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Abstract 

Traditional means of on-farm weed control mostly relies on manual labor. This process is time consuming, 
costly and contributes to major yield losses. The conventional application of chemical weed control, 
however, goes against the strive for sustainability. To solve this using computer vision, precision agriculture 
researchers have used remote sensing weed maps, but this has been largely ineffective for early season weed 
control due to problems such as solar reflectance and cloud cover in satellite imagery. With the current 
advances in artificial intelligence, this study leverages the automatic feature extraction capabilities of deep 
convolutional neural networks (DCNN) to classify plant seedlings. In a comparative study, we demonstrate 
that DCNNs can successfully classify crops and weeds in various phenological growth stages. Our results 
indicate that while training DCNNs from scratch can achieve state-of-the-art performance for weed 
classification tasks, model performance can be improved by fine-tuning a pre-trained model. 

Keywords 

Artificial intelligence, deep learning, transfer learning, weed detection, plant seedling, classification, 
sustainable production, precision agriculture, smart farming 

Introduction 

Traditionally, weed control has been done using manual labor, a process which has proven to be time 
consuming, costly and a major contributor to yield losses (Gianessi 2009). However in the last 50 years, the 
go-to method for managing weeds has become the use of chemical weed killers such as herbicides and 
pesticides (Bastiaans et al. 2008). However, the continuous employment of chemical weed killers 
undermines the United Nations’ Sustainable Development Goals (SDG). Specifically Goal 12 which targets 
sound management of chemical release to the environment and harnessing technology for more sustainable 
production (UN 2015). For example, the intensive use of chemicals like atrazine and alachlor, the main 
active ingredients in many commercial herbicide formulations, frequently leads to detection in water due 
to their persistence in the environment and their low biodegradability (Furtado et al. 2019; Tian et al. 1999). 

In the last few decades, there has been a substantial acceptance of agricultural information technology (AIT) 
as part of everyday agricultural practices (Wang et al. 2019). It is this uptake in AITs that has resulted in 
the management practice known as Precision Agriculture (PA)1. PA allows the use of AITs to monitor 
inherent field conditions (soil, weather, etc.) and aim for better decision making that allows optimum 
profitability, increased sustainability, and environmental protection (Bongiovanni and Lowenberg-Deboer 
2004). However, uniform applicators often used for chemical weed control does not minimize 
environmental effects as required in PA. For PA researchers meeting the SDG needs implies the practice of 
site-specific weed management (SSWM). SSWM adjusts herbicide application according to weed density 
and/or weed species. SSWM methods include remote and proximal (ground-based sensors and cameras) 

 

1 http://www.grap.udl.cat/en/presentation/pa_definitions.html  
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sensing (López-Granados 2011). López-Granados (2011) indicate the necessity of weed control at early 
stages of plant growth in their study. However, the use of remote sensing weed maps raises three issues: 1) 
the similar reflectance characteristics in early plant growth makes it difficult to detect small variations in 
reflectivity, 2) the need for high resolution images when weeds are distributed in small patches and 3) the 
reflectance of soil background interferes with detection (López-Granados 2011; Thorp and Tian 2004).  

Proximal sensing has been posited as the best method for site-specific weed control especially ones that rely 
on ground-based computer vision (Gerhards 2010). The problem for such systems is that at early stages of 
plant growth, crops and weeds are almost indistinguishable to traditional pixel-based classification and as 
such, rule-based methods that rely on edge detection for leaf shape and texture recognition are used 
(Golzarian and Frick 2011). Feature extraction in such systems are also not robust enough to be generalized 
in different farming scenarios. 

In recent times, the resurgence of artificial intelligence (AI) in the from Machine Learning (ML), which 
allows computers to learn without being explicitly programmed, has achieved phenomenal results in 
various problem domains. One such example is computer vision which has benefited from the application 
of deep Convolutional Neural Networks (DCNN) for image classification (Simonyan and Zisserman 2014). 
The availability of large hand-annotated datasets, and the ever-increasing speed and decreasing cost of 
infrastructure, has allowed the use of various DCNN architectures.  

