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An approach for criminal career analysis using hazard patterns 

1. Introduction  

The facilities in California’s prison system were designed to house approximately 85,000 inmates. 

These facilities held approximately 156,000 inmates in 2011, when the Supreme Court upheld an 

order that would require the state to decrease the prison population by 46,000  (Newman & Scott, 

2012). The court mandated the release of tens of thousands of inmates, because the prison system 

was unable to provide adequate health care to the inmate population (Bower, 2012).  

One key way to reduce the number of individuals serving their sentence in prison is through 

parole release. However, identifying candidates for successful parole release is no easy task when 

recidivism rate is high and the number of lifelong desisters is low. In the context of a criminal career, 

recidivism is the re-occurrence of an arrest charge or conviction, while desistance is the absence of 

such a re-occurrence. The rate of recidivism will vary depending on whether the subject of interest is 

arrest or conviction. In California, 84% of individuals released from prison during the fiscal year 

2007-2008 were re-arrested within three years of release, and 60% were convicted (Cate et al., 2012).  

There are two primary goals for this work. The first goal is to find how we can assess risk of 

recidivism based on past offending behavior. The second goal is to codify the risk, as well as the 

basis for the risk in simple terms.  

In this paper, we make two key contributions. First, we demonstrate that hazard patterns can be 

used to discover patterns that can reliably predict differences in risk of re-arrest following parole 

release. Second, we propose and demonstrate a test of meaningfulness for hazard patterns. Without 

such a test, it can be difficult to differentiate between patterns that occur by chance and genuine 

meaningful patterns.  

The remainder of the paper is organized as follows. In section 2, we present the problem in the 

context of related work. In section 3, we describe the needs that a solution to the presenting problem 

should address. In section 4 we describe the design of the system through use of an illustrative 

example. In section 5 we demonstrate and evaluate the pattern discovery system, and finally in 

section 6 we summarize our evaluation, describe limitations, discuss implications for predicting 

recidivism, and identify directions for future work.  

2. Related Work  

In this section, we discuss the problem context and the motivation for this work. We provide a 

review of relevant criminology literature with attention to recidivism prediction in parolees.  

2.1 Risk Assessment  

A number of state-specific risk assessment systems have been developed to address this need. 

Examples include Ohio’s progressive sanction grid (Martin & Dine, 2008), the Minnesota Screening 

Tool Assessing Recidivism Risk (MnSTARR) (Duwe, 2013), and the California Parole Violation 

Decision Making Instrument (PVDMI) (Turner, Braithwaite, Kearney, Murphy, & Haerle, 2012).  

Both the Ohio screening tool and the PVDMI encountered considerable resistance from 

practitioners in the field. Parole officers using the Ohio screening tool questioned whether the 

decisions of the tool were logical, and parole officers in California consistently escalated the 

recommended sanction for parolees with significant prior criminal behavior. Turner et al. (2012) 

suggested that parole officers may not have been confident that criminal histories were properly 

taken into account by the system. It remains to be seen whether the deployment of MnSTARR will 

fare better. Resistance to actuarial risk assessment tools is not altogether unjustified. A meta-analysis 

1 of risk assessment instruments found they produced an area under curve (AUC) scores rang- ing 

from 0.65 to 0.71(Min, Wong, & Coid, 2010).  

2.2 Criminal career analysis  
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Research in the area of quantitative criminal career analysis deals specifically with criminal 

histories, and commonly makes use of group trajectory modeling. This technique was first introduced 

by Nagin and Land (1993) and has since been used in many other studies. Bhati and Piquero (2007) 

supplemented this technique with variables representing the time between preceding arrest incidents, 

to more accurately predict future recidivism. However, predicting future arrests based on group 

trajectories is still a difficult task. Researchers have cautioned against policy development based on 

such tools, and have suggested that improvements will not be obtained using new analysis methods 

(Bersani, Nieuwbeerta, & Laub, 2009).  

