and provides the
synonyms of the term when available. Moreover, using
UMLS to extract terms entails an automatic variable selection
procedure - it extracts only the terms that are commonly used
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in medical literature. This automatic variable selection helps
improve classification performance by reducing overfitting.

In summary, the results of experiment 1 demonstrated that
1) soft-margin polynomial SVM consistently performed better
than the other algorithms across the four datasets, and 2) over-
all, using the UMLS terms as features helps enhance the per-
formance of soft-margin polynomial SVM and the other algo-
rithms as well.

5.2 Experiment 2 results

After demonstrating that soft-margin SVM is the better clas-
sification algorithm compared with the other algorithms in
Experiment 1, we investigated if we can further enhance pre-
cision while maintaining a high recall using different re-

sampling methods. We tested four re-sampling technique -
undersampling, oversampling by replicating minority class
examples , SMOTE, and SMOTE combined with
undersampling. Again, we conducted the experiment in two
steps. In both steps, we used soft-margin SVM as the
classifier.

Step 1 In this step, we used the bag-of-words extracted fea-
tures plus the Mesh and MEDLINE publication type as the
features. We compared the four different sampling methods
including undersampling, oversampling by replicating minor-
ity class examples, SMOTE, and SMOTE combined with
undersampling. Table 8 shows the results obtained in this step.
It also includes the performance measures of soft-margin

Table 6 Experiment 1 step 2 results

Dataset Algorithm N TP TN FP FN Precision Recall F1-sore WSS@95 %

ACE Soft-margin SVM 1273 21 1065 186 1 10.41 95.45 18.34 78.74

SVM 1273 21 500 751 1 2.72 95.45 5.29 34.36

Perceptron 1273 21 865 386 1 5.16 95.45 9.79 63.03

evoSVM 1273 13 1113 138 9 8.61 59.09 15.03 0.00

Naïve Bayes 1273 15 1225 26 7 36.59 68.18 47.62 0.00

AN Soft-margin SVM 156 9 24 123 0 6.82 100.00 12.77 10.38

SVM 156 9 18 129 0 6.52 100.00 12.24 0.53

Perceptron 156 0 147 0 9 0.00 0.00 0.00 0.00

evoSVM 156 2 137 10 7 16.67 22.22 19.05 0.00

Naïve Bayes 156 2 138 9 7 18.18 22.22 20.00 0.00

SKE Soft-margin SVM 809 5 436 368 0 1.34 100.00 2.65 48.89

SVM 809 0 804 0 5 0.00 0.00 0.00 0.00

Perceptron 809 0 804 0 5 0.00 0.00 0.00 0.00

evoSVM 809 3 764 40 2 6.98 60.00 12.50 0.00

Naïve Bayes 809 2 770 34 3 5.56 40.00 9.76 0.00

TRIP Soft-margin SVM 329 13 173 152 0 7.88 100.00 14.61 46.18

SVM 329 13 122 203 0 6.02 100.00 11.35 31.09

Perceptron 329 13 107 218 0 5.63 100.00 10.66 26.66

evoSVM 329 11 136 189 2 5.50 84.62 10.33 0.00

Naïve Bayes 329 5 309 16 8 23.81 38.46 29.41 0.00

Table 7 Comparing soft-margin SVM results obtained in step 1 vs those obtained in step 2

Dataset Feature extraction method N TP TN FP FN Precision Recall F1-sore WSS@95 %

ACE Bag-of-words 1273 21 789 463 1 4.34 95.45 8.30 56.90

UMLS 1273 21 1065 186 1 10.41 95.45 18.34 78.74

AN Bag-of-words 156 9 28 119 0 7.03 100.00 13.14 13.06

UMLS 156 9 24 123 0 6.82 100.00 12.77 10.38

SKE Bag-of-words 809 5 191 613 0 0.81 100.00 1.61 18.6

UMLS 809 5 436 368 0 1.34 100.00 2.65 48.89

TRIP Bag-of-words 338 13 107 218 0 3.63 100.00 10.66 26.65

UMLS 338 13 173 152 0 7.88 100.00 14.61 46.18
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SVM when no re-sampling has been conducted (shown as
“non-sampling” in Table 8).

