
Dakota State University Dakota State University

Beadle Scholar Beadle Scholar

Research & Publications College of Business and Information Systems

4-2007

An XML-based schema definition for model sharing and reuse in a An XML-based schema definition for model sharing and reuse in a

distributed environment distributed environment

Omar F. El-Gayar
Dakota State University

Kanchana Tandekar
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/bispapers

Recommended Citation Recommended Citation
El-Gayar, O., & Tandekar, K. (2007). An XML-based schema definition for model sharing and reuse in a
distributed environment. Decision Support Systems, 43(3), 791-808.

This Article is brought to you for free and open access by the College of Business and Information Systems at
Beadle Scholar. It has been accepted for inclusion in Research & Publications by an authorized administrator of
Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu/
https://scholar.dsu.edu/bispapers
https://scholar.dsu.edu/biscollege
https://scholar.dsu.edu/bispapers?utm_source=scholar.dsu.edu%2Fbispapers%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

An XML-based schema definition for model sharing and
reuse in a distributed environment☆

Omar El-Gayar ⁎, Kanchana Tandekar

Dakota State University, United States

Received 21 September 2005; received in revised form 31 July 2006; accepted 17 December 2006
Available online 23 December 2006

Abstract

This research leverages the inherent synergy between structured modeling and the eXtensible Markup Language (XML) to
facilitate model sharing and reuse in a distributed environment. This is accomplished by providing an XML-based schema
definition and two alternative supporting architectures. The XML schema defines a new markup language referred to as the
Structured Modeling Markup Language (SMML) for representing models. The schema is based on the structured modeling
paradigm as a formalism for conceiving, representing and manipulating a wide variety of models. Overall, SMML and supporting
architectures allow different types of models, developed in a variety of modeling platforms to be represented in a standardized
format and shared in a distributed environment. The paper demonstrates the proposed SMML through two case studies.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Model management; Model sharing; Structured modeling; eXtensible Markup Language (XML); Distributed computing environments

1. Introduction

With the recent advances in computer and telecom-
munication technologies, organizations are increasingly
dependent on management models for data analysis and
decision support. Accordingly, the number and com-
plexity of management models and of modeling
platforms dramatically increased rendering such models
a corporate (and national) resource. “Modeling in the
large” as denoted by Muhanna and Pick [51] explicitly
recognizes models as a resource and modeling as an

ongoing process that should be supported. The focus is
on the management of large shared model bases. Such a
view of modeling and the emphasis on reuse is growing
within the decision support community [41]. Model
reuse can take several forms including the ability to use
the same model with a different data set or with a
different solver, and to use the same model in a different
modeling environment. The notion of reuse can also be
extended to include composing and integrating models
from existing models. Supporting the modeling process
in general, and “modeling in the large” in particular is
the ability to represent models at a higher level of
abstraction, i.e., meta-modeling.

However, in practice, models use a myriad of
languages and task specific representations that include
textual descriptions of problem statements, modeling
languages, and graphical notation. While some model

Decision Support Systems 43 (2007) 791–808
www.elsevier.com/locate/dss

☆ An earlier version of this paper was presented at the AMCIS 2005
conference, Omaha, NE. This paper extends and enhances those ideas
and describes them more fully in a coherent framework.
⁎ Corresponding author.
E-mail address: omar.el-gayar@dsu.edu (O. El-Gayar).

0167-9236/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dss.2006.12.010

mailto:omar.el-gayar@dsu.edu
http://dx.doi.org/10.1016/j.dss.2006.12.010

representations offer distinct advantages such as model-
data independence, others have data intertwined with the
model structure. Moreover, several representations (and
modeling environments) can be used within the same
organization for addressing the same type of model. To
share and reuse models in such environments, individual
translators will need to be developed for each pair of
model representation schemes. This solution is not
scalable, particularly in the context of distributed inter-
organizational setting. Moreover, such representations
are not directly amenable to architectures supporting
distributed environments. Last, but not least, such
representation schemes are often paradigm dependent.
In effect, without a unified scheme for representing the
structure and semantics of models that preserves model-
data, model-solver, and model-paradigm independence,
efforts to support “modeling in the large” and to leverage
existing investments in models through sharing and
reuse are seriously curtailed.

Two important developments offer promising
results, namely, structured modeling (SM) and eXten-
sible Markup Language (XML). In the quest for
expressive model representation, structured modeling
received a great deal of attention in the literature. SM as
defined by Geoffrion [26] is a “formal mathematical
and computer-based environment for conceiving, re-
presenting and manipulating a wide variety of models”.
SM has many of the features desired in model ma-
nagement systems, which makes it a very useful tool for
model representation. SM provides a coherent concep-
tual framework for modeling based on a single mo-
deling system, irrespective of the underlying modeling
paradigm.

The recent development of eXtensible Markup
Language (XML) emphasized the importance of content
information by making it possible for designers to create
and manage their own sets of tags [6]. Accordingly,
XML facilitates searching for specific content-based
information as well as moving documents across
applications and systems, i.e., model exchange in a
distributed environment. Modelers using different mod-
eling tools or environments can communicate using the
common XML representation. While Geoffrion [26]
demonstrated different ways of rendering a structured
model as a web document, not much research has been
done to represent structured models using XML.

This research leverages the inherent synergy between
SM and XML to facilitate model sharing and reuse in a
distributed environment. This is accomplished through
the development of an XML-based schema definition
and supporting architectures. The XML schema defines
a new markup language referred to as the Structured

Modeling Markup Language (SMML) for representing
models. The schema is based on the structured modeling
paradigm as a formalism for conceiving, representing
and manipulating a wide variety of models. In effect, the
proposed language allows for:

• Representing different types of models that are
developed using a variety of modeling platforms in a
standardized format.

• Sharing and publishing models among model users
regardless of their modeling environments.

• Reusing models (developed for different data sets, for
different solvers, and in different modeling environ-
ments) without the need for re-writing models for
each tool.

• Creating a lifetime repository (archive) of models in
an environment and a platform independent format.
Accordingly, the models are reusable, even after a
particular environment is rendered obsolete.

The paper is organized as follows: the next two
sections provide a brief review of model representation
and XML. Next, we highlight the advantages of using
structured modeling and XML for model representation
followed by a description of the schema definition for
SMML. We then present two alternative supporting
architectures followed by case studies demonstrating the
applicability of the proposed representation. The final
section concludes the paper.

2. Model representation

Model management (MM) emerged in the mid-
seventies in the context of managing models in decision
support systems (DSS) [54,57]. While a comprehensive
review of the model management (MM) literature can
be found elsewhere [3,12,41], it is worth noting that
much of the motivation behind MM focused around
finding ways for developing, storing, manipulating,
controlling, and effectively utilizing models in an
organization [50]. Inherent in such functionality is the
ability to represent models at a higher level of abs-
traction, i.e., meta-modeling.

2.1. Requirements for model representation

Requirements for model representation evolved over
the years to accommodate the increasing demands by
analysts and users. Initial interest focused on abstracting
away from low-level input formats and moved on to
emphasize representing models at a higher level of
abstraction to facilitate model management functions.

792 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

Design requirements supporting model management
functions include:

• Paradigm independence: Ability to represent models
from different paradigms.

• Model-data independence: Ability to use the model
with different data sets.

• Model-solver independence: Ability to use the model
with different solvers.

• Meta-level representation and reasoning: Ability to
represent information about models.

• Single representation format: Amenable to multiple
purposes such as computer execution, mathematical
use, and managerial communication.

The advent of the Internet and related technologies
put further demands with respect to model sharing.
Additional requirements supporting model sharing in a
distributed environment include:

• Portability: Compatible with various development
environments and systems.