 

3. Objectives of a Solution  

Based on the process review of the PVDMI pilot deployment in California, practitioners lacked 

confidence in the logic supporting the tool’s risk determinations, and did not believe the tool properly 

accounted for changes in risk associated with repeat offending behavior (Turner et al., 2012). We are 

presented with the challenge, not only of assessing risk, but of justifying that risk assessment to a 

decision maker, particularly with respect to prior offending record. We have identified two key 

design requirements for a recidivism risk assessment tool:  

1. Incorporate salient characteristics of prior record to determine risk.  

2. Concisely present the logic leading to the determined risk level.  

One way to represent a criminal history is as an ordered sequence of many different types of 

events. Event sequences that occur frequently can be represented as patterns for classification, 

clustering, or prediction tasks. Hazard patterns are frequent sequences of events where each 

successive event in a pattern represents the first subsequent event of that type, and where the time 

between events in a pattern represents time-to-failure or time-to- event (Janzen, Deokar, & El-Gayar, 

2013b). As already noted in (Bhati & Piquero, 2007), time between preceding arrests is a useful 

predictor of future arrest risk. A hazard pattern representing a history of many arrest charges for 

various offenses will also capture periods of desistance, during which no arrest occurred. Hazard 

patterns draw on survival analysis techniques, and allow the analyst to include potentially significant 

in- formation about time between events. However, to demonstrate usefulness and reliability of these 

patterns for risk assessment, we must address some important concerns:  

1. Over-fitting: Are the patterns generalizable to other similar data sets?  

2. Meaningfulness: Are patterns found even when there are no patterns in the data?  

3. Predictiveness: Can historical patterns be useful predictors of future events?  

4. Parsimony: Can we produce output with minimal redundancy?  

A common way to address the concern of over-fitting is to rely on some form of validation on a 

hold-out sample. One portion of the data set is set aside only for validation, while the remainder of 

the dataset is used to train the model. Repeating this process k times, the data is divided in to k 

subsets, each of which serves as a validation set for a model trained using the remainder of the data.  

The second issue of meaningfulness is both subtle and important. Keogh and Lin (2004) presented 

the surprising result that a subsequence clustering technique used in dozens of published papers 

produced meaningless results. For our test, we draw on their formal definition: “We call an algorithm 

Figure 1: contrived histories 
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meaningless if the output is independent of the input.” We will test for meaningless results by altering 

salient characteristics of the input, to provide evidence to support the belief that the discovered 

patterns are meaningful.  

The third concern of predictiveness is of vital importance. We can demonstrate predictiveness by 

showing that patterns discovered in one time period can reliably predict arrest risk in a subsequent 

time period. This is also the most difficult test, since patterns learned in the past cannot account for 

future changes in the environment.  

Finally, to avoid producing an overwhelming number of patterns that may or may not be useful, 

we must apply a pattern selection strategy.  

4. Design and Development 

In this section we describe the system design by example, using a collection of five contrived 

criminal histories. We first present the events on a time line, and then refer to this example as we 

describe our search for a solution. 

4.1 Hazard Patterns 

Figure 1 contains three contrived example criminal histories for individuals 𝑎, 𝑏 and 𝑐. This 

example is simplified for the sake of illustration. Individuals 𝑏 and 𝑐 are arrested and re-released on 

parole more than once, while 𝑎 is released on parole only once and is not re-arrested. Keeping in 

mind that these are contrived histories, can we find a relationship between patterns of past event 

occurrences and risk of arrest after parole release?  

An event occurrence is denoted (𝑒, 𝑡) where 𝑒 represents the event type and 𝑡 represents the time 

of the event occurrence. For example, (𝑃𝑎𝑟𝑜𝑙𝑒𝑑, 909) is the occurrence of event 𝑃𝑎𝑟𝑜𝑙𝑒𝑑 at time 

909 (months since January 1900).  

An event sequence of length 𝑛 is denoted ⟨(𝑒 , 𝑡 ), (𝑒 , 𝑡 ), . . . (𝑒 , 𝑡 )⟩ where 𝑒  rep- resents the 

type of the 𝑖th event, 𝑡  represents the time of the 𝑖th event, and 𝑡   < 𝑡 . An event sequence is a 

time oriented arrangement of event occurrences. For example, ⟨(𝑃𝑎𝑟𝑜𝑙𝑒𝑑, 833), (𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑, 844)⟩ 
is an event sequence.  

Event sequence mining has been used to discover characteristic patterns for classification (Zaki, 

Lesh, & Ogihara, 1998), clustering (Bathoorn, Welten, & Richardson, 2010), and pattern discovery 

(Fujikawa, Kida, & Katoh, 2011).  

As event histories increase in length, the probability of discovering frequent event sequences by 

chance increases. To counter this effect, it is useful to apply a gap constraint on the time between 

events of interest.  