In instances where training data is limited, DCNNs can quickly overfit to training data. This means that the 
model learns the expected output of every data point rather than the general distribution of the data. In 
such instances, the model can predict from the training data with high accuracy but does poorly on any 
other data it has not seen before, i.e. test data. One method that has been proposed in various studies has 
been the use of pre-trained models applying a technique called Transfer learning (TL) (Yosinski et al. 2014). 
TL is useful in such instances as it allows the use of representations learned from previous data to solve 
problems in new datasets. Other methods of combatting overfitting include the use of  image augmentation, 
optimizers and non-linearities  

The overarching aim of this research paper, therefore, is to leverage the automatic feature extraction 
capabilities of DCNNs to classify plant seedlings. Theoretically, we intend to demonstrate through a 
performance comparison of various off-the-shelf DCNNs that they can successfully classify crops and weeds 
in various phenological growth stages. We also intend to identify limitations with these techniques that can 
further guide future research. Given the growing use of information systems (IS) to enhance sustainability 
across various sectors (Watson et al. 2008), we contribute to the growing body of literature on nascent 
technology use for sustainable practices in agriculture by demonstrating another area where artificial 
intelligence application can be beneficial. In effect, this paper shows that DCNNs are a viable alternative to 
current methods used for weed control in plant seedlings. This research will be relevant to researcher and 
producers of computer vision equipment, especially low-cost variable-rate technology (VRT) for ground-
based site-specific weed control.  

The focus of this study, therefore, is to evaluate and benchmark different off-the-shelf DCNN architectures 
using the Plant Seedlings dataset (Giselsson et al. 2017). Accordingly, the objectives of this paper are to 
perform a systematic evaluation using: 

a) Train from scratch with random weights initialization of the network. 
b) Explore the use of transfer learning (TL) to improve generalizability under two conditions:  

• Model as a fixed feature extraction 
• Model fine-tuning  

Background 

From a labor-intensive manual practice, agriculture has undergone a paradigm shift to become a 
technology-friendly practice that employs satellite technology, drones, robotics, big data, artificial 
intelligence, and other modern technology to provide selective rather than homogenous treatment for farm 
management (Aubert et al. 2012; El-Gayar and Ofori 2020). This practice – known as PA – has been 
discussed at length in past research as inextricably linked to sustainability. Bongiovanni and Lowenberg-
Deboer (2004) in their review discuss this relationship at length and show that spatial management 
employed in PA can reduce environmental impact on sensitive areas while still maintaining profitability. 
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In past research, this idea of profitability has been touted as  a major pull factor for farmers to adopt the PA 
(Wolfert et al. 2017). Even though some AITs in PA has been adopted just as fast as any other technology in 
history, the use of variable rate technology (VRT) – which provides the best sustainability gains – has rarely 
exceeded 20% of farms (Lowenberg-DeBoer and Erickson 2019). The criticism is that farmers may be 
convinced of the idea of VRTs but not their value. However, PA, associated technologies, and their role in 
sustainability and climate change remain a recurrent theme in news and social media (Lakshmi and Corbett 
2020; Ofori and El-Gayar 2019). Therefore, it important to continuously improve these technologies and 
enhance their value. 

One such technology that needs to be improved upon is machine vision technology for detecting and spot-
spraying of weeds as an economic alternative to manual spraying and environmental-friendly alternative to 
uniform spraying. This is where the idea of artificial intelligence (or machine learning) for developing VRTs 
can be most beneficial. Specifically, the use of Deep Learning - a subset of ML that refer to deep algorithms 
designed to exploit unknown structures that exist in data. DL algorithms uncover representations at 
multiple levels, with higher level learned features expressed in terms of lower level features (Bengio 2013). 
In essence, by abstracting higher level representations, DL learns features in some input data by combining 
several lower level features that allows the mapping of input unto some output classification. While experts 
have not agreed on where shallow learning ends and deep learning begins (Schmidhuber 2015), it is 
generally accepted that an ML model is considered deep if there is at least one hidden layer between the 
input and output layer. 