• Vendor independence: Is not locked by the support of
a particular vendor.

• Extensibility: Amenable to extensions and continu-
ous improvement efforts.

• Leverage of the Internet: Compatibility with Internet
technologies such as XML.

2.2. Model representation supporting model manage-
ment functions

A number of model representation approaches and
languages are proposed in the literature, most notably
are algebraic modeling languages, logic-based systems,
relational-based approaches, graph-based languages,
and structured modeling (which is also the basis for
other approaches). Algebraic modeling languages such
as GAMS [8], AMPL [22], and LINGO [39] attempts to
simplify modeling by abstracting away from detailed
model representations using ad hoc programs or matrix
generator programs. In effect, these languages allow for
a symbolic, general, concise, and understandable means
to represent models [21] and tend to be specific to a
particular modeling paradigm [41]. Moreover, these
languages vary in their support to model representation
requirements. For example, while GAMS supports
model-solver independence, AMPL supports model-
data and model-solver independence and both languages
do not support meta-level representation.

In that regard, Bhargava and Kimbrough [1] propose a
logic-based approach to model representation that aug-

ments existing modeling languages in representing
formally and computationally information about expres-
sions that is not amenable for representation. The ob-
jective is to leverage the strengths in existing modeling
languages while being able to capture meta-model infor-
mation that can then supportMM functions.Nevertheless,
in a distributed environment, a user is still confrontedwith
handling models in a variety of representational formats
representing the embedded language.

Relational-based approaches attempts to view and
thus represent models as data. Proposals include
[2,14,45]. A primary motivation of such approaches is
to capture the developments in relational database
technology for model representation and management.
However, such approaches are particularly limited when
it comes to handling rich model semantics and are often
paradigm dependent.

With the variety of models that can be represented by
graphs [9,37], graph-based modeling systems (GBMS)
[37,38] attempts to facilitate the creation of graphs
representing models that can be represented as attributed
graphs. Inherent in these systems is the use of graph
grammars to represent the structural constraints imposed
on various types of graphs. Examples of such graphs
include vehicle routing, neural networks, and structured
modelingGenus graphs.While graph-basedmodeling has
proven useful for model formulation and communication,
graph-grammars can be difficult to manipulate and the
applicability of graph-grammars to a wide variety of
graph-based models need further exploration [37].

Geoffrion [26] proposed structuredmodeling (SM) as a
means of model representation. Geoffrion [29] defines SM
as “a way of thinking about analytic models and the
systems which support them”. SM views models and
model-based systems as having computationally active
definitional dependency diagrams as their central focus,
with manipulation by solvers and other tools to achieve
desired purposes. SM provides a conceptual framework
for conceiving, representing, and manipulating a wide
variety of models. It should be noted that model
representation in SM does not specify the objective
function and whether its value should be maximized or
minimized. These are solver issues and can be defined at
the time of solving the model. Thus a user may decide to
use some or all of the constraints from the model and may
decide whether to minimize or maximize a function. If
there is more than one objective function, the user can
choose the desired objective or may even wish to solve for
all of them using different techniques like multi-objective
programming, weighted goal programming, compromise
programming, etc. The model representations are inde-
pendent of the model solution and the way the model is

793O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

solved. Moreover, the model schema does not contain any
actual data and this provides data independence. The same
modelmaybe invoked usingdifferent set of data. The data,
in SM terminology known as an instance ismaintained as a
separate file. Accordingly, in SM, a model is defined as a
combination of a model schema and one or more model
instances. A model schema describes the general structure
of amodel and is represented as a hierarchical, acyclic, and
attributed graph. A model schema may be associated with
one or more model instances. Model instances correspond
to the data part of the model. Detailed description of SM
concepts can be found in [26,27,30,31].

2.3. Limitations of existing approaches

Significant amount of model management research
occurred in the early eighties and continued to the mid-
nineties. Most of the research focused on addressing
requirements of model management systems such as
model-data and model-solver independence, paradigm
independence, meta-model representation, and facilitat-
ing model management functions. With the exception of
Muhanna [51] and few others, not much attention was
given to managing large shared model bases. With the
advent of the Internet and supporting communication
infrastructure, it became feasible to easily share models
within and across organizations resulting on additional
requirements for portability, vendor independence, and
compatibility with the new infrastructure. Accordingly, a
major limitation of the aforementioned approaches is
their limited support to the requirements for model
sharing in a distributed environment.

3. XML and model representation

XML is a meta-language originally developed by the
WorldWideWebConsortium (W3C) as a simplified subset
of SGML. In contrast to Hyper Text Markup Language
(HTML) where the emphasis is on visual display and user
interface definition, XML-based languages provide the
means to represent the content, semantic, and schemata of
data. XML allows for the definition of a set of domain
specific tags which can then be used to markup data in
various applications domains. By facilitating the exchange
of data using a non-proprietary data format, XML is
particularly valuable in supporting interoperability in
distributed heterogeneous environments such as the
Internet. The tremendous growth of XML applications
(XML-based markup languages) for representing and
exchanging data in various problem domains (e.g.,
Chemical ML, MathML, Molecular Dynamics Markup
Language) is a testimony to XML's success.

3.1. XML-based languages for model representation

XML success has also extended to representing
models in various problem domains and for specific
modeling paradigms. Hucka et al. [35] and Finney and
Hucka [20] describe a Systems Biology Markup
Language (SBML) for representing and exchanging
biochemical networkmodels between simulation/analysis
tools. The language is supported by a package for
manipulating the SBML-based models [53]. In data
mining, the PredictiveModelMarkupLanguage (PMML)
provides a tool independent mechanism for representing
and sharing predictive models such as regression models,
cluster models, trees, neural networks, and Bayesian
models among compliant vendors [15].

With respect to simulation, Canonico et al. [10] present
an XML application for describing generic network sce-
narios as well as the process for translating the scenarios
into a simulation script for a network simulator. Wang and
Lu [55] develop an XML application to represent discrete
event simulation models based on the DEVS (Discrete
Event System Specification) approach [58], while Lu et
al. [49] and Qiao et al. [52] discuss cases utilizing an
XML-based simulation interface specification being
developed by the National Institute of Standards and
Technology (NIST).

Several XML-based languages are available to
represent graph models. Examples include GraphML
[7], GXL [33], and NaGML [5]. In general, these
languages share a common purpose of providing an
easy-to-use format for representing graphs that facil-
itates the sharing and exchange of such models.
However, the languages differ with respect to problem
domain focus, implementation specifics, and features.
For example, GXL evolved from the software re-
engineering community with an emphasis on represent-
ing and exchanging software engineering artifacts as
graphs while GraphML was initiated during the 2000
Graph Drawing Symposium in Williamsburg, Virginia
as a mean to represent graphs. To accommodate problem
domain specifics, NaGML allows users to specify the
name, data type, and restrictions for each node and arc
property thus defining a problem domain schema within
the document.