A gap constraint is the requirement that except for the initial event occurrence, for any event 

occurrence (𝑒 , 𝑡 ) there exists at least an occurrence (𝑒   , 𝑡   ) where 𝑚𝑖𝑛𝑔𝑎𝑝 ≤  (𝑡 − 𝑡   )  ≤
 𝑚𝑎𝑥𝑔𝑎𝑝. Two events in an event sequence satisfy a minimum gap constraint if they are separated 

by at least 𝑚𝑖𝑛𝑔𝑎𝑝 and they satisfy a maximum gap constraint if they are separated by at most 

𝑚𝑎𝑥𝑔𝑎𝑝. For a more detailed discussion see (Leleu, Rigotti, Boulicaut, & Euvrard, 2003).  

However, gap constraints do not include information about whether the event of interest occurs 

additional times prior to 𝑚𝑖𝑛𝑔𝑎𝑝. To describe a relationship between previous events and time to re-

arrest, hazard patterns and hazard constraints were proposed in (Janzen et al., 2013b). 

A hazard pattern is a frequently occurring sequence of events where each subsequent event 

occurrence is the first subsequent occurrence of that particular event type. A hazard pattern can be 

denoted as 𝑃𝑎𝑟𝑜𝑙𝑒𝑑 →  𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑. For all occurrences of this pattern, 𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑 refers to the first 

arrest after parole release.  

We can further apply a hazard constraint whereby the period of time between two events in a 

pattern must fall within a specified minimum and maximum time interval. A given hazard pattern 
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𝑃𝑎𝑟𝑜𝑙𝑒𝑑 →  𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑 can be expressed with a hazard constraint as 

𝑃𝑎𝑟𝑜𝑙𝑒𝑑  (𝑚𝑖𝑛ℎ𝑎𝑧,𝑚𝑎𝑥ℎ𝑎𝑧]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑. Occurrences of 𝑃𝑎𝑟𝑜𝑙𝑒𝑑  (3, 6]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑 satisfy the 

condition that more than three and at most six months elapsed between parole release and the next 

arrest.  

A straightforward way to describe relationships between antecedent patterns and subsequent 

events is to describe the proportion of antecedents that lead to the consequent. There are six distinct 

occurrences of Paroled. Of these six occurrences, we see in table 1 that four lead to re-arrest within 4-

6 months, a proportion of 0.67 re-arrests per parole release for that time period. Counting the number 

of occurrences is less straightforward when more than one antecedent event leads to the same 

subsequent. In table 1 we see that Arrested → Paroled occurs four distinct times but has a support 

count of five. This is because more than one Arrested event leads to the same subsequent Paroled 

event. In event sequence mining there is no agreed upon way to count the number of pattern 

occurrences. For instance, (Achar, Laxman, & Sastry, 2011)  describes 10 different support counting 

methods.  

For all support counting methods we encountered, one or more of the following were true: (a) 

counts were non-independent of other occurrences of the same pattern (non-overlapping, non-

interleaved, and distinct occurrence based), (b) longer patterns were unduly penalized (window and 

expiry time based) and (c) unrelated event occurrences can inflate support counts (head frequency, 

total frequency). For further discussion of these limitations, see (Janzen et al., 2013a).  

To be able to adequately express the relationship between the antecedent and the sub- sequent, 

rather than counting the number of times the antecedent and subsequent occur together, we counted 

the number of antecedents that lead to the subsequent.  

Relative Support is the number of distinct or unique antecedent event occurrences that are 

followed by a subsequent event of a particular type in a hazard pattern. In table 1, the an- tecedent 

pattern 𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑  (3, 6]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑃𝑎𝑟𝑜𝑙𝑒𝑑 has a support of 5, but we only consider 4 distinct an- tecedents 

when calculating the proportion that participates in 𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑  (3, 6]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    𝑃𝑎𝑟𝑜𝑙𝑒𝑑  (3, 6]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑. 

Relative support was proposed for event hazard patterns in (Janzen et al., 2013b).  

An additional problem is the large number of patterns discovered. To determine whether a 

particular pattern might convey useful information, we can calculate a measure of interest and apply 

a statistical test of significance.  

Relative Risk is the ratio of the risk within a treatment group over the risk of the control group. It 

is used to measure the cumulative treatment effect at the end of a period of time. For a practical 

discussion of relative risk ratios, see (Bewick, Cheek, & Ball, 2004).  

We evaluated pattern selection using significance tests on Relative Risk (RR). Patterns shown to 

significantly affect the RR coefficient in training data were also shown to have a similar effect in test 

data. For further details, see (Janzen, Deokar, & El-Gayar, 2013a). 

