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ABSTRACT 

While many researchers have attempted to 
directly apply statistical process control (SPC) to 
the software domain, several difficulties in 
applying SPC to software development, in 
particular, the inability to compute meaningful 
control limits for the process. 

In this research, we propose a framework for 
applying SPC to software projects.  The 
framework integrates SPC concepts and 
simulation metamodeling to create meaningful 
control limits on process and project inputs. The 
framework is demonstrated using a case study. 

Keywords: Software process simulation 
modeling; Statistical process control; Simulation 
metamodeling; Visualization 

INTRODUCTION 

The demand for software continues to outpace our 
production capabilities in terms of quality and 
quantity [1]. In 1995, U.S expenditure for 
software development and maintenance reached $ 
250 billion and encompasses an estimated 
175,000 projects [2]. 

In spite of the significant increase in expenditure, 
the software industry continues to experience 
what is commonly referred to as the “ software 
crisis”, namely, budget overruns, schedule delays, 
poor quality and users dissatisfaction [3]. In 1995, 
U.S companies spend an estimated $59 billion in 

cost overruns on IS projects and another $81 
billion on canceled projects [2]. 

In this vein, and over the past decade, concepts 
and methods associated with process 
improvement have gained wide acceptance in the 
software community [4]. Of particular importance 
is the application of statistical process control 
(SPC) to the software process. The strengths of 
SPC are that they provide easy to use graphical 
tools that enable the manager to visualize the 
performance of the Manufacturing process 
(system) along multiple dimensions of 
performance. 

While the application of SPC in manufacturing 
dates back to the 1920’s and was pioneered by the 
work of [5], and SPC has now been accepted 
world wide as the best method for tracking quality 
of manufacturing processes, it is only during the 
mid-eighties that attempts have been made to 
apply SPC to software [1] [6] [7] [8]. Since then, 
a number of applications have been reported in 
the literature [9] [10] [11]. Moreover, the 
Quantitative Process Management Key Process 
Area of the Capability Maturity Model requires 
that projects manage their processes quantitatively 
and recommend that SPC be applied at this level. 

However, inherent in existing applications of SPC 
to the software process is the view of software as 
a manufactured product. Accordingly, techniques 
of SPC can be applied to software processes just 
as they have been applied to manufacturing 
processes [12]. Nevertheless, as noted by [1], 
there are fundamental differences between 
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software process and manufacturing process. 
Software development process are very different 
from manufacturing processes in terms of many 
key process dimensions such as product volume, 
level of automation, standardization of processes, 
among others. Most notably, is that in software 
processes is the transformation of user 
requirement into software is dominated by 
cognitive activities, this contrasts with 
manufacturing activities where cognition is 
minimized. Moreover, in software processes, the 
input and output for the software process are 
different for each instance of the process [1]. In 
other words, each software product generated by a 
particular process is different (as determined by 
the user requirements). The interaction between 
cognitive dominated activities and different inputs 
and outputs create challenges to the application of 
SPC for software. In particular,  

1. The data regarding input and outputs 
experience great variability, which make 
it particularly difficult to develop 
meaningful control limits. 

2. It is difficult to assign cause of variability 
in the data. 

3. It is difficult to visualize the performance 
of the process using the traditional control 
limits as they typically contain too much 
variability to provide any useful guidance 
in managing the process 

These weaknesses call into question the 
applicability and the usefulness of SPC to the 
software development domain because these 
weaknesses are common to many software 
development projects. Against this background, 
the general aim of this research is to improve the 
applicability of SPC to software development 
processes. The specific objectives and tasks are as 
follows: 

• Utilize management control maps to create 
meaningful limits on the overall software 
development project performance 
measures.  We accomplish this by creating 
visual control maps based upon 
management’s goals for the project and 
utility for project outcomes. 

• Investigate the relationship between the 
variability of individual process and 

product metrics to overall project 
performance using simulation to show 
whether the process is capable of 
achieving the desired project goals. 

From a practical standpoint, this research creates 
a useful graphical method for managers to 
visualize project performance and to manage their 
software development project.  From a theoretical 
standpoint, this work explains the inherent 
difficulties of directly applying SPC to software 
development in a manner that opens the 
possibility of a variety of alternative approaches 
for making SPC a more useful tool in the software 
development domain. 