In the context of optimization models, a number of
XML-based languages have been proposed [4]. Fourer
et al. [24] propose Optimization Service Instance
Language (OSiL) an XML-based computer language
for representing instances of large-scale optimiza-
tion problems including linear programs, mixed-integer
programs, quadratic programs, and very general non-
linear programs. Fourer et al. [23] propose LPFML as

794 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

an XML schema for representing linear programming
(LP) models and a set of C++ classes for translating
models to and from LPFML. The language facilitates
interoperability among modeling languages and solvers
by reducing the number of drivers needed. While
LPFML allows for a standard representation of LP
models, the focus is on representing model (problem)
instances as opposed to model structure (schema). In
effect, model data and solution are stored with the
model definition. Moreover, and contrary to mathe-
matical programming languages such as GAMS and
LINGO, LPFML does not make use of sets to repre-
sent models at a higher level of abstraction. Other
related work include OptML [42] and SNOML [48].
Both languages focus on representing instances of
linear and mixed integer programming models at the
matrix level. In the context of a comprehensive frame-
work for optimization, Ezechukwu and Maros [19]
propose an architecture supporting distributed optimi-
zation over the Internet. At the core of the architec-
ture are two XML-based languages, namely, Algebraic
Modeling Language (AML) for representing mo-
dels, and Optimization Reporting Markup Language
(ORML) for representing model solutions, and a
collection of Java programs referred to as Optimization
Service Connectivity Protocol (OSCP) that are respon-
sible for converting AML models to a target system for
execution and converting model results to ORML.

Nevertheless, only Kim [40] provides an XML-based
markup language that is based on a modeling formalism,
thereby potentially realizing many of the desirable
MM features mentioned earlier. The proposed language
OOSML (Object-Oriented Structured Markup Lan-
guage) is a pioneering effort in this area with some
significant drawbacks. Firstly, OOSML utilizes XML
Document Type Definition (DTD) which is becoming
obsolete and incapable of representing complex struc-
tures. Moreover, the DTD presented lacks support for
representing mathematical equations and explicit
indexing. The instance representation is also not generic
in nature, and it is not possible to validate an instance file
and to enforce the rules for writing a goodmodel instance
document.

3.2. Limitations of existing XML-based languages for
model representation

In contrary to earlier model management and re-
presentation efforts, a primary motivation for XML-
based languages for representing models is facilitating
model sharing in distributed environments. Towards
this end, and with the exception of Kim [40], these

approaches tend to violate model management and
representation requirements such as paradigm inde-
pendence and model-data independence. This can be
attributed to the problem-focus of the proposed
approaches and the absence of a conceptual founda-
tion for representing models at a higher level of
abstraction.

4. Structured modeling and XML

Among the aforementioned approaches and asso-
ciated languages, structured modeling (SM) is partic-
ularly attractive. Specifically, SM has many features
that are highly desirable from a MM perspective
[26,41], most notably are the independence of mo-
del representation and model solution, the sufficient
generality to encompass a wide variety of modeling
paradigms, and the representational independence
of general model structure from the detailed data
needed to describe specific model instances [26].
Having SM as a conceptual foundation for SMML
facilitates model management tasks such model for-
mulation [46] and model composition [32] where
they used variants of SM as an underlying represen-
tation scheme. Moreover, SM offers distinct advanta-
ges when it comes to model integration. Specifically,
SM allows for testing if a given structure (model)
is a valid structure and for assessing the impact of
a change to a model as it is integrated with another
model [41]. It is also the basis for a number of pro-
posals for model representation including object
oriented approaches [25,36,44,50], relational-based
approaches such as [16,43], and graphic-based ap-
proaches such as GBMS/SM [13]. Finally, SM is
compatible with XML. All this makes SM a use-
ful tool and formal foundation for any modeling
environment.

On the other hand, XML offer distinct advantages
with respect to sharing information in general and
models in particular in a heterogeneous distributed
environment. Specifically, XML representations are
vendor independent thereby supporting interoperability,
extensible thereby amenable to continuous enhance-
ments, and compatible with the latest Internet technol-
ogies and architectures such as web services, Simple
Object Access Protocol (SOAP), and service oriented
architectures (SOA). Moreover, the proliferation of
XML made available numerous development tools and
resources further simplifying the process of producing
and consuming XML-based models.

In light of the aforementioned discussion, our
proposal seeks to leverage structured modeling, XML,

795O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

and the synergy that exist as means for representing
models to facilitate model sharing in distributed
environments. In effect, we can summarize the con-
tributions of the work as follows:

• It leverages SM to provide a conceptual framework
for representing models and thereby meeting design
requirements for model management such as the
ability to reuse existing models with different data
sets and different solvers.

• It is an XML application and is thereby com-
patible with the Internet, facilitates model sha-
ring in a distributed environment by providing a
standard and portable format for model repre-
sentation, and leverages existing and latest deve-
lopments in Internet and web technologies and
architectures.

• It extends [40] by providing a more general and
complete view for integrating SM and XML.
Specifically, this research uses XML schemas for
model representation thereby leveraging the rich-
ness of data types, the extensive support for name
spaces and the other advantages of schemas over
DTDs [6,18]. For example, by using a schema we
can define and restrict data values in models [23].
There is a separate schema to validate a model
instance and enforce rules that checks for consis-
tency of data. The use of schemas ensures the
stability of the standard. Last but not least, SMML
utilizes MathML [56] as a standardized means for
representing equations.

5. Model representation using SMML

SM recognizes a set of genus elements, their types,
index, indexsets, interpretation, etc. as explained in
[26]. Each SM model follows these guidelines for
defining model elements. XML schemas define a
markup language (a vocabulary) for validating model
schemas and model instances against these guidelines.
The proposed markup language that is used to faci-
litate the defining of models is referred to as Struc-
tured Modeling Markup Language (SMML). There
are two separate XML schemas as part of SMML:
ModelStructure.xsd is used to validate all model
schemas and ModelInstance.xsd is used to validate
model instances. A model schema is the SM repre-
sentation of a model, also called model structure and
is an XML document. Similarly, a model instance is
also an XML document that provides the data for a
particular model schema. For any model schema there
can be one or more model instances/data.

In representing XML schemas (vocabularies), several
authors advocate the use of the Unified Modeling
Language (UML) [11,34]. In effect, using UML to
represent XML schemas:

• Clearly depicts the semantics and structure of the
underlying vocabulary, information that is often
obscured in the lengthy text-based documents.

• Provides a visual notation that is implementation
neutral.

• Facilitates reading and understanding by non-com-
puter scientists.

• Relies on a de facto standard with readily available
documentation in the form of books, web resources
and articles.

Fig. 1 depicts a UML class diagram representing the
SMML vocabulary. A model schema always starts with
the bMODELN element (denoted using a UML class)
with attributes such as name, level, description, key-
words, and type. Level can have any one of the values 1,
2, 3 or 4 and specifies the complexity of the schema
[30,31]. The type specifies the category of modeling
(also called modeling techniques) to which the model
belongs, such as optimization, simulation, etc. The name
attribute specifies a name for the model and can also be
used to search for the model. Other attributes of element
MODEL specify the location of the XML schema file,
i.e., ModelStructure.xsd. The MODEL element may
optionally be followed by the element KEYWORDS
which may be followed by a model DESCRIPTION.

A model can be further decomposed into any number
of genus and module paragraphs as noted by the
composition relationships between the model and
module and genus classes. In turn, a module element
(paragraph in SM terminology) can consist of any
number of genus and module elements. Genus elements
are the lowest level in the hierarchy. A genus element
can have attribute types (represented as XML elements).
The attributes common to all genus elements are the
name, type, index, and interpretation attributes. Type
can take any one of the six values: “pe”, “ce”, “a”, “va”,
“f” or “t”, corresponding to primitive entity, compound
entity, attribute, variable attribute, function or test,
respectively. A genus element can have exactly one of
the attribute types. In addition to the common attributes,
each type introduces some special attributes for the
genus element. For example, the genus element of types
“ce”, “a”, “va”, “f” or “t”, has two more attri-
butes, namely, “calling sequence”, and “indexset”.
Furthermore, “f” and “t” also introduce a “rule” which
describes the equation used (function description) and is

796 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

represented using MathML. In effect, the genus type
specializes a typical genus by specifying which
attributes are relevant. This is denoted by the inheritance
relationship in the UML model.

