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ABSTRACT 

Deep neural networks have revolutionized the performances of many machine 

learning tasks such as medical image classification and segmentation. Current deep learning 

(DL) algorithms, specifically convolutional neural networks are increasingly becoming the 

methodological choice for most medical image analysis. However, training these deep neural 

networks requires high computational resources and very large amounts of labeled data which 

is often expensive and laborious. Meanwhile, recent studies have shown the transfer learning 

(TL)  paradigm as an attractive choice in providing promising solutions to challenges of 

shortage in the availability of labeled medical images. Accordingly, TL enables us to leverage 

the knowledge learned from related data to solve a new problem. 

The objective of this dissertation is to examine the effectiveness of TL systems on 

medical images. First, a comprehensive systematic literature review was performed to provide 

an up-to-date status of  TL systems on medical images. Specifically, we proposed a novel 

conceptual framework to organize the review. Second, a novel DL network was pretrained on 

natural images and utilized to evaluate the effectiveness of TL on a very large medical image 

dataset, specifically Chest X-rays images. Lastly, domain adaptation using an autoencoder 

was evaluated on the medical image dataset and the results confirmed the effectiveness of TL 

through fine-tuning strategies. 

We make several contributions to TL systems on medical image analysis: Firstly, we 

present a novel survey of TL on medical images and propose a new conceptual framework to 

organize the findings. Secondly, we propose a novel DL architecture to improve learned 

representations of medical images while mitigating the problem of vanishing gradients. 

Additionally, we identified the optimal cut-off layer (OCL) that provided the best model 

performance. We found that the higher layers in the proposed deep model give a better feature 

representation of our medical image task. Finally, we analyzed the effect of domain 

adaptation by fine-tuning an autoencoder on our medical images and provide theoretical 

contributions on the application of the transductive TL approach. The contributions herein 
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reveal several research gaps to motivate future research and contribute to the body of 

literature in this active research area of TL systems on medical image analysis. 
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GENERAL INTRODUCTION 

1.1 Background and motivation 

That an image is worth a thousand words, is an English adage that is very relevant 

today in the medical imaging domain. Medical imaging techniques such as Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI), produce pictures that contain 

hidden information about the medical diagnosis. Recent advances in deep learning (DL)  

technologies have achieved tremendous breakthroughs in many computer vision problems, for 

example, object detection, localization, segmentation, and classification outperforming 

existing traditional approaches that rely on the extraction of handcrafted features. Moreover, 

these deep learning networks such as Convolutional Neural Network (CNNs) have found 

great success in computer vision recognition tasks (Farabet et al., 2013; Girshick et al., 2014; 

Hariharan et al., 2014; Krizhevsky et al., 2012) that automatically reveal hidden patterns from 

image features with a high degree of accuracy that has surpassed human judgment on many 

tasks. Further, deep learning methods present a phenomenal opportunity when employed on 

very large-scale datasets. However, the increasingly high costs of medical image acquisition 

and processing is a big hindrance for researchers who want to produce robust models from 

analysis of very large datasets. Deep learning techniques, for example, supervised transfer 

learning systems and data augmentation techniques can provide researchers with the 

opportunities to mitigate the challenges of limited datasets and resource-intensive processes of 

medical image acquisition or annotations.  

Recent literature reveals remarkable progress has been made in the field of computer 

vision and recognition with the availability of very large-scale datasets such as ImageNet 

(Deng et al., 2009). The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

(Russakovsky et al., 2015), a widely popular online competition in object recognition, have 

contributed tremendously in pushing the boundary of possibilities for providing solutions to 

image recognition problems sustained by improvements of CNNs since 2012. These 

developments can be attributed to improvements in deep learning algorithms and model 

architectures sustained by the availability of increased computational power and big data. 

Ultimately, these benefits can translate into better accuracy, timely diagnosis of medical 
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images, and help alleviate diagnostic decisions in healthcare environments with resource 

constraints.  

Over the years, there has been a paradigm shift from traditional machine learning to 

deep learning, more specifically on computer vision recognition tasks. Deep learning 

pipelines facilitate the autonomous learning of complicated features to discover patterns that 

are useful in solving many application problems in the computer vision domain. Figure 1 

shows the shift from traditional machine learning to deep learning systems (Agarwal, 2019). 

 

    

Figure 1. Traditional versus Deep Learning flow 

This dissertation is inspired by the recent advances in CNN architecture developments, 

limited availability of large public data sets for domain-specific tasks, and by the goal to 

improve existing deep CNN (DCNN) to leverage transfer learning strategies. Moreover, the 

ability of pretrained CNN architectures to generalize across different domains and tasks is an 

open and ongoing research problem. The objective of this dissertation is, therefore, is to 

examine the effectiveness of transfer learning systems on medical images. Drawing on an 

examination of literature review, and development of novel CNN methods, this work is 

organized into three distinct but related parts to theoretically and empirically evaluate the 

effectiveness of transfer learning systems on medical images.  