Undersampling means that we randomly select a subset of
the negative examples (articled excluded from the systematic
reviews in this case), so that the number of positive examples
is equal to that of the positive examples. When compared with
non-sampling, undersampling was only able to produce the
improved performance for the dataset ACE (62.5 %
WSS@95). It failed to achieve improved performance for
both SKE and TRIP. Undersampling did not work at all for
the dataset AN. It helped to improve the classification perfor-
mance for the dataset ACE due to the fact that there are rela-
tively a large number of positive examples, which might be
sufficient to train the classifier. We then oversampled the mi-
nority class examples (i.e., the included articles). For each
dataset, we selected the optimal sampling rate based on the
method described in section 4.4. Oversampling by replicating
the minority class examples (shown as “oversampling” in
Table 8) enhanced classification performance with respect to
the F1 score and WSS@95 % for three datasets including
ACE, SKE and TRIP. It worked especially well for the dataset
SKE with only 9 positive examples. SMOTE is another
oversampling technique for increasing the number of minority
class examples. Compared with non-sampling, SMOTE
showed significantly improved performance for two datasets
SKE and TRIP. It boosted WSS@95 % from 18.61 % to
48.65 % for SKE and from 26.65 % to 43.52 % for TRIP.

As shown in Table 9, SMOTE also outperformed plain
oversampling across all four datasets. Combining SMOTE
and under-sampling enabled our classifier to achieve higher
precisions, F1 scores andWSS@95 % than SMOTE alone for
two datasets including ACE and TRIP. It produced slightly
worse performance for the other two datasets. The datasets
ACE and TRIP have larger numbers of included articles than
the other two datasets, which indicates that with the bag-of-
words features, SMOTE combined with undersampling may
be the optimal re-sampling method when applied to datasets
with relatively a large number of positive examples, while we
may need to use SMOTE alone when dealing with datasets
with a small number of positive examples. It is also notewor-
thy that for the dataset AN, the classifier without any re-
sampling achieved the best performance.

Step 2 In this step, we used the UMLS terms as the features.
Again, we compared the four different sampling methods in-
cluding undersampling, plain oversampling, SMOTE
oversampling, and SMOTE combined with undersampling.
Table 9 shows the results we obtained in this step.

With the UMLS terms as the features, the classifier with
undersampling showed performance that is consistent with
what we obtained in Step 1. It did not work at all for the
dataset AN. Compared with non-sampling, undersampling
failed to improve performance for three datasets except
ACE. Different form the results we obtained from Step 1,

Table 8 Experiment 2 step 1 results with features extracted based on bag-of-words

Dataset Sampling method N TP TN FP FN Precision Recall F1-sore WSS@95 %

ACE Undersampling 1273 21 859 392 1 5.08 95.45 9.66 62.56

Oversampling 1273 21 853 398 1 5.01 95.45 9.52 62.09

SMOTE 1273 21 952 299 1 6.56 95.45 12.28 69.86

SMOTE + Undersampling 1273 21 981 270 1 7.22 95.45 13.42 72.14

Non-sampling 1273 21 809 442 1 4.53 95.45 8.65 58.55

AN Undersampling 156 9 4 143 0 5.92 100.00 11.18 0.00

Oversampling 156 9 21 126 0 6.67 100.00 12.50 8.46

SMOTE 156 9 22 125 0 6.72 100.00 12.59 9.10

SMOTE + Undersampling 156 9 21 126 0 6.67 100.00 12.50 8.46

Non-sampling 156 9 28 119 0 7.03 100.00 13.14 12.95

SKE Undersampling 809 5 107 697 0 0.71 100.00 1.41 8.23

Oversampling 809 5 317 487 0 1.02 100.00 2.01 34.18

SMOTE 809 5 434 370 0 1.33 100.00 2.63 48.65

SMOTE + Undersampling 809 5 400 404 0 1.22 100.00 2.42 44.44

Non-sampling 809 5 191 613 0 0.81 100.00 1.61 18.61

TRIP Undersampling 338 13 43 282 0 4.41 100.00 8.44 7.72

Oversampling 338 13 134 191 0 6.37 100.00 11.98 34.64

SMOTE 338 13 164 161 0 7.47 100.00 13.90 43.52

SMOTE + Undersampling 338 13 201 124 0 9.49 100.00 17.33 54.47

Non-sampling 338 13 107 218 0 5.62 100.00 10.64 26.65
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for AN, both SMOTE alone and SMOTE combined with
undersampling produced better precision and WSS@95 %
values than non-sampling. It is noteworthy that SMOTE com-
bined with undersampling appeared to be the best re-sampling
method for all four datasets. It worked particularly well for the
dataset SKE with only 9 positive examples. It doubled the
precision produced by SMOTE alone and raised the
WSS@95 % value from 54.09 % to 72.87 %.

In Table 10, we compared the best performing re-sampling
methods obtained in Step1 and in Step 2. With the automati-
cally extracted UMLS terms as the features in Step 2, SMOTE
combined with under-sampling achieved better performance
for all four datasets, and it worked particularly well for AN
and SKE.