5.1. Writing a model schema in SMML

When writing a model schema using SMML, certain
guidelines and rules have to be followed. These rules are

Fig. 1. Model schema and instance architecture in SM. a) Model schema architecture. b) Model instance architecture.

797O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

enforced by the XML schema ‘ModelStructure.xsd’. The
following is a code snippet of ModelStructure.xsd
depicting genus definition:

bxsd:complexTypename="GenusType"N

bxsd:sequenceN

bxsd:element name="TYPE"N
bxsd:simpleTypeN

bxsd:restriction base="xsd:string"N
bxsd:pattern value="pe|ce|a|va|f|t"/N
b/xsd:restrictionN

b/xsd:simpleTypeN

b/xsd:elementN

b/xsd:sequenceN

bxsd:attributename="name"type="xsd:string"/N
b/xsd:complexTypeN……
bxsd:element name="GENUS" type="GenusType"/N

The last statement indicates that element “GENUS” is a
complex type having elements and attributes. The name of
the complex type is “GenusType”which corresponds to the
“Genus” class in the UML model. The definition of
“GenusType” in the first statement indicates that it can have
a child element called “TYPE” which is the type of the
GENUS element and can take any one of the values “pe”,
“ce’, ”a”, “va”, “f” or “t” noted earlier. GENUS element can
also have an attribute “name” which is unique for each
GENUS element and identifies the name of the GENUS.
There is a one-to-one correspondence with the SM model
schema architecture described in Fig. 1. Corresponding to a
genus element, the XML schema defines a GENUS
element. Amodule paragraph is defined using aMODULE
element. The following SMML is a code snippet from the
model schema representation of the transportation problem:

bGENUS name="PLANT"N

bTYPENpeb/TYPEN

bINDEXNib/INDEXN
bINTERPRETATIONNThere is a list of

bKEY_PHRASENPLANTSb/KEY_PHRASEN.
b/INTERPRETATIONN

b/GENUSN
bGENUS name="SUP"N

bTYPENab/TYPEN

bCALLING_SEQN

bGENUSREF refer="PLANT"/N
b/CALLING_SEQN

bINDEXSETN

bGENUSREF refer="PLANT"/N

b/INDEXSETN

bRANGENR+b/RANGEN

bINTERPRETATIONNEvery PLANT has a

bKEY_PHRASENSUPPLY CAPACITYb/KEY_PHRASEN
measured in tons.

b/INTERPRETATIONN
b/GENUSN

Each GENUS element has a bTYPEN and b/TYPEN
tag that encloses any of the six values from the list
“pe”, “ce”, “a”, “va”, “f” or “t”. For a “pe” element,
the TYPE element is immediately followed by an
bINDEXN element, which encloses the index value,
e.g., bINDEXNib/INDEXN, and associates an index i
with the genus. Indices are useful in set-based
arithmetic.

The example shows the listing for two genera:
PLANT and SUP. PLANT is a primitive entity and is
assigned type as “pe” and has an INDEX element
associated with it indicating that there can be a set of
plants. SUP is an attribute type and assigned a value of
“a” for the type and has an INDEXSET associated with
it identifying the set of primitive elements over which
the genus is defined. In this example, each SUP is
associated with a PLANT through the INDEXSET and
GENUSREF elements.

The CALLING_SEQ element is used to include all
the other elements to which a genus refers. INDEXSET
is the set of elements that this genus is based on. With
each attribute genus an element RANGE may be
associated which defines the range of values for the
attribute. Each “f” and “t” type genus contains a
FUNCTION_DESC element. For representing equa-
tions, MathML is used which requires a namespace
definition in the FUNCTION_DESC element. For
example, a genus paragraph for element T:DEM
(demand constraint for customers) in SM would be:

T:DEM(FLOW.j,DEMj) /t/; SUMi(FLOWij)=DEMj

T:DEM is defined over the set of customers, i.e.,
CUST element. T:DEM is calculated for each CUST
value. Below is a representation for the T:DEM genus in
SMML and utilizing MathML:

bGENUS name="T:DEM"N

bTYPENtb/TYPEN

bCALLING_SEQN

bGENUSREF refer="FLOW"/N

bGENUSREF refer="DEM"/N

b/CALLING_SEQN

bINDEXSETN

bGENUSREF refer="CUST"/N

b/INDEXSETN

bFUNCTION_DESC xmlns:m="http://www.w3.org/

1998/Math/MathML"N

bm:applyN
bm:eq/N

bm:applyN
bm:sum/N
bm:bvarN

798 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

bm:applyN
bm:selector/N
bm:ci type="vector"NPLANTb/m:ciN
bm:ciNib/m:ciN

b/m:applyN
b/m:bvarN
bm:applyN

bm:selector/N
bm:ci type="matrix"NFLOWb/m:ciN
bm:ciNib/m:ciN
bm:ciNjb/m:ciN

b/m:applyN
b/m:applyN
bm:applyN

bm:selector/N
bm:ci type="vector"NDEMb/m:ciN
bm:ciNjb/m:ciN

b/m:applyN

b/m:applyN

b/FUNCTION_DESCN

bINTERPRETATIONNIs the total FLOW arriving at a

CUSTOMER exactly equal to its DEMAND? This is

called the

bKEY_PHRASENDEMAND TESTb/KEY_PHRASEN.

b/INTERPRETATIONN
b/GENUSN

5.2. Writing a model instance in SMML

A model instance is used to represent a particular set
of data for a model. The XML schema file used to
validate model instances is called ‘ModelInstance.xsd’.
Using UML, we can represent the SMML vocabulary as
shown in Fig. 1b. Amodel instance always starts with the
tag bELEMENTAL_DETAILN denoted by the “elemen-
talDetail” class. It has attributes such as ‘name’, ‘refer’,
and ‘namespace’. The ‘name’ should be the name of the
model schema to which it belongs. The ‘refer’ attribute
may contain the physical filename or the location for the
model schema. The way a model instance is represented
in SM is through a table structure. The XML schema
follows this convention so as to keep the data repre-
sentation as generic in nature as possible. The namespace
attribute should specify the address of ModelInstance.
xsd to allow validating parsers to identify the schema to
which to validate against.

The root element may be followed by any number
of TABLE and PARAMETER elements in any order
as noted by the composition relationship between the
“elementalDetail” class and the “parameter” and the
“table” class. Each table is comprised of a set of field
type definitions defining a record description and a
set of records. Each record is comprised of a set of
field values corresponding to the field definition of
the record description. The following is a code

snippet for the model instance file for transportation
problem:

bTABLEN

bNAMENPLANTb/NAMEN

bRECORD_DESCN

bFIELDN
bNAMENPLANTb/NAMEN
bTYPENstringb/TYPEN

b/FIELDN

bFIELDN
bNAMENSUPb/NAMEN
bTYPENrealb/TYPEN

b/FIELDN

bPRIMARY_KEYN
bFIELD name="PLANT"/N

b/PRIMARY_KEYN

b/RECORD_DESCN

bRECORDN

bFIELD name="PLANT" value="DAL"/N

bFIELD name="SUP" value="20000"/N

b/RECORDN

bRECORDN

bFIELD name="PLANT" value="CHI"/N

bFIELD name="SUP" value="42000"/N

b/RECORDN
b/TABLEN

As shown in this example, bTABLEN tag denotes
the start of a table structure. Each elemental detail table
translates to a TABLE element in a model instance.
Each TABLE has a name to identify it uniquely. Each
table has a record description (the bRECORD_DESCN
tag) which lists the fields in the TABLE. Each field is
denoted by a FIELD tag which can have three
elements. NAME and TYPE are mandatory and define
the name and data type of the field. The TYPE ele-
ment can take any of the four values: integer, real,
Boolean or string. In addition there is a third field,
FOREIGN_KEY, which is optional and is used only
when the field is related to a field in another table, i.e.,
is a foreign key. FOREIGN_KEY is an empty element,
meaning it has no content, and has only one attri-
bute, refer, which contains the name of an existing
PRIMARY_KEY field in another table. The FIELD
tags are followed by optional PRIMARY_KEY or
UNIQUE_KEY. PRIMARY_KEY can contain only one
FIELD element that contains a reference to one of the
field names defined in the table.