1.2 Scope 

This dissertation is focused on the effectiveness of transfer learning systems on 

medical images. More specifically, we aim to conduct a comprehensive systematic literature 

on transfer learning systems on medical images. Next, we propose a novel deep model to 

experiment on the effectiveness of supervised transfer learning on the classification of 

medical images. Lastly, we also demonstrate the use of domain adaptation approach in 
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transductive transfer learning using an autoencoder on medical images. This work will not 

cover other CNN architectures outside those we used for development nor attempt to explain 

the technical aspects and mathematical computations involved. However, succinct 

explanations are given throughout this work to answer the research questions and objectives 

outlined in sections 1.8 and 1.4 respectively.  

1.3 Statement of the problem 

The objective in image analysis, specifically in image classification tasks, is to map 

images to class labels. The images are treated as input labels where the image pixels are 

extracted and represented as feature vectors or feature maps. On the other hand, the output 

labels are represented as a probability distribution containing a probability value of either a 

binary or multiclass problem. One of the main problems in developing a robust image 

classification model is to identify a feature space that can clearly and efficiently distinguish 

feature maps from a probability distribution of feature vectors. This can be achieved through 

feature selection or extraction techniques and more recently, the use of CNNs to learn the 

feature maps of different image classes. The other problem is to describe how data or new 

samples can be generated from a probabilistic model; this is called the generative model. The 

Generative model predicts the joint distribution p(x,y) by using the rules of the Bayes 

Theorem. Similarly, the use of decision boundaries to distinguish classes by learning the 

conditional distribution p(y|x), this technique is referred to as the discriminant model. 

Examples of generative and discriminant models are Hidden Markov models and logistic 

regression classifiers respectively. 

The two problems identified earlier are classical issues facing the computer vision and 

recognition communities. However, with limited availability of large training samples of 

medical images, transfer learning offers an attractive choice to address the second problem. 

Although, transfer learning presents many research issues such as: What to transfer; how to 

transfer; and when to transfer (Pan & Yang, 2010),  the benefits of using transfer learning in 

many applications can ensure knowledge transfer across domains or tasks with similar or 

different feature spaces over single or multiple source domains. Moreover, advances in 

classes of deep neural networks (DNN) have significantly made it easier to solve the first 

problem such that with a few to an intermediate number of CNN layers, output labels of 
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different classes can be classified, for example, using SoftMax activation functions or 

classifiers. These problems provide an ongoing research problem in the visual recognition of 

tasks such as classification and segmentation. Therefore, transfer learning provides a large 

playing ground to explore the use of deep learning models to further investigate these two 

problems within the context of medical images. 

1.4 Objectives of the research 

The primary research objective of this work is to evaluate the effectiveness of transfer 

learning systems on medical images. Throughout this work, supervised inductive and 

transductive transfer learning are evaluated on the medical image datasets. Other objectives of 

this work include: 

1. Perform an up-to-date systematic literature review of transfer learning systems on 

medical images using the PRISMA guidelines.  

2. Implement and evaluate a novel deep model on a very large medical dataset. 

3. Evaluate the effectiveness of transfer learning strategies such as the use of 

pretrained models and fine-tuning techniques on medical images. 

4. Identify the Optimal Cut-off Layer (OCL) that produces a robust model 

performance for generalizability purposes. 

5. Demonstrate the effectiveness of applying domain adaptation with an autoencoder 

on medical images. 

The knowledge transfer from natural images to solve computer vision tasks on 

medical images via transfer learning is a current trend in deep learning with the potential to 

improve learning performance on use cases where there is limited availability of medical 

images. Therefore, we hypothesize that transfer learning with fine-tuning of a pretrained 

model and jointly trained on medical images can significantly increase learned feature 

interactions inside our novel deep model thus improving the goal of finding an optimal model 

that is robust and can potentially perform across multiple but similar domains. 
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1.5 Contributions 

Corresponding to the research objectives, the primary expected contributions of this 

work can be summarized in the following: 

From a theoretical perspective, we aim to inform the body of knowledge of the 

application of transfer learning on medical images. Most notably, a novel systematic literature 

review was conducted to summarize the findings. Next, we propose a new conceptual 

framework to classify the results to inform future research directions. Similarly, we provide 

theoretical explanations on the behavioral performances of strategically positioning of the 

Dense-Inception Network (DINET) modules at different parts of the deep neural network that 

gives the optimal feature learning of medical images on vision recognition tasks while 

mitigating the problem of vanishing gradients (i.e. the gradual minimization of gradient error 

term through backpropagation) phenomenon. One key observation was the increased learning 

activity inside the model among the feature vectors due to the enforcement of feature re-use. 

We believe that the findings of this work will contribute to the growing body of literature in 

transfer learning systems on medical images. 

From a methodological perspective, we analyze the effectiveness of an autoencoder, 

specifically the U-Net model architecture using transfer learning approaches and explore 

potential opportunities for further research. Furthermore, we experiment with public datasets 

for chest radiographs, a challenging problem in medical image segmentation. We also exploit 

data augmentation techniques to examine performance improvements in applying transfer 

learning techniques. 