THE FRAMEWORK 

The proposed framework for process and project 
control centers on the establishment of a feedback 
links between process and project inputs (such as 
productivity, detected defects, module complexity 
and others) and the desired model outputs of cost, 
quality, and schedule. Once such links are 
established, we can then utilize such links to map 
the level and variability (expressed as control 
limits) into corresponding visual control maps for 
process inputs. 

In effect, establishing a link between process 
and/or project inputs and outputs calls for 
establishing a model between inputs and outputs. 
While several software process modeling 
approaches have been proposed in the literature 
[13] [14], in this framework, we are particularly 
interested in modeling approaches that 
quantitatively link inputs to outputs, e.g., 
regression models as used in COCOMO as well 
as software process simulation models (SPSM). 
Figure 1 illustrates a general framework linking 
process inputs to outputs through the use of a 
model.  

The model depicted can also be expressed 
mathematically as: 

)(XfY =     (1) 

Where:  

:,, ''/ YYY  is a vector of real, simulation, and 
simulation meta model output variables, 
respectively. 
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:X  is a vector of input variables. 

The mathematical representation is also valid 
even if the model is not originally depicted as 
described in equation 1. For instance, a simulation 
model can be approximated and described as in 
equation 1 through the construction of a 
simulation meta-model. 

 
Figure 1: general framework linking process 
inputs to outputs through the use of a model 

Irrespective of the quantitative formulation of the 
relationship between process inputs and outputs, 
the resultant models are always constructed with 
the output variables as the dependent variables 
and the input variables as the independent 
variables. Such models are normally used in 
estimating and forecasting process outputs, e.g., 
schedule and cost as a function of process inputs 
such as input quality, and, programmers’ 
productivity. Other application include ‘what if’ 
analysis, mostly for planning purposes. 
Accordingly, such models are of limited value 
when the purpose is to prescribe the level and 
variability for the input variables that result in 
acceptable (to managers) levels and variability for 
the output variables, i.e., ‘goal seeking’. In effect, 
from a project management and control 
perspective, such models are descriptive as 
opposed to prescriptive. 

As such, the next step, demands the formulation 
of a reverse model in which the process outputs, 
such as schedule and cost, are the independent 
variables and process inputs, such as productivity 
and input complexity are the dependent variables 

as shown in Figure 2. Since software process 
simulation offers a versatile approach to modeling 
software development process and as evidenced 
by the proliferation of SPSM techniques and 
applications reported in the literature [15], it is 
reasonable to assume that the model in Figure 1 is 
a simulation model. In this case, the second step 
in our framework reduces to the development of a 
reverse simulation meta-model as described in 
Figure 2. 

 
Figure 2: Reverse simulation metamodel 

Once a reverse meta-model is constructed, the 
third and final step is the creation of visual control 
maps (levels and control limits) using the 
management control maps (representing the voice 
of the customer) and the simulation meta-model 
developed in the preceding step. 

CASE STUDY 

The model 

In this study, we utilize a model developed by 
Peter Lakey of Cognitive Concepts [16].  The 
model is a discrete event simulation model, 
originally developed as a project management 
tool for estimating schedule, effort and quality 
during the detailed design for a computer software 
configuration item (CSCI). 

The underlying development process is an 
iterative and incremental process in which the 
CSCI is developed incrementally over a number 
of iterations. Each iteration includes a 
development phase, a review phase, and a rework 
phase. For each of the phases, the model tracks 
the effort involved as well as a number of other 
metrics such as the number of defects generated, 
found, and escaped during the process. 

An important feature of this model is the 
incorporation of System Dynamics modeling 
concept of feed back loops. Specifically, when 
evaluating these metrics the model takes into 
account a variety of process and product factors. 
Examples of product factors include the size 
quality and complexity of the input artifacts, 
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while examples of process factors include 
schedule pressure, communication overhead and 
tools support.  

