
Dakota State University Dakota State University

Beadle Scholar Beadle Scholar

Research & Publications College of Business and Information Systems

2003

Decision Support for Software Projects: The Role of SPC and Decision Support for Software Projects: The Role of SPC and

Simulation Metamodeling Simulation Metamodeling

Omar F. El-Gayar
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/bispapers

Recommended Citation Recommended Citation
El-Gayar, O. F. (2003). Decision Support for Software Projects: The Role of SPC and Simulation
Metamodeling. In Proceedings of Annual Meeting Sciences Institute (pp. 943-948).

This Conference Proceeding is brought to you for free and open access by the College of Business and Information
Systems at Beadle Scholar. It has been accepted for inclusion in Research & Publications by an authorized
administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

https://scholar.dsu.edu/
https://scholar.dsu.edu/bispapers
https://scholar.dsu.edu/biscollege
https://scholar.dsu.edu/bispapers?utm_source=scholar.dsu.edu%2Fbispapers%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266137286

Decision Support for Software Projects: The Role of SPC and Simulation

Metamodeling

Conference Paper · January 2003

CITATIONS

0
READS

7

1 author:

Some of the authors of this publication are also working on these related projects:

Health Care Delivery in Patients with Diabetes View project

Understanding the Influence of Digital Divide and Socio-Economic Factors on the Prevalence of Diabetes View project

Omar F. El-Gayar

Dakota State University

156 PUBLICATIONS 1,500 CITATIONS

SEE PROFILE

All content following this page was uploaded by Omar F. El-Gayar on 15 February 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/266137286_Decision_Support_for_Software_Projects_The_Role_of_SPC_and_Simulation_Metamodeling?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266137286_Decision_Support_for_Software_Projects_The_Role_of_SPC_and_Simulation_Metamodeling?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Health-Care-Delivery-in-Patients-with-Diabetes?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Understanding-the-Influence-of-Digital-Divide-and-Socio-Economic-Factors-on-the-Prevalence-of-Diabetes?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Omar_El-Gayar?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Omar_El-Gayar?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Dakota_State_University?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Omar_El-Gayar?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Omar_El-Gayar?enrichId=rgreq-ac23efdf16a36aa9ca6730fa2ca69706-XXX&enrichSource=Y292ZXJQYWdlOzI2NjEzNzI4NjtBUzo4NTg5NDEzMDcyNDQ1NDRAMTU4MTc5ODk3NDA4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 - 1 -

DECISION SUPPORT FOR SOFTWARE PROJECTS: THE ROLE OF SPC AND SIMULATION
METAMODELING1

Omar F. El-Gayar
College of Business and Information Systems, Dakota State University,
Madison, South Dakota 57042, U.S.A. email: omar.el-gayar@dsu.edu

1 This material is based upon work supported by the National Science Foundation/EPSCoR Grant #EPS-0091948 and by the State of
South Dakota. The author also thanks Peter Lakey of Cognitive Systems for graciously providing the model used in this paper. The
usual disclaimer applies.

ABSTRACT

While many researchers have attempted to
directly apply statistical process control (SPC) to
the software domain, several difficulties in
applying SPC to software development, in
particular, the inability to compute meaningful
control limits for the process.

In this research, we propose a framework for
applying SPC to software projects. The
framework integrates SPC concepts and
simulation metamodeling to create meaningful
control limits on process and project inputs. The
framework is demonstrated using a case study.

Keywords: Software process simulation
modeling; Statistical process control; Simulation
metamodeling; Visualization

INTRODUCTION

The demand for software continues to outpace our
production capabilities in terms of quality and
quantity [1]. In 1995, U.S expenditure for
software development and maintenance reached $
250 billion and encompasses an estimated
175,000 projects [2].

In spite of the significant increase in expenditure,
the software industry continues to experience
what is commonly referred to as the “ software
crisis”, namely, budget overruns, schedule delays,
poor quality and users dissatisfaction [3]. In 1995,
U.S companies spend an estimated $59 billion in

cost overruns on IS projects and another $81
billion on canceled projects [2].

In this vein, and over the past decade, concepts
and methods associated with process
improvement have gained wide acceptance in the
software community [4]. Of particular importance
is the application of statistical process control
(SPC) to the software process. The strengths of
SPC are that they provide easy to use graphical
tools that enable the manager to visualize the
performance of the Manufacturing process
(system) along multiple dimensions of
performance.

While the application of SPC in manufacturing
dates back to the 1920’s and was pioneered by the
work of [5], and SPC has now been accepted
world wide as the best method for tracking quality
of manufacturing processes, it is only during the
mid-eighties that attempts have been made to
apply SPC to software [1] [6] [7] [8]. Since then,
a number of applications have been reported in
the literature [9] [10] [11]. Moreover, the
Quantitative Process Management Key Process
Area of the Capability Maturity Model requires
that projects manage their processes quantitatively
and recommend that SPC be applied at this level.