From a practical perspective, we propose a novel architecture that leverages multi-

scale representations of learned features from shallow layers (generic layers) and forms high-

level features transformed from deeper layers which can classify and distinguish medical 

images much more accurately into different classes. Also, through rigorous experimentations 

of our novel deep model, we show that the problem of vanishing gradients can be alleviated 

due to increased activity of learned feature maps inside the network. Moreover, we show that 

by using transfer learning systems, knowledge learned and transferred from both natural and 

domain-specific images can be effective in medical image diagnosis. 



6 

1.6 Publication 

The work in this of this dissertation is connected to the publication efforts from the 

following: 

Zeng, D, Boit, J, and Winston Z. (2019) Effectiveness of transfer learning on medical 

image classification using chest X-ray 14 dataset. 

Transfer learning is significantly gaining rapid adoptions as an important tool for 

diagnosis and interpretation of medical images by decreasing the time spent in predictions, 

improving the accuracy in identifying abnormalities, and, therefore, enhancing the clinical 

outcomes of patients. We test the effectiveness of transfer learning (TL) techniques, namely, 

transferring knowledge from deep learning models pretrained with general-purpose images to 

medical image classification using the Chest X-ray 14 dataset, comprising of 112,120 frontal-

view chest X-ray images from 30,805 unique patients. We use the DenseNet-121 architecture, 

pretrained on Image Net, as our baseline model, and perform binary classification on our 

dataset. The results show that fine-tuning with data augmentation gives a more robust model 

performance and we propose that identifying the optimal cut-off layer during fine-tuning 

provides a novel approach for higher-order representation of medical features. For future 

research, we will combine fine-tuning approaches with hyperparameter optimization, adding 

non-image patient data, finding optimal data augmentation and model architecture, and 

generating high-resolution medical images using generative adversarial networks to improve 

model performance. 

1.8 Dissertation outline 

This dissertation is structured into the following three distinct but related parts.  

Part 1: This section provides an up-to-date systematic literature review of transfer 

learning systems on medical image analysis. To evaluate the extent to which transfer learning 

strategies and techniques have been used on medical images across anatomical areas of the 

human body, peer-reviewed articles are methodologically analyzed using the Preferred 

Reporting Items for Systematic Literature review (PRISMA). Also, a taxonomy and 

conceptual classification framework are developed to classify the findings, to show the trends 

over time of how transfer learning systems have been applied to medical images within the 
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context of the human anatomy. Therefore, this work aims to address the following main 

research questions (RQ):  

1. How have transfer learning systems been applied to medical images?  

2. What are the learning settings used for transfer learning on medical images?  

Part 2: This section examines the effectiveness of transfer learning systems on 

medical images using a novel deep model as our primary objective. In particular, the 

motivation for this work is to implement and evaluate a novel architecture to stimulate 

learning of relevant feature maps of the medical images, to help diagnose thoracic 

pathologies. Besides, pretrained models and fine-tuning strategies, key components of transfer 

learning systems are used to investigates the proposed model’s effectiveness in transferring 

features maps from the source domain (natural images) to the target domain (medical 

images). Moreover, rigorous experiments are conducted with fine-tuning operations to 

determine the optimal cut-off layer (OCL) of the proposed model that gives the optimal 

feature representation on a medical image recognition task. To accomplish this objective, the 

following research questions are proposed:  

1. Does the proposed deep model alleviate the problem of vanishing gradients 

efficiently? 

2. Does the proposed deep model improve the effectiveness of transfer learning 

for medical image classification?  

3. What is the Optimal Cut-off Layer that produces the best model for deep 

feature representation for medical image classification? 

To answer the above questions, we fully trained a pretrained model and extracted 

feature maps that were relevant for retraining for our medical image dataset.     

Part 3: This is the last section of the dissertation that employs the transductive 

learning approach to transfer learning where domain adaptation is evaluated on the medical 

image dataset. More specifically, an autoencoder, a type of neural network is used to learn 

source data distributions from a good performing model to solve a task on a related target 

distribution (medical images). In this section, supervised domain adaptation applying the re-

training method is used to reconstruct the errors from the source data which are beneficial for 

classification or segmentation tasks. The research objectives of this work include: 
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1. What is the effectiveness of transfer learning systems in using autoencoders for 

medical images? 

In summary, this dissertation seeks to answer fundamental research questions 

highlighted in this three-part series format regarding the effectiveness of transfer learning 

systems on medical images with an emphasis on theoretical and practical perspectives. The 

contributions are of significant interest to the multi-disciplinary audience in information 

systems, health practitioners, policy-makers on matters health, computer vision researchers, 

and the medical imaging community. 
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PART I: A SURVEY OF TRANSFER LEARNING IN 

MEDICAL IMAGE ANALYSIS 

2.1 Overview 

This section provides an overview of the extant literature reviews on medical image 

analysis and more specifically on aspects of deep learning technologies on medical images. 

We will summarize the related works in Table 1 where the reader will find an up-to-date 

overview of related studies that focus on deep learning technologies and architectures on 

medical images. The main idea in this section is to provide a current status of reviews that 

cover the use of deep learning technologies on medical image analysis.  