UNIQUE_KEY is used where the primary key is a
composite key, composed of more than one field as
show in the following example of a record description

799O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

containing foreign field references and the use of
FOREIGN_KEY tag:

bRECORD_DESCN

bFIELDN

bNAMENPLANTb/NAMEN

bTYPENstringb/TYPEN

bFOREIGN_KEY field="PLANT"/N

b/FIELDN

bFIELDN

bNAMENCUSTb/NAMEN

bTYPENstringb/TYPEN

bFOREIGN_KEY field="CUST"/N

b/FIELDN

bFIELDN

bNAMENCOSTb/NAMEN

bTYPENrealb/TYPEN

b/FIELDN

bUNIQUE_KEYN

bFIELD name="PLANT"/N

bFIELD name="CUST"/N

b/UNIQUE_KEYN
b/RECORD_DESCN

Corresponding to the number of records in the table,
there are as many RECORD tags or elements. Each
record element has the same number of FIELD
elements as listed in the record description. Each
FIELD element has a name and a value. Each
RECORD is supposed to have a uniform structure
within a table. This type of structure closely resembles
a table structure in a database. The table definition itself
contains the metadata. Notice that the model instance
document does not contain the function and test genus
element values as they can be calculated from the data
provided. Inclusion of decision variables is optional
and if included, can provide a starting point for
calculations and should provide a feasible solution to
the problem.

What ties the model schema and a model instance
together are the FIELD names used. The FIELD names
used should be the same as already defined in the
model or there is no way to relate it to the model
schema. The fields in the table should have the same
name as the ones used to define the genus in the model
schema. So, for the transportation problem, the
PLANT genus defines the list of plants. In the model
instance too, the field name must have a value PLANT
to be able to assign values to the GENUS plant. There
might be situations where there is an element that does
not belong to a set or is not part of a table, as it is a
simple entity with just a single value. In that case, it

can be defined as a PARAMETER entity. Below is an
example:

bPARAMETERN

bNAMENLABOR_SUPPLYb/NAMEN

bTYPENintegerb/TYPEN

bVALUEN160b/VALUEN
b/PARAMETERN

This statement translates as LABOR_SUPPLY=160.
Each PARAMETER element has a NAME, TYPE and
VALUE element associated with it. The name is the
GENUS name for which TYPE and a VALUE is provided.

6. Supporting architectures

SMML is a model representation language that is
platform and vendor independent, provide for model-
instance independence, and provide a standardized
format for exchanging models. The following sub-
sections provide two alternative architectures supporting
model sharing and exchange in a distributed environ-
ment where SMML represent the primary mechanism
for representing models.

6.1. A centralized architecture

There are three tiers to the architecture of the system:
a server, middle and a client tier as depicted in Fig. 2a.
The server tier is comprised of a model management
system (MMS) responsible for storing, retrieving, and
querying the database of model schema and associated
model instances (data). All model schema and instances
are stored as XML text files using the Structured
Modeling Markup Language (SMML). To facilitate
model management functions [41], the MMS maintains
information about models in a relational database.
Moreover, by using XML technologies such as XPath,
the MMS can directly query the repository of SMML
models.

The middle tier is comprised of a Parser/translator
manager that manages (adds, updates, retrieves, deletes,
and searches) a library of parsers/translators. The purpose
of the parsers/translators is to translate platform dependent
models into SMML. For example, GAMS and Excel
translators can translate GAMS and spreadsheet models,
respectively into SMML. By the same token, parsers are
needed to parse SMML model schemas and instances and
generate platform specific models. Such parsers can
generate alternate model representation such as GAMS
(for which a solver needs to be invoked) or can directly
generate model files for a specific solver.

800 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

The client tier is comprised of model providers, model
consumers, and parser/translator providers. Model provi-
ders and consumersmay be using heterogeneousmodeling
tools and environments (platforms) like LINDO, Excel and

GAMS.Using translators available through themiddle tier,
model providers can convert platform dependent models
into SMMLmodels shareable on the web and then upload
them. Similarly model consumers can download SMML

Fig. 2. System architecture for the Web-based System. a) A centralized architecture. b) A decentralized web-services-based architecture.

801O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

models and convert them to platform dependent models
and use the models on these platforms.

It should be noted, however, that the components
comprising the middle tier can be considered part of the

server tier. Likewise, translators for individual platforms
may be developed and maintained by model providers,
while the development of parsers may be the responsi-
bility ofmodel consumers, i.e., migrating the functionality

Fig. 3. Sample screens for web-based system. a) Model Schema Uploading through the Web server. b) Specifying a search criteria for models.

802 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

of the middle tier to the client tier. Regardless, explicitly
representing a middle tier highlights the importance of
parsers and translators in the proposed architecture aswell
as the need to manage these parsers/translators as a
resource to maximize reuse and sharing.

6.2. A decentralized web services-based architecture

Alternatively, SMML can be used to represent models
in a decentralizedweb services-based architecture [17]. At
the core of the architecture is a service bus providing the
underlying communication infrastructure for the various
services (Fig. 2b). The bus supports intra and inter-
organization communication among services by imple-
menting web services standards such as SOAP over
HTTP. Connected to the bus is a collection of decision
support services such as user interface services, database
management services, and model management services.
These services provide access to a variety of decision
support resources such as data, models, and solvers. A
decision support component acting as a client, can locate
(by using discovery services) and access any of the
services connected to the bus irrespective of the physical
location of the service. To facilitate intra and inter-
organizational communication among services, the archi-
tecture adopts XML web services in which all services
communicate via Internet protocols and all data messages
are sent and received as XML documents.

Model management services provide access to and
management of a variety of modeling resources. These
resources include specialized solvers, model schemas
represented as text files, and models as executable
components. Different types of services are needed to
utilize the various resources. For executable models and
solvers, proxy services are used to encapsulate the
functionality of existing modules as web services. For
model schemas represented as stand-alone non-execut-
able SMML models, schema wrapper services encap-
sulate the functionality and purpose of the underlying
models and coordinate the interface with other services
to successfully execute these models.

In this architecture, model parsers/translators and
solvers are distributed as web services. Adopting XML
web services, discovery services are implemented as Uni-
versal Description, Discovery, and Integration (UDDI)
server managing information about all registered services.
Discovery services can be used by model producers to
register their models and solvers as web services and by
model consumers to locate relevant models and solvers.
Similar to the centralized model, once a parser/translator is
created and registered for a particular modeling environ-
ment, it is available for use by other model consumers.

7. Case studies

Anumber ofmodels representing levels 1, 2, 3, and 4 of
structured modeling as outlined by [28,30,31] have been
successfully represented in SMML including a DOS
glossary, a tournament graph, a beam deflection model
from structural mechanics, an income statement spread-
sheet, a contract as an example of propositional calculus
modeling, a Russian roulette, a blending model, a capital
planning model, an economic order quantity (EOQ)
model, a feed mix model, an instructor’s grade book, a
Markov chain model, a Product mix model, a set covering
model as an example of predicate calculus modeling, a
staff scheduling model, a transportation planning model, a
PERT model, a production planning model, a relational
data modeling example, and a semantic data modeling
example. For illustration purposes, this section describes
two cases studies. Case study 1 demonstrates the use of
SMML via a small, yet complete example, while case
study 2 demonstrates the use of SMML in a centralized
architecture through the design and implementation of a
prototype system for sharing models on the Internet.