Neural Networks (NN) refer to the ML algorithms modeled after the human brain with the aim of 
recognizing patterns in data. There are several types of NNs – Feed-forward Neural Networks, Recurrent 
Neural Networks, Convolutional Neural Networks (CNN), to name a few. This study focuses on the 
application of CNNs, which refer to the DL technique aimed at processing data in the form of multiple 
arrays, such as images (often composed of three 2D arrays that represent the pixel intensities of the color 
channels present in the RGB color image) (LeCun et al. 2015). This means DL, or more specifically DCNNs, 
align nicely with the objective of machine vision by allowing computers to see and segregate the contents of 
digital color images. DCNN models have shown great promise in image classification. The authors of 
(Krizhevsky et al. 2012) were very influential in the argument for the application of DCNNs to images after 
they achieved a top-5 test error rate of 15.3% in the ImageNet LSVRC-2010 contest as compared to 26.2% 
achieved by the second-best entry. 

In Precision Agriculture, weed detection using computer vision is not novelty. It is an active research area 
which has evaded researchers over the years. Methods proposed by earlier studies used spectral imaging 
techniques available on drones (Goel et al. 2002; Vioix et al. 2002). These methods are still most effective 
when spraying of an entire field is required rather than the site-specific, or crop-specific, needs of precision 
and smart agriculture. In their survey paper on deep learning applications in agriculture, the authors of 
(Kamilaris and Prenafeta-Boldú 2018) uncovered 8 important papers that used deep learning for weed 
detection. However, majority of the available studies (5 papers) still relied on imagery from satellite -based 
remote sensing, while the remaining used unmanned aerial vehicles (3 papers). Although the first 6 to 8 
weeks of plant growth is the time when seedlings compete with weeds for most water and nutrients, most 
work in this area do not explore the use of plant seedlings for weed detection except for (Ashqar et al. 2019). 
They applied deep learning to the segmented images in the Plant Seedling Dataset proposed by (Giselsson 
et al. 2017) the VGG16 architecture but did not provide evidence of using the benchmark suggested by the 
original authors of the dataset. In this paper, we complement prior research by comparing the performance 
of popular DCNN architectures, that have demonstrated state-of-the-art performance on popular general 
image datasets such as the ImageNet and the CIFAR, on a dataset specific to plant seedlings. 

Methods 

Dataset 

Giselsson et al. (2017) introduced the public image database for benchmarking plant seedling classification 
aimed at ground-based weed or specie spotting2. This dataset consists of 5,539 images of approximately 

 

2 https://vision.eng.au.dk/plant-seedlings-dataset/   

https://vision.eng.au.dk/plant-seedlings-dataset/
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960 unique plants belonging to 12 species at several growth stages. The plants were grown indoors in 
Styrofoam boxes and images were captured over a 20-day period. As overlapping plant leaves are minimal 
at the onset of plant growth, where most weed control such as broadcast spraying is undertaken, the images 
were captured in non-overlapping mode. Also, to avoid errors that may occur in pixel-based segmentation 
algorithms, plants were grown in soil which is covered in small stones. Figure 1 shows the samples, scientific 
names, counts and images from each class. 

 

Figure 1. Plant Seedlings 

This dataset is intended for researchers to perform object analysis, species recognition or plant appearance 
analysis without the hard task of image acquisition, segmentation, and annotation. The creators of the 
dataset also suggest a performance benchmark to permit easy replication of result and easy comparison of 
algorithm performance. 

Analysis 

As has been done in other supervised machine learning applications, the data is divided into 70% training, 
15% validation and 15% test sets. All the neural network models are developed using the Keras library with 
TensorFlow backend (Abadi et al. 2016; Chollet and others 2015). 

Experimental Setup 

The experiments were run Google Colab which employs a Tesla K80 GPU having 2496 CUDA core, compute 
of 3.7, and 12GB GDDR5 VRAM. In all cases, we trained the models for 20 epochs with the mini-batch sizes 
of 32 image instances. Our initial learning was rate 0.0001 decreased by a factor of 0.5 after every 3 epochs 
when validation accuracy does not improve. We also applied the following preprocessing techniques: 

• Image resizing. All images were resized to 128x128 pixels to ensure same aspect ratio. 
• Normalization of pixel values. This was done to ensure that all the pixels have similar data 

distribution. Pixel normalization aids the convergence of neural networks. 