2.2 Literature review 

In recent years, the adoption of deep learning technologies has led to remarkable 

growth in visual recognition tasks such as object detection, classification, localization and 

segmentation, key components of computer vision problems. By definition, Deep learning is a 

computation model comprised of several processing layers with the ability to learn 

representations of data in many abstraction levels (LeCun et al., 2015). Applications of Deep 

learning in the computer vision field relies on CNNs, one of the most popular deep learning 

architectures, utilized for image recognition tasks. Over the years, CNNs have been widely 

used in visual recognition problems applying both supervised and unsupervised methods with 

notable achievements in translation invariance in computer vision tasks (Krizhevsky et al., 

2012; LeCun et al., 1989). With the resurgence of increased interests in CNN architectures on 

visual recognition tasks, starting from AlexNet (Krizhevsky et al., 2012) in 2012, the growth 

of deep learning application on medical image analysis and to a greater extent, the use of 

pretrained models have dramatically increased over the last seven years. For example, seminal 

contributions have been made by Litjens et al., (2017) in the field of deep learning 

applications, where they comprehensively reviewed a plethora of published studies estimated 

at over 300 papers focused on medical image analysis. Another study by Altaf et al., (2019) 
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presented a survey of recent publications in 2018 focusing on the application of deep learning 

methods on medical imaging analysis. In related works by Anwar et al., (2018) a review of 

deep learning techniques leveraging on CNN architectures and their application on medical 

image analysis was presented. In a similar attempt, Sengupta et al., (2019) presented a review 

of the algorithmic foundation of deep learning architectures, their application, and current 

trends in medical image analysis. In another work, Kumar and Bindu, (2019) provided a 

systematic literature review of the deep learning application on medical imaging following the 

PRISMA guidelines. Although the findings were categorized according to the visual 

recognition tasks, the use of transfer learning strategies and techniques on medical image 

analysis was not discussed.     

Pehrson et al., (2019) surveyed the use of deep learning algorithms to detect 

pulmonary nodules in thoracic CT scans. In this study, the authors used the PRISMA 

methodology to investigate deep learning algorithms that were used on the Lung Image 

Database Consortium Image Collection (LIDC-IDRI), a very large database comprising 7371 

lesions. Additionally, Mazurowski et al., (2018) conducted a review of deep learning in 

radiology covering visual recognition tasks such as classification, segmentation, and 

detection. Moreover, transfer learning approaches were highlighted in the classification task. 

This approach remains briefly discussed in the literature. In a different work by Yi et al., 

(2019) the authors presented a survey of Generative Adversarial Networks (GANs) in medical 

imaging. Although there are several studies on different deep learning dimensions on medical 

images, the review focusing on transfer learning remains limited. To fill this literature gap, 

our study identifies and focuses on the application of transfer learning systems on medical 

images following the scheme by Litjens et al., (2017). The following Table 1. provides a 

summary of surveys from the literature that contributed towards the application of different 

dimensions of deep learning on medical image analysis.  
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Table 1: Summary of review of papers related to DL on medical image analysis 

Author Focus PRISMA 

 

Remarks 

Altaf et al., 

(2019) 

 

To provide a review of recent deep learning 

techniques and methods on medical imaging 

published in 2018. 

NONE Best practices and concepts of transfer learning are 

discussed. Also, transfer learning strategies are 

highlighted in studies that use detection or 

localization tasks. 

Anwar et al., 

(2018) 

This study focused on a survey of deep 

learning techniques and their application on 

medical image analysis. 

NONE An estimate of 10 papers was summarized using the 

CNN method and its performance accuracy 

reported. 

Ker et al.,   

(2018) 

This work focused on applications of medical 

image classification, localization, detection, 

segmentation, and registration. 

NONE Reviewed several highly cited articles to articulate 

the application of different supervised and 

unsupervised deep learning models on  medical 

image analysis tasks 

Litjens et al., 

(2017) 

This study examines over 300 studies on the 

use of deep learning for image classification, 

segmentation, registration, etc. 

NONE Summary of deep learning techniques, and 

challenges to medical imaging tasks 

Mazurowski 

et al., (2018) 

This study reviews the use of deep learning 

in radiology with a focus on classification, 

segmentation, and detection. Other tasks 

reviewed in the study included: image 

registration, image generation, image 

enhancement, content-based image retrieval, 

and objective image quality assessment. 

NONE Transfer learning strategies and deep features are 

covered only for image classification tasks. 

Pehrson et al., 

(2019) 

This study surveyed the literature on the use 

of deep learning algorithms to detect 

pulmonary nodules derived from the Lung 

Image Database Consortium Image 

Collection (LIDC-IDRI)  

YES No mention of transfer learning strategies in the 

study. 

Sengupta et 

al., (2019) 

The focus of this study is to review deep 

learning architectures, applications, and 

trends with an estimate of 12 papers on 

medical image processing. 

NONE The theoretical and mathematical explanation of 

different types of CNN is provided alongside 

application in other industries such as financial 

services and power systems 

Shorten and 

Khoshgoftaar, 

(2019) 

 Types of Data augmentation methods   NONE  Developed taxonomy for image data 

augmentations. 