7.1. Case study 1: An SMML representation of
SATELLITE model

An earth's satellite's orbit can be disturbed by gravi-
tational forces directed toward other objects that it en-
counters. Based on their mass and proximity of such
objects, we can calculate whether or not they pose a threat
to the satellite's orbit. The force which an object exerts on a
satellite is proportional to the product of the masses of the
satellite and the object, inversely proportional to the product
of the masses of the satellite and the object, and inversely
proportional to the square of the distance between them.
The proportionality factor is the gravitational constant. It is
assumed that the object is a threat if it exerts enough force to
accelerate one gram by one millimeter per second, i.e., if it
exerts a force of at least 10−6. A model schema for the
Satellite problem just discussed is presented next:

b?xml version="1.0"?N

bms:MODEL name="Satellite" Level="2" type=

"Optimization"

xmlns:xsi="http://www.w3.org/2001/XML

Schema-instance"

xmlns:ms="http://www.dsu.edu/2004/Model

Structure"

xsi:schemaLocation="http://www.dsu.edu/2004/

ModelStructure

http://localhost/myweb/models/ModelStructure.

xsd

http://www.w3.org/1998/Math/MathML

http://localhost/myweb/models/MathML.xsd"N

803O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

bKEYWORDSN
bKEYWORDNSatelliteb/KEYWORDN

b/KEYWORDSN

bGENUS name="SATELLITE"N
bTYPENpeb/TYPEN

bINTERPRETATIONNThere is a

bKEY_PHRASENSATELLITEb/KEY_PHRASEN
inspace.b/INTERPRETATIONN

b/GENUSN

bGENUS name="OBJECT"N
bTYPENpeb/TYPEN
bINTERPRETATIONNThere is an

bKEY_PHRASENOBJECTb/KEY_PHRASEN
in space.b/INTERPRETATIONN

b/GENUSN

bGENUS name="S_MASS"N
bTYPENab/TYPEN
bCALLING_SEQN

bGENUSREF refer="SATELLITE"/N

b/CALLING_SEQN

bRANGENReal+b/RANGEN

bINTERPRETATIONNThe SATELLITE

has a certainbKEY_PHRASEN
SATELLITE MASSb/KEY_PHRASENin
kg.b/INTERPRETATIONN

b/GENUSN

bGENUS name="O_MASS"N
bTYPENvab/TYPEN
bCALLING_SEQN

bGENUSREF refer="OBJECT"/N
b/CALLING_SEQN
bRANGENReal+b/RANGEN
bINTERPRETATIONNTheOBJECT

hasacertainbKEY_PHRASEN
OBJECTMASSb/KEY_PHRASENinkg.

b/INTERPRETATIONN

b/GENUSN

bGENUS name="D"N
bTYPENvab/TYPEN
bCALLING_SEQN

bGENUSREF refer="SATELLITE"/N
bGENUSREF refer="OBJECT"/N

b/CALLING_SEQN
bRANGENReal+b/RANGEN
bINTERPRETATIONNTheSATELLITE

andOBJECTareacertain

bKEY_PHRASENDISTANCEb/KEY_PHRASEN
apart in meters.b/INTERPRETATIONN

b/GENUSN

bGENUS name="FORCE"N
bTYPENfb/TYPEN
bCALLING_SEQN

bGENUSREF refer="S_MASS"/N
bGENUSRE refer="O_MASS"/N
bGENUSREF refer="D"/N

b/CALLING_SEQN
bFUNCTION_DESC xmlns:m="http://www.w3.org/

1998/Math/MathML"N

:

:function description in MathML

:

b/FUNCTION_DESCN
bINTERPRETATIONNTheOBJECTexertsacertain

bKEY_PHRASENFORCEb/KEY_PHRASENonthe

SATELLITEinnewtons,according

totheNewton’sLawof

Gravitation.b/INTERPRETATIONN

b/GENUSN

bGENUS name="THREAT"N
bTYPENtb/TYPEN
bCALLING_SEQN

bGENUSREF refer="FORCE"/N

b/CALLING_SEQN
bFUNCTION_DESC xmlns:m="http://www.w3.org/

1998/Math/MathML"N
:

:function description in MathML

:

b/FUNCTION_DESCN
bINTERPRETATIONNThe OBJECT

one is abKEY_PHRASENTHREATb/KEY_PHRASEN
to the SATELLITE if and only

if it exerts a FORCE of greater than

one millionth of a newton.b/INTERPRETATIONN

b/GENUSN

b/ms:MODELN

Since none of the element values appear more than
once, we can combine all the elements and values into a
single TABLE element with a single record. A model
instance is presented next:

b?xml version="1.0"?N
bELEMENTAL_DETAIL name="Satellite" refer=

"Satellite.xml" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchema

Location="http://localhost/myweb/models/Model

Instance.xsd"N

bTABLEN

bNAMENSATELLITEb/NAMEN

bRECORD_DESCN
bFIELDN

bNAMENS_MASSb/NAMEN
bTYPENrealb/TYPEN

b/FIELDN
bFIELDN

bNAMENO_MASSb/NAMEN

bTYPENrealb/TYPEN
b/FIELDN
bFIELDN

bNAMENDb/NAMEN
bTYPENrealb/TYPEN

b/FIELDN

b/RECORD_DESCN

bRECORDN
bFIELD name="S_MASS" value="100"/N

bFIELD name="O_MASS" value="2000"/N

bFIELD name="D" value="200"/N

b/RECORDN

b/TABLEN

b/ELEMENTAL_DETAILN

804 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

7.2. Case study 2

There are two types of users, model suppliers and
model consumers. Model suppliers upload the models to

the model repository on the Web (Fig. 3a) and model
consumers search and download these models to their
local machines (Fig. 3b). These users may be using
various modeling tools like GAMS, LINDO, Stella, etc.

Fig. 4. LINGO Solver Application. a) SMML Model to LINGO Model Conversion. b) LINGO Solution generation using a LINGO model.

805O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

Since the models are written in SMML, the users need a
system that allows for easy conversion of SMMLmodels
to platform-dependent models and vice versa. To
demonstrate the ease of converting SMML models to a
platform dependent model, the research builds a stand-
alone windows application for converting LINGO
models to and from SMML. The application demon-
strates that an XMLmodel schema together with a model
instance for that schema can be integrated to generate a
LINGO model. The model consumers using LINGO
solver can download the SMML models and easily
convert them to a LINGO model. The application also
allows the user to solve the model by interfacing with the
LINGO Dynamic Link Library (DLL).

Model suppliers, on the other hand, can convert their
LINGO models to SMML models with the click of a
mouse and upload them to the Web repository for others
to benefit from the model written already. For this
purpose, the application takes as input a LINGO model
and generates a valid model schema and/or a model
instance. The application has been successfully used to
convert SMML models to LINGO and vice versa. The
application has also been successfully used to solve a
LINGO model once generated from SMML models.
The case study uses a custom built equation parser in
VB.NET and parses MathML equations written using
content markup only. Fig. 4 shows screen shots of the
client-side application environment.

8. Results and conclusion

In summary, this paper proposes an XML-based
schema and supporting architectures for sharing hetero-
geneous models in distributed environments using a
standardized model representation. SMML is based on
structured modeling as a conceptual modeling frame-
work. Such a language will prove helpful in bringing
together modelers using disparate modeling tools and
environment. The paper demonstrates the proposed
schema using a case study including server side
components for maintaining a shared web-based model
repository and client-side components for converting
models to and from SMML.