Model Architectures 

We choose models based on their availability in the TensorFlow Keras library and architectural properties 
as depicted in (Khan et al. 2019). A summary of the model architectures and performance validation on 
ImageNet is presented in Table 2:  

• Spatial Exploitation Based – These kinds of networks take advantage of spatial filters to improve 
performance of the network. We use the VGG (Simonyan and Zisserman 2014), a popular DCNN 
network that replaced previous large  filters with a smaller set of 3x3 filters and pushing depth to 16 
and 19 layers. The VGG won second place in the ImageNet Challenge 2014 classification track. 
Specifically, we use the 16-layered network: VGG16. 
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• Multi-Path Based – To reduce the problem of performance degradation, gradient vanishing or 
explosion problems, these networks connect one layer to another by skipping some intermediate 
layers while still allowing flow of information across the layers through multiple paths or shortcut 
connections. Here we use the DenseNet (Huang et al. 2018). DenseNets connects each layer to every 
other layer in a feed-forward fashion such that feature-maps of all preceding layers are used as input 
to subsequent ones. The 121-layered DenseNet is employed in our tests. 

• Width Based Multi-Connection – Instead of the traditional focus on the depth of a network, these 
models increase width to improve learning. The Xception network introduced by (Chollet 2017) does 
this by using depth-wise separable convolutions. It is an extreme version of the Inception network that 
maps the spatial correlations for each output channel separately, and then performs a pointwise 
convolution (1x1) to capture cross-channel correlation. The Xception is known to perform better than 
the Inception on ImageNet. 

• Depth and Multi-Path Based – The ResNet (He et al. 2015) which won the of ImageNet 2015 
challenge in image classification, detection, and localization, as well as Winner of MS COCO 2015 
detection, and segmentation uses both depth and multiple connections. It is a very deep network that 
learns the residual representation functions instead of learning the signal representations directly. In 
this case we use the ResNet152V2, the 152-layered version of the network. 

• Depth Based – The basic assumption for these networks is that the deeper the network, the better it 
performs as it improves feature representations. We employ the Inception (Szegedy, Vanhoucke, et 
al. 2015; Szegedy, Wei Liu, et al. 2015), a model introduced to increase the depth and width of a 
network while ensuring computational cost remains low. The InceptionV3 was the 1st runner up of 
the 2015 ImageNet image classification challenge. We choose the InceptionV3 as a representative of 
this category. 

Model Architecture Model Name Depth Number of 
Parameters 

Top-1 Accuracy Top-5 Accuracy
  

Spatial Exploitation Based VGG16 23 138,357,544 0.713 0.901 

Depth + Width Based InceptionV3 159 23,851,784 0.779 0.937 

Multi-Path Based DenseNet121. 121 8,062,504 0.750 0.923 

Width Based Multi-Connection Xception 126 22,910,480 0.790 0.945 

Depth + Multi-Path Based ResNet152V2 152 60,380,648 0.780 0.942 

Table 2. Architecture and performance of the pre-trained models 

Model Evaluation 

Two transfer learning scenarios are considered in this study: 

• Fixed feature extractor. In this scenario, instead of retraining the entire network by initializing 
the network with random weights, we employ the pre-trained weights of each model and consider it 
as a fixed feature extractor. The network is then used as a contributor of feature vectors consisting of 
generic properties applicable to other datasets different from the one which it was originally trained 
for. We remove the classifier head (often the 1000-class ImageNet dataset) and replace with our own 
12-class classifier representing the 12 species available in our dataset. 

• Fine-tuning. This strategy allows retraining of higher-level portions of the network while keeping 
the lower levels which usually contains generic features useful for many tasks. The higher levels are 
chosen for retraining as they are known to contain feature more specific to the original dataset for 
which they were trained (Yosinski et al. 2014). 

Model Evaluation 

Model performance evaluation uses the proposed benchmarks suggested by the authors of the dataset 
(Giselsson et al. 2017), namely, Precision (PC), Recall (RC), and Mean Weighted Average f1-scores.  