Kumar and 

Bindu, 

(2019) 

The objective of this research was to provide 

a systematic literature review on deep 

learning methods used in medical image 

analysis tasks such as classification, 

localization, detection and segmentation 

YES The review was conducted between 2012 and 2018. 

Also, Transfer learning techniques or strategies 

were not explicitly mentioned or covered. 

Yi et al.,  

(2019) 

To present a comprehensive overview of the 

literature on Generative Adversarial 

Networks (GAN) on medical imaging 

NONE None of the transfer learning strategies was 

reviewed together with GAN application on 

medical imaging. 

Zhuang et al., 

(2019) 

To review and summarize current transfer 

learning approaches with a focus on data and 

models 

NONE Comprehensively summarizes the mechanisms and 

strategies of transfer learning with model examples 

on Natural language processing (NLP) problems. 
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2.3 Classification framework 

We propose a graphical representation of the conceptual framework for categorizing 

the literature on the transfer learning systems on medical images. The framework shown in 

Figure 2 is based on ideas from prior literature of transfer learning (Pan & Yang, 2010), deep 

learning on medical images (Litjens et al., 2017; Mazurowski et al., 2018), and medical 

imaging modalities (Elangovan & Jeyaseelan, 2016). Figure 2 consists of several layers: (1) 

Transfer learning settings; (2) Methods; (3) Tasks; (4) Imaging modalities; (5) Anatomical 

application areas; and (6) Systems of the human body. Moreover, Figure 5 organizes the 

review of the literature to reflect the categories of the several identified layers. A brief 

overview of each of the layers is given to motivate the review and analysis process. 

 

 

 

Figure 2. A conceptual framework for the application of TL on medical images 

2.4 Deep learning architectures  

Convolutional Neural Networks (CNNs or ConvNets) are a group of feed-forward 

neural networks comprising of components such as convolutional, pooling, and fully 

connected layers and mostly used to solve computer vision challenges. With the latest 

developments of faster Central Processing Units (CPUs)  and efficient Graphical Processing 
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Units (GPUs), deep learning is progressively permeating every aspect of our daily lives such 

as diagnosis of Alzheimer’s (Awate, 2019), fraud detection, facial recognition, self-driving 

vehicles, and virtual assistant. Recently, deep convolutional neural networks (H. Shin et al., 

2016; Krizhevsky et al., 2012) leveraged on CNN architectures have proven significant 

success on image classification tasks (Rawat & Wang, 2017), pushing the performance 

boundary that surpasses human judgment. The primary idea of DL is the training of features 

from raw data. Conventionally, the DL algorithm will create a hierarchical representation for 

feature detection such as eyes, nose, and ears. 

DCNNs comprise of multiple hidden layers that enable representations of complex 

features learned from the relationships between the inputs and outputs. In the computer vision 

field, modern CNN architectures that have found tremendous success in many image 

recognition tasks include AlexNet (Krizhevsky et al., 2012), DenseNet (Huang et al., 2017), 

Inception (Szegedy et al., 2015), VGGNet (Simonyan & Zisserman, 2015), and  ResNet (He 

et al., 2016). It is worth mentioning that several versions of the prevenient CNN architecture 

have already been developed in terms of going deeper and wider with intentions of improving 

model performances and parameter efficiency. Other approaches in the design and 

development of CNN architectures have adopted an architectural combination of hybrid 

networks, for example, Inception-ResNet-v2 (Szegedy, Ioffe, et al., 2016). All these different 

variants of CNN architectures have played a great role in contributing innovations towards the 

diagnosis of diseases in the medical domain.  

Beyond the CNNs, variants of the feedforward neural networks with the addition of 

feedback connections, include Recurrent Neural Networks (RNNs) (Bengio et al., 1994; 

Jordan, 1997), Long Short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997)  and 

GANs (Goodfellow et al., 2014) have become increasingly popular in segmentation tasks, 

NLP and unsupervised learning. In biomedical image analysis, U-Net (Ronneberger et al., 

2015), has proven to be very successful for medical image segmentation tasks. Over time, a 

more comprehensive literature review on historical and state-of-the-art deep learning 

algorithms can be found in Pouyanfar et al.,(2018). 
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2.5 Overview of transfer learning approaches 

Transfer learning (Caruana, 1997; Thrun, 1996) is a popular concept currently used in 

deep learning to refer to the reuse of features from a pretrained network (usually from natural 

images) to be applied to a new problem. Conventionally, Deep neural networks require vast 

amounts of large labeled datasets, for example, ImageNet (Deng et al., 2009), one of the 

largest datasets for image classification (with over 14 million images belonging to over 1000 

object classes) and very powerful computing resources to solve many challenging computer 

vision problems. However, now TL presents an attractive proposition in solving real-world 

problems such as medical image recognition tasks, where there is a shortage of labeled 

datasets and training DCNNs from scratch could be computationally expensive. In this 

context, two transfer learning techniques have been widely applied for image recognition 

tasks: (1) Pretrained networks as a feature extractor and (2) fine-tuning a pretrained network 