However, inherent in existing applications of SPC
to the software process is the view of software as
a manufactured product. Accordingly, techniques
of SPC can be applied to software processes just
as they have been applied to manufacturing
processes [12]. Nevertheless, as noted by [1],
there are fundamental differences between

 - 2 -

software process and manufacturing process.
Software development process are very different
from manufacturing processes in terms of many
key process dimensions such as product volume,
level of automation, standardization of processes,
among others. Most notably, is that in software
processes is the transformation of user
requirement into software is dominated by
cognitive activities, this contrasts with
manufacturing activities where cognition is
minimized. Moreover, in software processes, the
input and output for the software process are
different for each instance of the process [1]. In
other words, each software product generated by a
particular process is different (as determined by
the user requirements). The interaction between
cognitive dominated activities and different inputs
and outputs create challenges to the application of
SPC for software. In particular,

1. The data regarding input and outputs
experience great variability, which make
it particularly difficult to develop
meaningful control limits.

2. It is difficult to assign cause of variability
in the data.

3. It is difficult to visualize the performance
of the process using the traditional control
limits as they typically contain too much
variability to provide any useful guidance
in managing the process

These weaknesses call into question the
applicability and the usefulness of SPC to the
software development domain because these
weaknesses are common to many software
development projects. Against this background,
the general aim of this research is to improve the
applicability of SPC to software development
processes. The specific objectives and tasks are as
follows:

• Utilize management control maps to create
meaningful limits on the overall software
development project performance
measures. We accomplish this by creating
visual control maps based upon
management’s goals for the project and
utility for project outcomes.

• Investigate the relationship between the
variability of individual process and

product metrics to overall project
performance using simulation to show
whether the process is capable of
achieving the desired project goals.

From a practical standpoint, this research creates
a useful graphical method for managers to
visualize project performance and to manage their
software development project. From a theoretical
standpoint, this work explains the inherent
difficulties of directly applying SPC to software
development in a manner that opens the
possibility of a variety of alternative approaches
for making SPC a more useful tool in the software
development domain.

THE FRAMEWORK

The proposed framework for process and project
control centers on the establishment of a feedback
links between process and project inputs (such as
productivity, detected defects, module complexity
and others) and the desired model outputs of cost,
quality, and schedule. Once such links are
established, we can then utilize such links to map
the level and variability (expressed as control
limits) into corresponding visual control maps for
process inputs.

In effect, establishing a link between process
and/or project inputs and outputs calls for
establishing a model between inputs and outputs.
While several software process modeling
approaches have been proposed in the literature
[13] [14], in this framework, we are particularly
interested in modeling approaches that
quantitatively link inputs to outputs, e.g.,
regression models as used in COCOMO as well
as software process simulation models (SPSM).
Figure 1 illustrates a general framework linking
process inputs to outputs through the use of a
model.

The model depicted can also be expressed
mathematically as:

)(XfY = (1)

Where:

:,, ''/ YYY is a vector of real, simulation, and
simulation meta model output variables,
respectively.

 - 3 -

:X is a vector of input variables.

The mathematical representation is also valid
even if the model is not originally depicted as
described in equation 1. For instance, a simulation
model can be approximated and described as in
equation 1 through the construction of a
simulation meta-model.

Figure 1: general framework linking process
inputs to outputs through the use of a model

Irrespective of the quantitative formulation of the
relationship between process inputs and outputs,
the resultant models are always constructed with
the output variables as the dependent variables
and the input variables as the independent
variables. Such models are normally used in
estimating and forecasting process outputs, e.g.,
schedule and cost as a function of process inputs
such as input quality, and, programmers’
productivity. Other application include ‘what if’
analysis, mostly for planning purposes.
Accordingly, such models are of limited value
when the purpose is to prescribe the level and
variability for the input variables that result in
acceptable (to managers) levels and variability for
the output variables, i.e., ‘goal seeking’. In effect,
from a project management and control
perspective, such models are descriptive as
opposed to prescriptive.

As such, the next step, demands the formulation
of a reverse model in which the process outputs,
such as schedule and cost, are the independent
variables and process inputs, such as productivity
and input complexity are the dependent variables

as shown in Figure 2. Since software process
simulation offers a versatile approach to modeling
software development process and as evidenced
by the proliferation of SPSM techniques and
applications reported in the literature [15], it is
reasonable to assume that the model in Figure 1 is
a simulation model. In this case, the second step
in our framework reduces to the development of a
reverse simulation meta-model as described in
Figure 2.

Figure 2: Reverse simulation metamodel

Once a reverse meta-model is constructed, the
third and final step is the creation of visual control
maps (levels and control limits) using the
management control maps (representing the voice
of the customer) and the simulation meta-model
developed in the preceding step.