RR expresses the ratio between survival proportions in a treatment group compared to the same in 

a control group. We compare the RR for a presented pattern with the RR for the same pattern with 

the first antecedent removed. In table 1, RR could only be calculated in this way for one of the 

patterns. The risk of arrest in the four distinct antecedent parole releases in 

Table 1: Months until re-arrest (contrived data set) 
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𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑 (3, 6]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑃𝑎𝑟𝑜𝑙𝑒𝑑 (3/4) against the risk of arrest in the two distinct parole releases in Paroled 

that are not already counted in 𝐴𝑟𝑟𝑒𝑠𝑡𝑒𝑑  (3, 6]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    𝑃𝑎𝑟𝑜𝑙𝑒𝑑 (1/2). The RR of 1.50 indicates that the 

risk of re-arrest during the subsequent 4-6 months is one and a half times higher if parole release is 4-

6 months after arrest. A RR of 1 would indicate no change. To see whether the increase in risk might 

be generalizable to the broader population, we calculate a Z-score for the RR. In this case, the 

resulting Z-score of 0.53 indicates no evidence to expect that RR is different than 1.  

5. Algorithm Design  

5.1.1 Data Structures  

To facilitate indexing, constraint and offset values were stored in a lookup table. Events were 

encoded as integers, constraints of increasing sizes were represented as successive integers, and 

offset values were represented as ordinals. Offsets were kept separated per individual, as illustrated in 

figure 2(e)  

Using these simplified representations of events, offsets and constraints, an index was constructed 

to enable easy lookup of both when the next event of a given type might occur, as well as what 

constraint is satisfied by that occurrence.  

For instance, by referencing ordinal 6 in figure 2(c) we see in the ordinal index that the next 

Arrested event occurs at ordinal 8 and we see in the constraint index that constraint 3 is satisfied for 

that next ordinal. A value of zero indicates that there is no applicable next ordinal. Note that histories 

of different individuals are indexed back to back, index columns 1,10, and 16 contain zeroes because 

the subsequent ordinal belongs to a different individual’s history.  

We can also see convergence from multiple antecedents to a single subsequent. For columns 5 and 

6, we first see that two distinct Arrested events occurred. For each of the arrest events, the next 

Arrested event is a different occurrence. However, in the bottom row, we see that for both of these, 

the next Paroled event is the same one, at ordinal 7. This convergence is also seen in figure 1 in 

individual b at the end of 1966. The algorithms used to construct the above indexes and lookup tables 

are not detailed here.  

5.1.2 Pattern discovery algorithm  

The discovery of frequent patterns can follow either a depth first or breadth-first tree traversal, due 

to lack of dependencies between branches. Frequent antecedent ordinals are collected, and for each 

type of subsequent event, the ordinals are grouped according to the constraint they satisfy (each 

ordinal satisfies only one constraint). Constraint groupings that are larger than a specified support 

threshold become candidates for further extension. The  

Figure 2: data structures 
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Grow function shown in algorithm 1 relies on the above indexes. Ordinals are translated to offsets 

at 𝑂(1) cost as needed. Input ordinals are supplied in a matrix indexed by event, constraint, where 

each 𝑀     ,           represents the antecedent ordinals for the current pattern growth step. In Line 

3, those antecedents with cardinality that is high enough to meet a specified support threshold are 

added to the frequent pattern database in line 5, and are passed to the 𝑁𝑒𝑥𝑡 function, where a new 

matrix of candidate ordinals is created, and passed to the recursive 𝐺𝑟𝑜𝑤 attempt on line 7. 

Algorithm 2 contains the 𝑁𝑒𝑥𝑡 function, which takes as input a collection of antecedent ordinals, 

grouped by event, and produces the Ordinal matrix 𝑁𝑒𝑥𝑡𝑂𝑟𝑑𝑠 needed in line 6 of algorithm 1. This 

function uses two indexes: 𝑅     ,        and 𝐼     ,       . Refer to the indexes and lookup tables 

in figure 4.2.1. 𝑅 and 𝐼 are matrices of dimension (𝑚 × 𝑛) where 𝑚 is the alphabet of all possible 

events, and 𝑛 is the number of distinct offsets. Multiple events may occur at the same offset. 𝐼 
contains the ordinal of the subsequent occurrence of a given event type. 𝑅 contains the constraint that 

is satisfied at a given event offset (represented as an ordinal), relative to the immediate antecedent 

event.  