(Litjens et al., 2017). In principle, transfer learning translates knowledge that has already been 

learned in one domain (source) and applied to solve a new task in a different but related 

problem (target). For example, a person who knows how to ride a motorbike can utilize those 

acquired skill sets to learn (transferred knowledge) how to drive a vehicle. In a seminal paper, 

Pan and Yang (2010), categorized TL under three broad settings: 

Inductive transfer learning: In this TL setting, the source and target domain can be the 

same or different but the source (task) and target (task) is considered different regardless of 

the domain. Additionally, the two variants of inductive transfer learning include multi-task 

and self-taught learning. On one hand, in multi-task learning, the goal is to learn the features 

from both the target and the source tasks simultaneously. On the other hand, self-taught 

learning is analogous to inductive learning with the exception where the labeled data in the 

source domain are absent. 

Transductive transfer learning: In this approach, the source and target domains differ 

while the source and target tasks are the same. In other words, the source domain may contain 

large amounts of labeled data while labeled data in the target domain are unavailable. Other 

special variants of this approach have been identified in the literature to include domain 

adaption, co-variant shift, and sample selection bias (Patel et al., 2015a).  

Unsupervised transfer learning: In unsupervised TL, the source and target domains 

have no labels for training. However, it is much like inductive TL, where the target task can 
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be dissimilar from but comparable with the source task. Table 2 summarizes the different TL 

settings available for various deep learning scenarios (Pan & Yang, 2010). 

 

Table 2. Different settings of transfer learning  

Transfer Learning 

Settings 

Related Areas Source Domain 

Labels 

Target Domain 

Labels 

Tasks 

Inductive Transfer 

Learning 

Multi-task learning Available Available Regression, 

Classification 

Self-taught learning Unavailable Available Regression, 

Classification 

Transductive 

Transfer Learning 

Domain Adaptation, 

Sample Selection 

Bias, Co-variate Shift 

Available Unavailable Regression, 

Classification 

Unsupervised 

Transfer Learning 

 Unavailable Unavailable Clustering, 

Dimensionality 

Reduction 

 

2.6 Medical imaging modalities 

The goal of medical imaging is to enable correct diagnosis, therapy, and treatment of 

patients centered around the managing of the disease protocols while mitigating any harmful 

side effects from the diagnostic procedure. In the healthcare domain, hospitals rely on 

different medical imaging modalities such as X-rays, to institute preventative care, improve 

diagnostics, and patient outcomes. With medical imaging, medical practitioners can use 

several scanning methods to visualize and monitor the activities in the human body without 

the need for invasive procedures, for example, surgeries for diagnostic and treatment 

purposes. Each of the medical imaging modalities is functionally specialized to produce 

digital images with varying degrees of information. In the medical domain, some of the 

common types of medical imaging include X-rays, ultrasound, Magnetic Resonance Imaging 

(MRI), microscopy, fundus, Computed Tomography (CT), Optical Computed Tomography 

(OCT) (Elangovan & Jeyaseelan, 2016; Litjens et al., 2017). Other imaging modalities are 

organ-specific, for example, retinal photographs and dermoscopy (Ker et al., 2018). Figure 3 

shows a graphical representation and includes brief notes on the types of medical imaging 

modalities (Speicher, 2019).  
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Figure 3. Types of common medical imaging modalities 

2.7 Systems of the human body 

The human body is made up of several organs working together towards a common 

objective known as the human body system. The human body can be classified into  several 

broader categories (Kerrigan, 2020):  

1. Endocrine: deals with regulation of the body. 

2. Nervous: responsible for all sensory activities e.g. brain. 

3. Respiratory: the organs here ensure gaseous exchange in the in and out of the body 

e.g. lungs.  

4. Cardiovascular/Circulatory: ensures the circulation of blood in the body e.g. heart. 

5. Digestive and Excretory: provides a system for food absorption and excretion of 

wastes from the body e.g. gastrointestinal tract. 
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6. Lymphatic and immune system:  protects the body from harmful substances e.g. 

lymph. 

7. Reproductive: the organ that allows the production of offspring.  

8. Urinary and renal system:  includes the kidneys responsible for filtering blood and 

removal of wastes from the body. 

9. Integumentary: parts of the boy that ensure regulation from temperature e.g. skin, hair.  

10. Skeletal: organs that maintain the body structure e.g. bones. 

11. Muscular: allows the body to move using muscles. 

A diagrammatic representation of the human body systems is presented in Figure 4. 

 

Figure 4. The Human body system 
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After reviewing the relevant literature, we propose a framework to conceptualize and 

organize the analysis and results from the systematic literature review as shown in Figure 5. 

This framework connects several concepts identified and developed in Figure 2. 

 

 

 

 

 

 

 

 

 

Figure 5. Framework for organizing the review articles 

 

To our knowledge, no prior studies have examined transfer learning settings, 

strategies, and techniques specifically focused on medical images using the PRISMA 

methodology and to evaluate their impact on current trends to identify future research 

opportunities. A new survey is, therefore, needed to address the research gap revealed so far 

in the literature. This promising opportunity, therefore, inspires our research efforts to present 

an up-to-date comprehensive systematic literature review, following the PRISMA 

methodology, specifically on the application of transfer learning settings and techniques on 

medical images covering the visual recognition tasks such as classification and segmentation.      