The reverse simulation meta-model 

Several simulation meta-modeling and reverse 
meta-modeling are presented in the literature. See 
[17] [18] [19] for a state of the art review. In this 
case study we illustrate our framework by 
constructing an artificial neural network (ANN) 
reverse meta-model for the aforementioned 
simulation model. The steps we used are 
summarized as follows: 

1. Select the inputs and outputs. 

2. Generate the training and testing data 
sets. 

3. Select and design an ANN 

4. Train the ANN using the training data set. 

5. Test the ANN using the testing data set. 

Step 1: Select input and outputs 

The inputs for the reverse simulation meta-model 
are the outputs of the simulation model. These are 
the variables that the project manager ultimately 
cares about. In Lakey’s model these variables are: 
Effort and Number of defects. Schedule is another 
variable that we have omitted as it exhibits the 
same statistical properties as Effort. Since we are 
interested in visualizing the variation in project 
output, we use the coefficient of variation of the 
aforementioned variables. The list of inputs to the 
simulation-meta-model then becomes: 

Effort coefficient of variation ( σ/x ) 

Number of Defects coefficient of 
variation σ/x  

On the other hand, the outputs of the reverse 
simulation model are the inputs of the simulation 
model. In Lakey’s model there are a number of 
process and product inputs. Since the purpose of 
this case study is to demonstrate the applicability 
of the proposed framework, the study, at this 
stage, focused on the input variability (denoting 
the extent of variation in the size and quality of 
input artifacts) as the controllable and thus the 
output variable of the simulation meta-model. 

Step2: Generate the training and testing data sets 

Once the inputs and outputs are selected, the next 
step (step 2) is to generate the data sets needed for 
training and testing the ANN. Each of the training 
and testing data sets are comprised of 83 data 
points (experiments). For each data set, the 
simulation model is run for 83 experiments. Each 
experiment is comprised of 15 runs using 
different streams of random numbers for each of 
the runs resulting in a total of 1245 simulation 
runs per data set.  

Moreover, for each experiment the mean ( x ), 
standard deviation (σ ), and coefficient of 
variation ( σ/x ) are calculated for both output 
variables, namely, Effort and Number of defects. 
The result from each simulation experiment is an 
observation in our master data set. 

Step 3: Select and design an ANN 

In step 3 we design and implement the ANN. Of 
the several ANN paradigms that are presented in 
the literature [20], the feed-forward networks 
using back propagation learning rule are known 
for their robustness and learning ability and are 
thereby utilized in this study. Since there is very 
little experimental evidence as to the size of the 
network (in terms of the number of hidden layers 
and the size of each layer), we evaluate various 
designs. 

Step 4: Train the ANN using the training data set 

Overall, our objective is to find the ‘optimal’ 
network design. By optimal, we refer to network 
designs with the minimum number of unknown 
and the lowest mean square error (MSE). To 
minimize the number of unknowns, we seek 
networks with the minimum number of hidden 
layers and minimum number of neurons in each 
layer. Given the size of the data set, we used 
MATLAB to evaluate network designs of up to 3 
layers (including the output layer) and 6 hidden 
neurons in each layer. Figure 3 depict the 
resultant network with two layers, in which layer 
1 has 2 neurons with logsig functions and layer 2 
(the output layer) has one neuron with purlin 
function. 
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Figure 3: ANN architecture 

Step 5: Test the ANN using the testing data set 

Once we train the ANN, the next step is to test if 
the ANN exhibit good generalization, i.e., good 
performance with data not seen before. In this 
case we used a data set of 83 data points as 
described in step 2. The resultant MSE is 
comparable to the MSE corresponding to the 
training data set, thereby indicating good 
generalization. 

The visual control charts 

With the reverse simulation model in place, a 
management control map such as in Figure 4a&b 
denoting the preference of the project manager 
with respect to project variables such as Effort 
and Quality (Number of defects) can then be 
mapped into corresponding control maps for 
project inputs as shown in Figure 5. In effect, 
Figure 5 depict the range of variation denoted 
with upper and lower control limits around the 
average size of input scenarios that is acceptable 
to keep the variability in key project variables 
within acceptable limits (denoted on Figure 4) 

CONCLUSIONS 

This paper presents a framework for project and 
process control that centers on the establishment 
of feedback links between process and project 
inputs (such as productivity and module 
complexity) and the desired model outputs such 
as effort and quality. The proposed framework is 
demonstrated using a case study where we 
developed a neural network reverse simulation 
model to map acceptable levels of variability in 
project output to a corresponding acceptable level 
of variability on project inputs. As such, the 
proposed framework provides software project 
managers with the means to a-priori evaluate and 
control their project at a point in time. By 
comparing the current measurements to the 
control limits set forth by the reverse simulation 
model, the project manager can take action if any 
of such measurements fall outside these limits. 
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Figure 4: Management control map for Effort 
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Figure 4b: Management control map for Quality 
(Number of Defects) 
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Figure 5: Management control map for Input 
Variability for input scenarios 
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