On line 4 of the 𝑁𝑒𝑥𝑡 function pseudo-code in algorithm 2, for each antecedent event occurrence, 

the constraint 𝑅     ,        that is satisfied for each potential subsequent event is retrieved. Given 

the half-open interval topology used to describe the different constraints, each subsequent event can 

satisfy one constraint. In line 4 the subsequent ordinals are retrieved from 𝐼 and then grouped 

according to their matching constraints in line 5. The creation of 𝑅 and 𝐼 are not described here, but 

are straightforward.  

6. Evaluation  

In this section, we demonstrate the results obtained using the pattern discovery system to mine a 

data set of real life criminal histories. We then evaluate the pattern discovery system according to the 

four design objectives described in section 3: over-fitting, meaningfulness, predictiveness, and 

parsimony.  

The pattern discovery system was used to discover patterns in a data set of complete criminal 

histories. The histories were collected from part of a non-random sample of offenders who entered 

the California Youth Authority’s Deuel Vocational Institute in 1964 and 1965. The event database 

contains 54,175 arrest records and associated dispositions, parole, and discharge events for 3,652 

individuals from the time of first arrest through 1983. Dates were discretized to the nearest 15th day 

of the month (Wenk, 2006).  

All dispositions (including convictions) were recoded to the arrest charge date. Any patterns 

showing both arrests and convictions have nothing to do with conviction rates.  

We selected patterns with a minimum support of 500, as well as related stub patterns. Stub 

patterns are those patterns that would otherwise be excluded due to low support, but which are 
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siblings of a frequent pattern. For instance, if the subsequent event occurs frequently in the follow-up 

period of (0,3], we also tabulate the number of occurrences in the adjacent follow-up periods, and 

calculate a total. Table 2 shows only patterns with an antecedent ending with parole and a subsequent 

event of Arrest. We see that the recidivism is generally high in this group.  

 We note several relationships between criminal history and recidivism. Of all the follow-up 

periods, even though the (0,3] time interval is the smallest, it also tends to be the time period with 

the highest support counts. Over all, there is only a small amount of variation between the groups 

represented by each pattern. RR values for shorter follow-up periods are closer to 1, with larger Z-

scores, and RR values for longer follow-up periods are farther from 1, with smaller Z-scores. The 

patterns provide more generalizable information about the short follow-up periods. Past repeat 

offending over (0,3] increases risk of repeating the same when released on parole after (12,24]. 
Generally, those who are released on parole sooner also re-offend sooner than others. The single 

strongest relationship is shown in the second-last row. Time since previous parole release has a large 

and significant impact on recidivism. Individuals released on parole (12,24] after their previous 

parole release are 1.48 times as likely to re-offend within 3 months when compared to all others 

released on parole. In the last row, we see no significant change in RR for antecedent parole releases 

(24,96] apart. Using the same data set, mined at a lower minimum support threshold, we observed 

other patterns relating to specific arrest charges, dismissals, and convictions.  

6.1 Evaluation against design goals  

Over-fitting: In the case of a very complex pattern discovery system, it may be possible to over-

fit the characteristics of the training set. To test against this, we performed a k-fold cross-validation 

with ten folds. Each fold consisted of a 90% training split and a 10% testing split. We selected 

patterns based on a RR Z score outside ±1.96. For each fold, we considered contradictions to be 

those cases where the training split and the testing split each reported a significant Z score of 

opposite sign. We recorded consistency where a significant Z score in the testing split corresponded 

to a Z score of the same sign in the training split. For each fold, pattern mining was performed with a 

Table 2: Arrests after parole 
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minimum support threshold of 500. We tabulated the above indicators for each of the ten folds, and 

Type equation here.repeated the process for the same 500 individuals with all events shuffled.  

Since each training split was much larger than each corresponding test split we compared the sign 

of the significant Z-scores (±1.96) for patterns in the test split with the sign of the corresponding  

patterns in the training split. A shown in figure 3(a), we observed good consistency and few 

contradictions.  

Meaningfulness: Our next concern was whether the discovered patterns were meaningful. More 

generally, how will we know whether the discovered patterns are simply an artifact of the mining 

process? If we discover more hazard patterns in shuffled data than can be expected by random 

chance alone, then the minimum support threshold is too low. For the purpose of the presenting 

problem, patterns can be considered meaningful if the number of patterns found in a shuffled 

equivalent of the data are markedly different than those found in the original data. When we mined 

for patterns in randomly shuffled data, we still discovered hazard patterns, but in much smaller 

numbers, as shown in figure 3(a).  