Results 

This section discusses the results of our experiments using the five pre-trained models (VGG16, 
InceptionV3, DenseNet121, Xception, and ResNet152V2).  
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Table 3 presents a detailed comparison of the models under different circumstances using the macro 
averages of the proposed evaluation metrics. Figure 2 shows the corresponding confusion matrices 
generated from the predictions on the test set by models trained from scratch and fine-tuned models. 
Figures 3 – 5 shows the training regimes. 

Model 

Accuracy Precision Recall f1-Score 

TS - 
RWI 

TL - 
FFE TL - FT TS - RWI TL - FFE TL - FT TS - RWI TL - FFE TL - FT TS - RWI TL - FFE TL - FT 

VGG16 0.9149 0.6703 0.9197 0.9082 0.6827 0.9101 0.9023 0.6147 0.9163 0.9044 0.6282 0.9126 

InceptionV3 0.8981 0.6763 0.8981 0.8936 0.6726 0.8879 0.8731 0.6543 0.8844 0.8811 0.6618 0.8853 

DenseNet121 0.9029 0.7350 0.9221 0.8980 0.7189 0.9156 0.8836 0.7065 0.9156 0.8881 0.7080 0.9149 

Xception 0.9053 0.6811 0.8957 0.9067 0.6858 0.8979 0.9053 0.6436 0.8816 0.9042 0.6535 0.8873 

ResNet152V2 0.8897 0.7422 0.9293 0.8870 0.7304 0.9182 0.8641 0.7422 0.9192 0.8709 0.7346 0.9173 

Table 3. Performance evaluation on Plants Seedling Dataset 

Training from scratch with random weights initialization 

Per the objectives of this research, our first experiment involved training the network from scratch by 
initializing the network weights with random Gaussian distributions. The VGG16 achieves the best result 
on the test set in this round of training with an accuracy of 91.49%, followed by the Xception (90.53%), 
DenseNet121 (90.29%), InceptionV3 (89.81%) and the ResNet152V2 (88.97). Generally, this same result is 
echoed in the figures for precision, recall and f1-socres. 

Transfer learning with model as a fixed feature extractor 

Our second experiment used the ImageNet weights of pre-trained models as a fixed feature extractor. 
Training was generally smoother in this regime (as shown in Figure 4) but the models quickly overfitted to 
the training data and subsequently did poorly on the validation set (during training) and the test set (after 
training). In this case, the ResNet152V2 and the DenseNet121 achieves 74.22% and 73.5% respectively on 
the test set. The Xception network reaches 68.11%, the DenseNet121 reaches 67.63%, while the VGG16 
which has achieved the best results when trained from scratch does worse than all four models with an 
accuracy of 67.03. While the remaining results followed a similar pattern, the VGG16 did better in terms of 
precision than the InceptionV3. 

Transfer learning with fine-tuning 

The third experiment involved fine tuning through gradual unfreezing of layers in the model. Although both 
the training accuracy increased in each case with more stability, the validation accuracy curve displayed a 
more erratic behavior. This behavior can however be attributed to the image augmentation used for training 
in this round. Without unfreezing more than half of the network, we found the following layers to be most 
optimal in each model: 

• VGG16: block4_conv2 
• InceptionV3: conv2d_51 

• DenseNet121: conv4 _block 12 1 _conv 
• Xception: block10_sepconv 1 _act 

• ResNet152V2: conv4 _block 14 2 _conv 

The ResNet152V2 achieved the best accuracy when fine-tuned (92.93%), an improvement of up to 4% over 
training from scratch. The DenseNet121 achieves the next best result with 92.21% also increasing accuracy 
by 2% over training from scratch. and 73.5% respectively on the test set. Similarly, the VGG16 increases 
accuracy by 1%. On the other hand, the InceptionV3 achieves same accuracy while the Xception dropped 
accuracy by 0.5%. 
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Discussion 

The current study was motivated by the need to investigate the use of new and robust applications of AI to 
support sustainable development in agriculture. Undoubtedly, the results above demonstrate the potential 
suitability of using DCNN models for Plant Seedling Classification. Although, we have found that models 
performed poorly when using the ImageNet weights as a fixed-feature extractor, this could be attributed to 
the fundamental differences between the feature representations of the two image datasets – ImageNet 
consists of general images while the Plant Seedling dataset consists of only plant images. It can be observed 
that training models from scratch achieved decent results but performing fine-tuning by freezing part of 
the network improved the classification results. Surprisingly, the ResNet152V2 model performs best overall 
compared to the other four DCNNs. This is interesting given that it achieved the lowest accuracy in our 
initial experiment when the models were trained from scratch.  