The XML-based schema leverages the synergy
between SM and XML to facilitate model representation
and sharing in a distributed environment. While XML
provides the means for sharing and exchanging man-
agement models, SM provides the formalism and
foundation for such markup language. In effect,
SMML as an XML-based language facilitates model
sharing by acting as an intermediate representational
mechanism for documenting the semantics and use of

models. Instead of the need for creating translators
between pairs of different model representation schemes,
it is sufficient to create translators between each model
representation scheme and SMML. Moreover, by
grounding SMML in SM, we leverage desirable model
representation features such as paradigm independence,
model-data independence, and model-solver indepen-
dence thereby facilitating model reuse. Aside from
facilitating the creation of a lifetime repository of
models, an XML representation of models that is
grounded in theory creates unprecedented opportunities
for leveraging web technologies such as web services
and recent developments in enterprise development such
as service-oriented architecture (SOA).

8.1. Limitations and directions for future research

From a model management perspective, the proposed
schema provides a foundation for model sharing and
representation. However, issues relating to leveraging
the proposed developments beyond model representa-
tion and into model composition, and integration are
warranted. Revisiting and extending the literature on
model composition in ways that leverage XML and
distributed environments is a natural next step.

Founding SMML in SM contributes to its soundness
and completeness as it leverages the results of similar
research on SM while having SMML as an XML-based
language leverages the extensibility of XML in
supporting continuous improvements of the language.
However, since the research is conducted on a set of
models mostly taken from [26,30,31] and the LINGO
User's Guide [47], future work should expand upon
these models to include a comprehensive list of models
from several modeling paradigms such as simulation,
simultaneous differential equations, stochastic models,
etc.

With the inherent compatibility among SM, object-
oriented (OO) modeling, and XML, future research
needs to further capitalize on such synergy to develop
modeling environments that can easily translate from
SMML model representations into OO constructs
executable in distributed environment. Future work is
also needed to standardize such a modeling language
through practical reviews and modifications.

On the technical front, XML supporting technologies
such as Simple API for XML (SAX) and Document
Object Model (DOM) provide programmatic interfaces
that facilitate the creation of programs to process and
produce XML document such as model translators.
eXtensible Stylesheet Language Transformation
(XSLT) supports the creation of translators by providing

806 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

an XML-based programming language for translating
XML documents into other text formats. While such
technologies facilitates the creation of model translators,
issues related to the performance requirements as well as
the complexity of developing parsers and translators
warrants further investigation. Complexity relates to
cost and can seriously affect the adoption and diffusion
of such technology at the intra- and inter-organizational
level. Related organizational issues relate to who (e.g.,
vendors, government, and non-government organiza-
tions) would create such translators and why? What are
the critical success factors for adopting and implement-
ing the proposed infrastructure? Future work is also
needed to capitalize on the recent technological
developments in native XML databases (NXD).

Acknowledgments

This material is based upon work supported by the
National Science Foundation/EPSCoR Grant #EPS-
0091948 and by the State of South Dakota. The usual
disclaimer applies.

References

[1] H.K. Bhargava, S.O. Kimbrough, Embedded languages for
model management, Decision Support Systems 10 (3) (1993)
277–299.

[2] R.W. Blanning, A relational framework for join implementation in
model management, Decision Support Systems 1 (1985) 69–85.

[3] R.W. Blanning, Model management systems: an overview,
Decision Support Systems 9 (1993) 9–18.

[4] G.H. Bradley, Introduction to eXtensible Markup Language
(XML) with Operations Research Examples, INFORMS Com-
puter Society Newsletter, 2003.

[5] G.H. Bradley, Network andGraphMarkup Language (NaGML)—
Data File Formats, presented at Ninth INFORMS Computing
Society Conference, Maryland, 2005.

[6] N. Bradley, The XML Companion, 3rd. ed. Addison-Wesley,
Boston, MA, 2002.

[7] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M. Marshall,
GraphML, Retrieved from http://graphml.graphdrawing.org/ on
(6/12/2006).

[8] A. Brooke, D. Kendrick, E. Meeraus, GAMS: A Users Guide,
The Scientific Press, Redwood City, CA, 1988.

[9] H. Bunke, Attributed programmed graph-grammars and their
applications to schematic diagram interpretation, IEEE Transaction
on Pattern Analysis and Machine Intelligence 4 (1982) 574–582.

[10] R. Canonico, D. Emma, G. Ventre, “An XML Based Network
Simulation Description Language,” presented at 7th International
Symposium on Distributed Simulation and Real Time Applica-
tions (DS-RT 2003), Delft, Netherlands, 2003.

[11] D. Carlson, Modeling XML Applications with UML: Practical
E-Business Applications, Addison-Wesley, Boston, 2001.

[12] A.-M. Chang, C.W. Holsapple, A.B. Whinston, Model manage-
ment issues and directions, Decision Support Systems 9 (1993)
19–37.

[13] K. Chari, T.K. Sen, An implementation of a Graph-Based
Modeling System for Structured Modeling (GBMS/SM), Deci-
sion Support Systems (1998) 103–120.

[14] J. Choobineh, SQLMP: a data sublanguage representation and
formulation of linear mathematical models, ORSA Journal of
Computing 3 (1991).

[15] Data Mining Group, Predictive Model Markup Language
(PMML), Retrieved from http://www.dmg.org/ on (1/6/2004).

[16] D.R. Dolk, Model management and structured modeling: the role
of an information resource dictionary system, Communications
of the ACM 31 (6) (1988) 704–718.

[17] T. Erl, Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services, Prentice Hall, 2004.

[18] K.A. Evans, K. Kamanna, J. Mueller, XML and ASP.NET, New
Riders Publishing, Indianapolis, IN, 2002.

[19] O.C. Ezechukwu, I. Maros, OOF: Open Optimization Framework,
Retrieved from http://www.doc.ic.ac.uk/old-doc/deptechrep/
DTR03-7.pdf on 2006(March 9).

[20] A. Finney, M. Hucka, Systems biology markup language: level 2
and beyond, Biochemical Society Transactions 31 (6) (2003)
1472–1473.

[21] R. Fourer, Modeling languages versus matrix generators for
linear programming, ACM Transactions on Mathematical
Software (1983) 143–183.

[22] R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming, The Scientific Press,
Redwood City, CA, 1993.

[23] R. Fourer, L. Lopes, K. Martin, LPFML: AW3C XML Schema
for Linear and Integer Programming, INFORMS Journal on
Computing 17 (2) (2005) 139–158.

[24] R. Fourer, J. Ma, K. Martin, OSiL: An Instance Language for
Optimization, Department of Industrial Engineering and Man-
agement Sciences, Northwestern University, Chicago, IL, 2006.

[25] M. Gagliardi, C. Spera, BLOOMS: a prototype modeling language
with object oriented features, Decision Support Systems 16 (1997)
1–21.

[26] A.M. Geoffrion, An introduction to structured modeling,
Management Science 33 (5) (1987) 547–588.

[27] A.M. Geoffrion, The formal aspects of structured modeling,
Operational Research 37 (1) (1989) 30–51.

[28] A.M. Geoffrion, A Library of Structured Models, Informal note,
1990.

[29] A.M. Geoffrion, FW/SM: a prototype structured modeling
environment, Management Science 37 (12) (1991) 1513–1538.

[30] A.M. Geoffrion, The SML language for structured modeling:
levels 1 and 2, Operations Research 40 (1) (1992) 38–57.

[31] A.M. Geoffrion, The SML language for structured modeling:
levels 3 and 4, Operations Research 40 (1) (1992) 58–75.