We also repeated the pattern mining and pattern selection process used for table 2, using the same 

data, but shuffled. Rather than 10 significant patterns discovered, there were only 4 significant 

patterns discovered in the shuffled data set (see table 3 allowing us to conclude that the patterns 

shown in table 2 are indeed meaningful.  

Predictiveness: To evaluate the predictiveness of the discovered patterns, we first compared the 

proportion of patterns that lead to arrest in one time period with the proportion of pattern occurrences 

that lead to arrest in a subsequent time period. We evaluated the entire time period for the antecedent 

pattern 𝑃𝑎𝑟𝑜𝑙𝑒𝑑 (12,24]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑃𝑎𝑟𝑜𝑙𝑒𝑑 to predict re-arrest within a two 8 year time span. If there is no 

significant difference between the arrest risk over a preceding time period and a subsequent time 

Table 3: Arrests after parole - patterns found in shuffled data 
Figure 3: evaluation results 
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period, then past risk of offending, the hazard pattern, might be a useful predictor of future risk. We 

also computed RR for each of the time periods, comparing the arrest risk for 

𝑃𝑎𝑟𝑜𝑙𝑒𝑑 (12,24]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑃𝑎𝑟𝑜𝑙𝑒𝑑 with a baseline arrest risk for 𝑃𝑎𝑟𝑜𝑙𝑒𝑑. For each parole release, we 

tabulated the number of re-arrests within 2 years of those parolees released 24- 48 months prior 

(training period). We compared that proportion with the proportion of re-arrests within two years 

going forward (testing period). To reduce variance, and to summarize the results, these were grouped 

according to year, as shown in figure 3(b). Some arrests before 63/64 correspond to juvenile offenses. 

This corresponds to the most difficult time period for predicting arrest risk for these individuals. We 

anticipate that prediction accuracy would further improve with a data set comprised of individuals 

with varying ages. 

We noted that past risk of arrest is significantly different than future risk of arrest in 13 of 20 

years. However, past relative risk of arrest was not significantly different than future relative risk, 

except in 3 of 20 years (Z ±1.96). We repeated the test using a variety of different training, testing 

and follow-up periods. In each case, the results were similar. For this particular hazard pattern, we 

observed that past risk of arrest is not a reliable indicator of future risk of arrest. Further, past relative 

risk is a good indicator of future relative risk. In other words, the RR between 

𝑃𝑎𝑟𝑜𝑙𝑒𝑑 (12,24]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑃𝑎𝑟𝑜𝑙𝑒𝑑  and 𝑃𝑎𝑟𝑜𝑙𝑒𝑑 does not significantly change over the selected time periods. 

Based on these observations, RR of hazard patterns is a useful measure for identifying parolees who 

are at relatively higher risk to re-offend.  

Parsimony: In table 2 we summarized all patterns related to recidivism after parole release with a 

minimum support threshold of 500, and logically arranged them together with indicators of effect 

direction and significance in bold. Based on the above pattern tables, we see that the use of the RR Z-

score dramatically reduces the number of patterns of interest, reducing the number of patterns for the 

analyst to consider.  

7. Conclusion  

In this paper we demonstrated that hazard patterns can be used to identify individuals with 

increased parole violation risk. Although we did not find a direct link between past arrest risk and 

future arrest risk, we did find a significant relationship between past RR and future RR between a 

group exhibiting a hazard pattern and a group that exhibited a hazard pattern with the first antecedent 

removed. We also tested the generalizability of the discovered hazard patterns through ten-fold cross 

validation. We further also demonstrated a simple test for meaningfulness of hazard patterns. If a 

similar amount of patterns is discovered when the order of the underlying data is shuffled, then the 

discovered patterns are meaningless. The need for a meaningfulness test is particularly relevant, 

given that meaningless patterns can pass a cross-validation test. An important limitation is a result of 

multiple testing. Since many tests of significance were performed, an analyst may encounter one of 

many possible relationships by chance alone. We did not examine the impact of multiple testing bias 

in this work. With the introduction of hazard patterns comes a wide range of opportunities for further 

work. Application domains with time-to-event data are the most likely to benefit. Examples include 

health care histories, business process analytics, equipment failure events, and insurance claim 

histories.  
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