Overall, we find that our result is better than the average performance (Accuracy < 87% or f1-scores < 0.8) 
exhibited by weed detection and crop type classification tasks (Kamilaris and Prenafeta-Boldú 2018). Given 
the observation that the two highest misclassifications occurred between Black-grass and Loose Silky-bent 
(both weeds). And the objective to distinguish food crops from weeds, then in a food crop-or-weed scenario, 
most of the networks would have easily achieved above 99% accuracy. So, while we wait for better chemical 
agents with higher biodegradability and lower environmental persistence, our result paves the way for 
employing further digital transformation which leverages new technology capabilities in a bid to ensure 
sustainable development in PA. Partnerships such as the John Deere and NVIDIA has for commercializing 
AI-enabled precision spraying technology could be the key to unlocking a new age for PA where chemicals 
are only applied in a see-and-spray manner.  

Additionally, even though this research has been framed in the context of chemical weed killers in 
agriculture and environmental sustainability, the success of fine-tuning a pre-trained model using the 
transfer learning approach is a huge milestone for Green IS. Often the drawback for deep learning and other 
machine learning tasks is their requirement for huge amounts of data for training which has a direct impact 
on both energy consumption and computing power of the infrastructure involved. The fact that transfer 
learning in this case outperforms training from scratch means very little time will be spent training an 
accurate model for VRTs such as precision spraying equipment. Similarly, with just 8M trainable 
parameters, the performance of the DenseNet architecture (second best in the fine-tuned transfer learning 
approach) means even less computing power will be required if this model is adopted compared to the 
ResNet model (60M) or even the VGG model (138M). 

 

Figure 2. Confusion matrices 
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Figure 3. Training from scratch with random weights initialization 

 

Figure 4. Transfer learning with model as a fixed feature extractor 

 

Figure 5. Transfer learning with fine-tuning 

Conclusion 

In this report we investigated how different deep learning training schemes influence classification of weeds 
in non-segmented plant seedlings. We conducted three different experiments: training a model from 
scratch with random weight initialization, using pre-trained models as fixed-feature extractors and 
sequentially fine-tuning the model by unfreezing parts of the pre-trained model We conclude that DCNN 
models that have achieved state-of-the-art performance in image classification can be applicable to 
Precision Agriculture for classifying plant seedlings and, by extension, distinguish weeds from food crops. 
While using the transfer learning scenario which involved models trained on ImageNet as a fixed feature 
extractor did not achieve great results, we found that fine-tuning the higher levels of the networks lead to 
the best results. The relative performance of the models revealed that fine-tuning ResNet152V2, 
DenseNet121, and VGG16 resulted in higher performance compared to training from scratch while the 
InceptionV3 and Xception does better when initialized with random weights. Our result indicates the 
readiness of employing AI-enabled computer vision systems for precision treatment. Such systems will go 
a long way to address food production and sustainability, and potentially battle the effects of climate change 
caused by interactions between agricultural chemical agents, soil, water, energy, and climate.  

We suggest that future researchers investigate how the results presented in this study may be improved 
using multi-stage transfer learning which transfers weights from an intermediary dataset much closer to 
the target dataset. Also, novel models inspired by the DenseNet or ResNet architectures, as well as 
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lightweight architectures like the MobileNets, may achieve improved the performance and should be 
investigated (Ashqar et al. 2019). For the IS – and Green IS – communities, the proposition that farmers 
may not be convinced of the value of such systems, and that often their experience differs from the intended 
use by manufactures and researchers (Lowenberg-DeBoer et al. 2019; Lowenberg-DeBoer and Erickson 
2019), suggests that there may be other underlying issues beside the accuracy and cost of the systems that 
should be investigated. We recommend that further research further explore issues related to AI adoption 
in PA such as the deployment and use of AI applications from a farmer and technology-provider perspective 
to support sustainability and food production. 
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