 

 

 

 

 

 

 



19 

3.0 RESEARCH METHODOLOGY 

3.1 Overview 

For the methodology, we used the Preferred Reporting Items for Systematic Reviews 

and Meta-Analysis (PRISMA) principles and guidelines to complete the literature review 

process (Moher et al., 2009). The research topic reviewed focused on the transfer learning 

strategies and settings applied to medical image recognition problems. In addressing the 

research questions highlighted earlier in the general introduction, we conducted a systematic 

search of articles from targeted scientific and journal online databases that included PubMed, 

Web of Science, IEEE Xplore Digital Library (IEEE), and Arxiv databases based on their 

relevance to the research questions and domain topic. The survey topic is relatively nascent, 

and therefore, the scope of the search period was limited to the time frame between April 1, 

2010, to April 2020, a 10-year timeline that was deemed representative of the research topic 

under investigation. 

3.2 Search Strategy 

The literature search was based on the keywords “transfer learning”, “medic*” and 

“image*”. The key phrases were concatenated using Boolean expressions and applied to 

search through the selected online databases yielding a total of 223 articles. The online 

databases were selected based on the relevancy of content with the research title, research 

questions, and the domain application. The literature review search, process, and classification 

were carefully conducted guided by two defined measures; 1.) Inclusion criteria; and 2.) 

Exclusion criteria. These measures define the criteria for searching and extracting relevant 

articles relating to the research title and domain of interest. They include: 

Inclusion criteria: 

• Article presenting the application of transfer learning techniques or strategies 

and discussing their application on medical images. 

• Articles that use neural networks such as CNN to implement transfer learning 

approaches. 
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Exclusion Criteria: 

• Articles discussing the use of transfer learning in other application domains 

other than medical images or other aspects of transfer learning regardless of 

the application domain. 

• Articles that focus on image captioning, annotations, concepts, and topic 

extraction. 

• Articles that focus on literature review or survey. 

• Articles that mentioned the detection of surgical devices or tools. 

• Masters, doctoral dissertations, and unpublished works are excluded. 

• All articles other than the English language are excluded.  
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4.0 RESULTS  

4.1 Overview  

The literature review process involved several important steps to extract the relevant 

articles as shown in Figure 6., resulting in a total of 223 articles. First, duplicate articles were 

carefully removed through manual and automatic methods. In some cases, where multiple 

publications were observed to have the same authors, for example, in both a conference and a 

journal publication, the journal entry was included for further analysis. Second, the articles 

were screened for the title and abstract relevancy guided by the inclusion and exclusion 

criteria. Third, the articles were further screened for full-text availability using both the 

inclusion and exclusion criteria. Lastly, the results were included for further analysis and 

organized to provide answers to address the research questions formulated earlier in the 

introduction section. When in doubt about information on an article’s title or abstract, the 

articles were carefully read in full text to extract the exact parameters for the conceptual 

classification framework. The organization of the extracted information was based on the 

proposed classification framework shown in Figure 5. Moreover, Figures 7-10 shows the 

numeric distribution of articles according to the publication period, imaging modalities, 

imaging analysis task, and application areas in the human body. 

 

Figure 6. Flow diagram of the review process using PRISMA 
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4.2 Analysis of results 

The vast majority of the reviewed articles were extracted from the journal articles 

(75%)  followed by conference papers (25%) spanning the period 2015-2020  as shown in 

Figure 9. In Figure 7, the reviewed articles are classified according to the area of application 

regarding the human body organs. Lungs and abdominal areas of the body have the highest 

attention in terms of research publications. Additionally, Tables 3-13 presents a detailed 

breakdown of the classification of peer-reviewed articles according to the proposed 

conceptual framework (see Figure 5). The organization into tables helps to reveal resultant 

patterns and insights for further discussion. Unless stated otherwise, it is worth noting that 

most of the articles summarized in Tables 3-13 had their methods as classified as CNNs and 

TL approach as inductive transfer learning. 

   

Figure 7. Distribution by body organs 
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Figure 8. Distribution by imaging modalities 
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Looking at the distribution of publication by year, it is noteworthy that the growing 

appeal in transfer learning on medical images can be evidenced from the increased frequency 

in scientific publications of conference and journal papers since 2015 as shown in Figure 9. 

This observation can largely be attributed to the huge amounts of labeled datasets and 

computational power required to train deep neural networks. However, we argue that the 

limited number of relevant articles gathered between 2015 to 2018 reflects the relative 

newness of the transfer learning concept and gradual evolution in the application on the 

medical imaging domain. 
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No. of publications 

Year of Publication
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Figure 9. Distribution by year of publication 
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Figure 10. Distribution by image analysis task 

For the image analysis tasks, the results in Figure 10 reveal that most of the medical 

imaging tasks that use transfer learning approaches are classification followed by 

segmentation. It is interesting to note that classification is one of the most popular and heavily 

used tasks in image recognition, that is, identifying what object or anomaly appears in an 
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image. Similarly, a word cloud was created to give insights on how transfer learning systems 

are applied to which specific systems of human anatomy (see the outer layer in Figure 2.). All 

the relevant articles were classified into the systems of human anatomy to reveal the resultant 

insights (Rettner, 2016). In Figure 11, the word cloud reveals that the top three systems of the 

human anatomy that receive high research attention are Nervous, Respiratory, and 

Integumentary systems. However, immune, Circulatory, Renal, and Endocrine systems 

remain under-examined, perhaps due to the unavailability or limited size of labeled datasets. 