CASE STUDY

The model

In this study, we utilize a model developed by
Peter Lakey of Cognitive Concepts [16]. The
model is a discrete event simulation model,
originally developed as a project management
tool for estimating schedule, effort and quality
during the detailed design for a computer software
configuration item (CSCI).

The underlying development process is an
iterative and incremental process in which the
CSCI is developed incrementally over a number
of iterations. Each iteration includes a
development phase, a review phase, and a rework
phase. For each of the phases, the model tracks
the effort involved as well as a number of other
metrics such as the number of defects generated,
found, and escaped during the process.

An important feature of this model is the
incorporation of System Dynamics modeling
concept of feed back loops. Specifically, when
evaluating these metrics the model takes into
account a variety of process and product factors.
Examples of product factors include the size
quality and complexity of the input artifacts,

 - 4 -

while examples of process factors include
schedule pressure, communication overhead and
tools support.

The reverse simulation meta-model

Several simulation meta-modeling and reverse
meta-modeling are presented in the literature. See
[17] [18] [19] for a state of the art review. In this
case study we illustrate our framework by
constructing an artificial neural network (ANN)
reverse meta-model for the aforementioned
simulation model. The steps we used are
summarized as follows:

1. Select the inputs and outputs.

2. Generate the training and testing data
sets.

3. Select and design an ANN

4. Train the ANN using the training data set.

5. Test the ANN using the testing data set.

Step 1: Select input and outputs

The inputs for the reverse simulation meta-model
are the outputs of the simulation model. These are
the variables that the project manager ultimately
cares about. In Lakey’s model these variables are:
Effort and Number of defects. Schedule is another
variable that we have omitted as it exhibits the
same statistical properties as Effort. Since we are
interested in visualizing the variation in project
output, we use the coefficient of variation of the
aforementioned variables. The list of inputs to the
simulation-meta-model then becomes:

Effort coefficient of variation (σ/x)

Number of Defects coefficient of
variation σ/x

On the other hand, the outputs of the reverse
simulation model are the inputs of the simulation
model. In Lakey’s model there are a number of
process and product inputs. Since the purpose of
this case study is to demonstrate the applicability
of the proposed framework, the study, at this
stage, focused on the input variability (denoting
the extent of variation in the size and quality of
input artifacts) as the controllable and thus the
output variable of the simulation meta-model.

Step2: Generate the training and testing data sets

Once the inputs and outputs are selected, the next
step (step 2) is to generate the data sets needed for
training and testing the ANN. Each of the training
and testing data sets are comprised of 83 data
points (experiments). For each data set, the
simulation model is run for 83 experiments. Each
experiment is comprised of 15 runs using
different streams of random numbers for each of
the runs resulting in a total of 1245 simulation
runs per data set.

Moreover, for each experiment the mean (x),
standard deviation (σ), and coefficient of
variation (σ/x) are calculated for both output
variables, namely, Effort and Number of defects.
The result from each simulation experiment is an
observation in our master data set.

Step 3: Select and design an ANN

In step 3 we design and implement the ANN. Of
the several ANN paradigms that are presented in
the literature [20], the feed-forward networks
using back propagation learning rule are known
for their robustness and learning ability and are
thereby utilized in this study. Since there is very
little experimental evidence as to the size of the
network (in terms of the number of hidden layers
and the size of each layer), we evaluate various
designs.

Step 4: Train the ANN using the training data set

Overall, our objective is to find the ‘optimal’
network design. By optimal, we refer to network
designs with the minimum number of unknown
and the lowest mean square error (MSE). To
minimize the number of unknowns, we seek
networks with the minimum number of hidden
layers and minimum number of neurons in each
layer. Given the size of the data set, we used
MATLAB to evaluate network designs of up to 3
layers (including the output layer) and 6 hidden
neurons in each layer. Figure 3 depict the
resultant network with two layers, in which layer
1 has 2 neurons with logsig functions and layer 2
(the output layer) has one neuron with purlin
function.

 - 5 -

Figure 3: ANN architecture

Step 5: Test the ANN using the testing data set

Once we train the ANN, the next step is to test if
the ANN exhibit good generalization, i.e., good
performance with data not seen before. In this
case we used a data set of 83 data points as
described in step 2. The resultant MSE is
comparable to the MSE corresponding to the
training data set, thereby indicating good
generalization.