[32] M. Holocher, R. Michalski, D. Solte, F. Vicuña, MIDA:
an open systems architecture for model-oriented integration of
data and algorithms, Decision Support Systems 20 (2) (1997)
135–147.

[33] R. Holt, A. Schurr, S. Elliott, A.Winter, GraphExchange Language,
Retrieved from http://www.gupro.de/GXL/ on (6/12/2006).

[34] M. Hucka, SCHUCS: A UML-Based Approach for Describing
Data Representations Intended for XML Encoding, Retrieved from
http://sbml.org/specifications/notation/notation.pdf on (5/30/2004).

[35] M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle, H. Kitano,
A. Arkin, B. Bornstein, The Systems Biology Markup Language
(SBML): a medium for representation and exchange of
biochemical network models, Bioinformatics 19 (4) (2003)
524–531.

807O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

http://graphml.graphdrawing.org/
http://www.dmg.org/
http://www.doc.ic.ac.uk/old-doc/deptechrep/DTR03-7.pdf
http://www.doc.ic.ac.uk/old-doc/deptechrep/DTR03-7.pdf
http://www.gupro.de/GXL/

[36] S.Y. Huh, Model based construction with object oriented
constructs, Decision Sciences 24 (2) (1993) 409–434.

[37] C.V. Jones, An introduction to graph based modeling system: Part 1.
Overview, ORSA Journal of Computing 2 (2) (1990) 180–206.

[38] C.V. Jones, An introduction to graph based modeling systems,
Part 2. Graph grammars and their implementation, ORSA Journal
of Computing (1991) 180–206.

[39] S. Katz, L.J. Risman, M. Rodeh, A system for constructing linear
programming models, IBM Systems Journal 19 (4) (1980)
505–520.

[40] H. Kim, An XML-based modeling language for open interchange of
decision models, Decision Support Systems 31 (2001) 429–445.

[41] R. Krishnan, K. Chari, Model Management: Survey Future
Research Directions and a Bibliography, Retrieved from http://
www.coba.usf.edu/departments/isds/faculty/chari/model/doc.
html on (3/20/2003).

[42] B. Kristjansson, Optimization Modeling in Distributed Applica-
tions: HowNewTechnologies Such asXMLandSOAPAllowor to
Provide Web Services, Retrieved from http://www.maximal-usa.
com/slides/Montrl02/index.htm on (February 20, 2006).

[43] M.L. Lenard, Representing models as data, Journal of Manage-
ment Information Systems 2 (4) (1986) 36–48.

[44] M.L. Lenard, An object oriented approach to model manage-
ment, Decision Support Systems 9 (1993) 67–73.

[45] T.P. Liang, Integrating model management with data manage-
ment in decision support systems, Decision Support Systems
1 (3) (1985) 221–232.

[46] T.P. Liang, B.R. Konsynski, Modeling by analogy: use of
analogical reasoning in model management systems, Decision
Support Systems 9 (1993) 113–125.

[47] LINDO Systems Inc., LINGO User's Guide, LINDO Systems
Inc, Chicago, IL, 2003.

[48] L. Lopes, R. Fourer, XML-Based Proposals for Optimization,
Retrieved from senna.iems.nwu.edu/xml/ on (June 17, 2005).

[49] R.F. Lu, G. Qiao, C. Mclean, NIST XML Simulation Interface
Specification at Boeing: A Case Study, presented at 2003 Winter
Simulation Conference, Piscataway, NJ, 2003.

[50] W.A. Muhanna, An object oriented framework for model
management and DSS development, Decision Support Systems
9 (1) (1993) 217–229.

[51] W.A. Muhanna, R.A. Pick, Meta-modeling concepts and tools for
model management: a systems approach, Management Science
40 (9) (1994) 1093–1123.

[52] G. Qiao, F. Raddick, C. McLean, Data Driven Design and
Simulation System Based on XML, presented at 2003 Winter
Simulation Conference, Piscataway, NJ, 2003.

[53] B.E. Shapiro, M. Hucka, A. Finney, A. Doyle, MathSBML:
a package for manipulating SBML-based biological models,
Bioinformatics 20 (16) (2004) 2829–2831.

[54] R.H. Sprague, H.J. Watson, Model Management in MIS,
presented at Seventeenth National AIDS, Cincinnati, OH, 1975.

[55] Y.-H. Wang, Y.-C. Lu, An XML-Based DEVS Modeling Tool to
Enhance Simulation Interoperability, presented at 14th European
Simulation Symposium, 2002.

[56] H.J. Will, Model management systems, in: E. Grochla, N.
Szyperski (Eds.), Information Systems and Organization Struc-
ture, Walter de Gruyter, Berlin, 1975, pp. 468–482.

[57] W3C Math working group, Mathmatical Markup Lan-
guage (MathML), Retrieved from http://www.w3.org/tr/2003/
REC-MathML2-20031021 on (6/15/2004).

[58] B.P. Zeigler, Object-Oriented Simulation with Hierarchical
Modular Models: Intelligent Agents and Endomorphic Systems,
Academic Press, Boston, MA, 1990.

Omar El-Gayar Dr. El-Gayar is an Associate
Professor of Information Systems at the College
of Business and Information Systems, and the
Dean of Graduate Studies and Research, Dakota
State University. His research interests include:
decision support systems, multiple criteria deci-
sion making, and the application of decision
technologies in security planning and manage-
ment, healthcare, and environmental manage-

ment. He has an inter-disciplinary educational background and training in
information technology, computer science, economics, and operations
research. In addition to his academic credentials, Dr. El-Gayar has industry
experience as an analyst, modeler, and programmer. He has numerous
publications in various information technology related fields. He is a
member of AIS, ACM, INFORMS, and DSI.

Kanchana Tandekar Kanchana Tandekar
holds a Bachelor of Engineering Degree in
Computer Science from Rajiv Gandhi Techni-
cal University, Bhopal, India. She also holds a
Master of Science Degree in Information
Systems from Dakota State University, Madi-
son, SouthDakota. She's currentlyworking as a
programmer/systems analyst at Factor 360, a
web design and development company in
Pierre, SD. Her research interest includes
decision support systems, artificial intelligence,
model management systems, data mining and
warehousing.

808 O. El-Gayar, K. Tandekar / Decision Support Systems 43 (2007) 791–808

http://www.coba.usf.edu/departments/isds/faculty/chari/model/doc.html
http://www.coba.usf.edu/departments/isds/faculty/chari/model/doc.html
http://www.coba.usf.edu/departments/isds/faculty/chari/model/doc.html
http://www.maximal-usa.com/slides/Montrl02/index.htm
http://www.maximal-usa.com/slides/Montrl02/index.htm
http://senna.iems.nwu.edu/xml/
http://www.w3.org/tr/2003/REC-MathML2-20031021
http://www.w3.org/tr/2003/REC-MathML2-20031021

	An XML-based schema definition for model sharing and reuse in a distributed environment
	Recommended Citation

	An XML-based schema definition for model sharing and reuse in a distributed environment
	Introduction
	Model representation
	Requirements for model representation
	Model representation supporting model management functions
	Limitations of existing approaches

	XML and model representation
	XML-based languages for model representation
	Limitations of existing XML-based languages for model representation

	Structured modeling and XML
	Model representation using SMML
	Writing a model schema in SMML
	Writing a model instance in SMML

	Supporting architectures
	A centralized architecture
	A decentralized web services-based architecture

	Case studies
	Case study 1: An SMML representation of SATELLITE model
	Case study 2

	Results and conclusion
	Limitations and directions for future research

	Acknowledgments
	References