In summary, the results of experiment 2 demonstrated that
1) overall, SMOTE-based re-sampling methods including
both SMOTE alone and SMOTE combined with
undersampling helped improve classification performance of
the soft-margin SVM classifier, whether we used the UMLS
extracted features or bag-of-words; 2) the combination of
SMOTE and undersampling in general performed better
than SMOTE alone when the UMLS terms were used as
the features. It is understandable that undersampling failed
to achieve high performance since in undersampling, we
make the ratio between the positive class and the negative
class equal to 1 by reducing the number of negative exam-
ples, thus losing considerable amounts of information from

the negative examples. SMOTE in general outperformed
plain oversampling because in plain oversampling, the de-
cision region that results from classification of the minority
class actually becomes smaller as we replicate the minority
class examples. SMOTE offers more related minority class
examples to learn from, which leads to more coverage of
the minority class, thus allowing a learner to create broader
decision regions (Chawla 2010). Moreover, oversampling
tends to cause overfitting because of repetitive instances
that tightens the decision boundary. In contrast, with artifi-
cially created examples, SMOTE softens the boundary re-
gion and is hence less susceptible to overfitting (Longadge
et al. 2013).

Finally, following suggested datamining practice (Liu et al.
2007), we compared our analytics techniques with an existing
benchmark model. The benchmark we used is the perceptron
model developed in Cohen et al.’s study (2006), a NIH-funded
project that represents one of the most significant research in
this field. Although Cohen et al. used the bag-of-words meth-
od to extract the features and did not employ any re-sampling
methods, these two studies are comparable since we used the
same datasets, the same data sources (including titles, ab-
stracts, MeSH, and MEDLINE publication type) in each
dataset to extract features, and the same evaluation metrics
(including precision, recall, F1 score and WSS@95 %).
Figure 1 shows the comparison of our proposed method with
the benchmark model.

Table 9 Experiment 2 step 2 results

Dataset Sampling method N TP TN FP FN Precision Recall F1-sore WSS@95 %

ACE Undersampling 1273 21 1065 186 1 10.82 95.45 19.44 78.74

Oversampling 1273 21 936 315 1 6.50 95.45 12.17 68.61

SMOTE 1273 21 1096 155 1 12.88 95.45 22.70 81.17

SMOTE + undersampling 1273 21 1104 147 1 13.55 95.45 23.73 81.80

Non-sampling 1273 21 960 264 1 7.72 95.45 14.29 70.49

AN Undersampling 156 9 6 141 0 6.00 100.00 11.32 0.00

Oversampling 156 9 22 125 0 6.72 100.00 12.59 9.10

SMOTE 156 9 38 109 0 7.63 100.00 14.17 19.36

SMOTE + undersampling 156 9 43 104 0 7.96 100.00 14.75 22.56

Non-sampling 156 9 24 123 0 6.82 100.00 12.77 10.38

SKE Undersampling 809 5 349 455 0 1.15 100.00 2.28 38.14

Oversampling 809 5 516 342 0 1.56 100.00 3.08 58.78

SMOTE 809 5 478 326 0 1.64 100.00 3.24 54.09

SMOTE + undersampling 809 5 630 174 0 3.29 100.00 6.37 72.87

Non-sampling 809 5 436 368 0 1.45 100.00 2.85 48.89

TRIP Under-sampling 338 13 62 263 0 4.78 100.00 9.12 13.34

Oversampling 338 13 204 121 0 10.00 100.00 18.18 55.36

SMOTE 338 13 215 110 0 10.92 100.00 19.70 58.61

SMOTE + under-sampling 338 13 220 105 0 11.40 100.00 20.47 60.09

Non-sampling 338 13 173 152 0 8.07 100.00 14.94 46.18
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As shown in Fig. 1, our approach that includes a combina-
tion of different text analytics techniques produced higher
recalls, precisions, and F1-scores over all four datasets, com-
pared with the benchmark model. The significantly improved
WSS values indicate that our approach significantly reduced
the number of articles that scientists need to manually review
to develop systematic reviews, thereby having the potential to
reduce labor and other costs associated with systematic re-
views. Our proposed approach worked especially well for
the datasets AN and SKE, each of which has only a few
included article. For example, our approach produced
72.87 %WSS@95 % for the dataset SKE. Reviewers initially
queried and included 809 documents in the dataset SKE. A
manual process will entail reviewing all 630 documents to end
up with five relevant documents. In contrast, our proposed
approach would have accurately removed 174 documents.

This leaves only 152 articles for the reviewers to manually
review (resulting in the five relevant articles).