The visual control charts

With the reverse simulation model in place, a
management control map such as in Figure 4a&b
denoting the preference of the project manager
with respect to project variables such as Effort
and Quality (Number of defects) can then be
mapped into corresponding control maps for
project inputs as shown in Figure 5. In effect,
Figure 5 depict the range of variation denoted
with upper and lower control limits around the
average size of input scenarios that is acceptable
to keep the variability in key project variables
within acceptable limits (denoted on Figure 4)

CONCLUSIONS

This paper presents a framework for project and
process control that centers on the establishment
of feedback links between process and project
inputs (such as productivity and module
complexity) and the desired model outputs such
as effort and quality. The proposed framework is
demonstrated using a case study where we
developed a neural network reverse simulation
model to map acceptable levels of variability in
project output to a corresponding acceptable level
of variability on project inputs. As such, the
proposed framework provides software project
managers with the means to a-priori evaluate and
control their project at a point in time. By
comparing the current measurements to the
control limits set forth by the reverse simulation
model, the project manager can take action if any
of such measurements fall outside these limits.

0
1000
2000
3000
4000
5000
6000
7000
8000

1 3 5 7 9 11 13 15 17 19 21

Time units

Ef
fo

rt
(L

ab
or

 h
ou

rs
)

LCL Average UCL

Figure 4: Management control map for Effort

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21

Time units

N
um

be
r

of
 d

ef
ec

ts

LCL Average UCL

Figure 4b: Management control map for Quality
(Number of Defects)

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21

Time units

Sc
en

ar
io

 s
iz

e

LCL Average UCL

Figure 5: Management control map for Input
Variability for input scenarios

 - 6 -

REFERENCES

[1] Lantzy, M. Application of Statistical Process
Control to the Software Process. ACM 1992
113-123.

[2] Keil, M., P. Cule, K. Lyytinen, and R.
Schmidt. A Framework for identifying
software project risks. Communications of the
ACM, November 1998, vol. 41, No. 11, pp.
76-83.

[3] Abdel-Hamid, T. and S. Madnick. Software
Project Dynamics, An Integrated Approach.
New Jersey: Prentice Hall, 1991.

[4] Florac, W. and A. Carleton. Measuring the
Software Process: Statistical Process Control
for Software Process Improvement, Addison
Wesley, 1999.

[5] Shewhart, W. The Economic Control of
Quality of Manufactured Product. New York:
D. Van Nostrand Company, 1931, reprinted
by ASQC Quality Press, Milwaukee,
Wisconsin, 1980.

[6] Cho, C. Quality Programming: Developing
and Testing Software with Statistical Quality
Control. New York: John Wiley and Sons,
Inc., 1987

[7] Lanphar, R. Quantitative process management
in software engineering, reconciliation
between process and product views. The
Journal of Systems and Software, July 1990,
v12, n3, pp 243-249.

[8] Putnam, L. Trends in measurement,
estimation, and control. (making software
engineering and management more
quantitative). IEEE Software, March 1991,
v8, n2, pp 105-108 .

[9] Weller, E. Practical applications of statistical
process control. IEEE Software, May-June
2000, v17, i4, pp 97-107.

[10] Florac, W., Carleton, A., Barnard, J.
Statistical process control: analyzing a Space
Shuttle Onboard Software process. IEEE
Software, July-August 2000, v17, i4, pp 97-
107.

[11] Lewis, N. Assessing the evidence from
the use of SPC in monitoring, predicting &
improving software quality. Computers and
Industrial Engineering, 1999, 37(1), 157-160.

[12] Florac, W., Park, R., and Carleton, “A.
Practical Software Measurement: Measuring
for Process Management and Improvement,”
Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1997.

[13] Curtis, B., Kellner, M.I., and Over, J.
“Process Modeling,” Communications of the
ACM (35:9), September 1992, pp 73-90.

[14] Fuggetta, A. “Software Process: A
Roadmap,” Proceedings of the conference on
the future of software engineering, Limerick,
Ireland, 2000.

[15] Kellner, M., Madachy, R.J., and Raffo,
D.M. Software Process Simulation Modeling:
Why? What? How?, Journal of Systems and
Software(46:2/3), April 1999, pp 1-18.

[16] Lakey, P.B. Discrete Event Software
Project Management Tool. Cognitive
Concepts, 2000.

[17] Barton, R.R. Metamodels for simulation
input-output relations, Proceedings of the
24th conference on Winter simulation, p.289-
299, December 1992, Arlington, Virginia,
United States.

[18] Barton, R.R. Simulation Metamodels: a
state of the art review, Proceedings of the
26th conference on Winter simulation, p.237-
244, December 1994, Orlando, Florida,
United States.

[19] Barton, R.R. Simulation Metamodels,
Proceedings of the 30th conference on Winter
simulation, p. 167 - 176, December 1998,
Washington, D.C., United States.

[20] Haykin, S. Neural Networks: A
Comprehensive Foundation. Englewood
Cliffs, New Jersey: Prentice Hall, 1999.

View publication statsView publication stats

https://www.researchgate.net/publication/266137286

	Decision Support for Software Projects: The Role of SPC and Simulation Metamodeling
	Recommended Citation

	Microsoft Word - Decision Support for Software - DSI final submission.doc