6 Conclusion

Evidence-based medicine has been widely promoted as a
means of improving clinical outcomes, where evidence-
based medicine refers to the practice of medicine based on
the best available scientific evidence. Information overload,
however, makes it difficult for healthcare providers to easily
integrate evidence into practice. The challenge not only lie in
recognizing the potential for breakthroughs in health but in
realizing this potential by providing the right tools to find
the data that are relevant to you, extract information from
the data, and convert that information to actionable

Table 10 Comparing soft-margin SVM results obtained in step 1 vs those obtained in step 2

Dataset Step Best sampling method N TP TN FP FN Precision Recall F1-score WSS@95 %

ACE 1 SMOTE + Undersampling 1273 21 981 270 1 7.22 95.45 13.42 72.14

2 SMOTE + undersampling 1273 21 1104 147 1 13.55 95.45 23.73 81.80

AN 1 Non-sampling 156 9 28 119 0 7.03 100.00 13.14 12.95

2 SMOTE + undersampling 156 9 43 104 0 7.96 100.00 14.75 22.56

SKE 1 SMOTE 809 5 434 370 0 1.33 100.00 2.63 48.65

2 SMOTE + undersampling 809 5 630 174 0 3.29 100.00 6.37 72.87

TRIP 1 SMOTE + Undersampling 338 13 201 124 0 9.49 100.00 17.33 54.47

2 SMOTE + under-sampling 338 13 220 105 0 11.40 100.00 20.47 60.09
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knowledge. Information technology (IT) plays a crucial role in
the practice of evidence-based medicine (EBM) by allowing
health care practitioners to access and evaluate clinical evi-
dence as they formulate their patient care strategies (Wells
2006). This oftentimes involves an analysis of a large amount
of complex information.

This research focuses on systematic reviews, the heart of
evidence-based medical practice (Stevens 2001). The creation
and update of these reviews is resource intensive. A major
bottleneck occurs when scientists screen medical studies.
Scientists need to identify provisionally eligible studies by
reading the title and abstract of thousands of articles. This
challenge calls for the use of text analytics to automate the
article selection process. In this research, we examined an
automated method to classify relevant articles for inclusion
or exclusion during the abstract triage stage for creating and
updating systematic reviews of medical research. We demon-
strated that a novel combination of text analytics techniques,
including using the automatically extracted UMLS terms as
the features, soft-margin polynomial SVM as the classification
algorithm and SMOTE combined with undersampling to deal
with the class balance issue, help improve precision while
sustaining a high recall (95 % or higher) in article classifica-
tion for SRs.

Our research is intended to make the following contribu-
tions. From a theoretical perspective, this research explores
the possibility of combining different text analytics techniques
in the area of systematic review development. In prior re-
search, the bag-of-words method has been used as the de facto
standard methods for extracting features from article titles and
abstract. We used the automatically extracted UMLS terms as
feature by leveraging the latest version of the MetaMap soft-
ware and demonstrated that this feature extraction meth-
od helps enhance classification performance, as com-
pared with the bag-of-words approach. The class imbal-
ance issue has been insufficiently addressed in extant
literature. We explored the use of various re-sampling
methods, which have been hardly used in this field, to
alleviate the class imbalance problem. We modified
SMOTE by combining it with undersampling and used
it to enhance article classification performance. The ex-
periences and lessons learned from this research are ex-
pected to inform the literature regarding the efficacy of
the proposed techniques and the further development
and refinement of these techniques.

From a practical and applied research perspective, this re-
search is expected to result in a significant reduction in the
cost of creating and updating systematic reviews. Currently, in
the context of medical knowledge generation, the substantial
cost of selecting articles for systematic reviews precludes us
from creating and updating systematically reviews to keep
pace with medical research advances, which subsequently im-
pedes the translation of the latest medical evidence into

healthcare practice. This research can help automate the sys-
tematic review development process by significantly reducing
the number of articles scientists need to manually review and
has the potential to contribute to the adoption of evidence-
based medicine. In summary, this research provides direct
impact in the availability of best medical evidence, and con-
sequently, may contribute to improving the health and
wellbeing of society.

The research can be further extended along a number of
dimensions. First, the proposed approach can be further eval-
uated using additional data sets (beyond the four sets included
in this research). Second, this approach can be extended to
support the creation of systematic reviews. The current ap-
proach is more suited to updating existing systematic reviews
where there is already a pre-classified dataset that can be used
for learning purposes. Last but not least, future research may
investigate means for deploying the proposed approach in a
manner that simplifies and automates (or semi-automate) the
update of systematic reviews on a frequent basis as new liter-
ature is added to the existing knowledge repository. Other
integration and deployment possibilities include the leverage
of clinical trials documentation, e.g., from clinicaltrials.gov to
further expedite the translation of medical research into
practice.

In conclusion, this research further attests to the potential of
machine learning, text mining and big data analytics in
supporting evidence-based medicine. It is a step towards clos-
ing the gap between research and practice in the quest towards
providing higher quality healthcare outcomes at a reduced
cost.
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