 

Figure 11. Word cloud representing systems of the human body 

4.3 Distribution of articles by Abdomen image analysis 

Out of the total reviewed articles, the abdomen contributed about 12.7% of the total 

relevant articles. The majority of articles reviewed aimed to classify and segment different 

organs found in the abdomen region such as kidney, liver, and lymph nodes as shown in Table 

3. The imaging modalities were fairly a mixed bag, for example, microscopy, CT, ultrasound, 

and staining with none dominating the other. Given the popularity and success of U-Net 

(Ronneberger et al., 2015) on biomedical image segmentation,  it was interesting to note that 

Motamed et al. (2019), trained U-Net architecture to segment prostate glands. Other articles 

that focused on segmentation tasks, included, Sital et al., (2020) where they used 

autoencoders with both labeled and unlabeled datasets in identifying 3D liver images from CT 

scans. The remaining articles were on classification tasks of different body organs.  

Some abbreviations used in the tables include PA: Publication Article; JA: Journal 

Article; H&E: hematoxylin and eosin; Optical coherence tomography (OCT). 
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Table 3. Overview of papers using TL for abdominal image analysis. 

Author PA TL  

setting 

Method Architecture  Task Imaging 

Modality 

Comments 

Agrawal et 
al.,(2019) 

JA Inductive CNN VGGNet;ResNet50;Inception-
V3;XceptionNet;MobileNet 

Classification Others Evaluating CNN 
performance on low 

resource medical 

images(e.g. gastrointestinal 
images) 

Ayyar et 

al.,(2018) 

CP Inductive CNN ResNet50;InceptionV3; 

InceptionResNet; 
VGG19 

Classification Others 

(staining) 

Classification of abnormal 

glomeruli in the renal 
tissues 

Chen et 

al.,(2019) 

JA Inductive CNN InceptionV3; VGG16 Classification MRI Detection of prostate 

lesions from 
multiparametric MRI 

images 

Kang and 

Gwak,(2019) 

JA Inductive CNN Ensemble of Mask R-CNN;  

ResNet50 and ResNet101 as 
backbone 

Segmentation Others The first study to use Mask-

RNN for the task of Polyp 
instance segmentation  

Lan et 

al.,(2019) 

JA Inductive CNN Cascade proposal with  

ZF network as a baseline and 
Fast R-CNN with VGG-16 

Classification Others Wireless capsule 

endoscopy abnormality 
detection  

Ma and 

Peng,(2019) 

JA Inductive CNN Custom CNN Classification CT Use of multi-source transfer 

learning for lymph node 

detection 

Motamed et 

al.,(2019) 

JA Inductive CNN U-net Segmentation MRI Segmentation of prostate 

glands and transition zones 

Nadimi et 

al.,(2020) 

JA Inductive CNN ZF-Net; Faster R-RNN Classification Others Detection and localization 

of colorectal polyps 

Ravishankar 

et al.,(2017) 

JA Inductive CNN Custom CNN Classification Ultrasound Investigates the 

effectiveness of transfer 

learning to kidney detection 

Sital et 
al.,(2020) 

JA Inductive CNN Auto-Encoder(AE) Segmentation CT Segmentation task on 3D 
liver CT images 

Sun et al. JA Inductive CNN ResNet50 Classification Microscopy Detection of liver cancer 

histopathological images 

4.4 Distribution of articles by brain image analysis 

The brain constitutes an important part of the nervous system of the human anatomy 

as illustrated in the last layer of the conceptual framework in Figure 2. As shown in Table 4, 

we identified a large number of articles addressing classification tasks with many of the 

imaging modality being MRI.  Multimodal and fusion representation of the brain in 2D and 

3D targeting diagnosis of Alzheimer’s and stroke lesions. Most papers applied classification 

tasks except for Amin et al.,(2019) and Malla et. al,(2019) where they diagnosed the presence 

of ischemic stroke lesions from MRI images. 
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Table 4. Overview of papers using TL for brain image analysis 

Author PA TL  
setting 

Method Architecture  Task Imaging 
Modality 

Comments 

Amin et. 

al.,(2019) 

JA Inductive CNN AlexNet and 

GoogLeNet 

Segmentation MRI Detection of multimodal Brain 

tumor and ischemic stroke lesion 
via segmentation tasks 

Awate, 

(2019) 

JA Inductive CNN Inception V3 Classification MRI Detection of Alzheimer’s disease 

from MRI images 

Dawud et 
al.,(2019) 

JA Inductive CNN AlexNet-SVM Classification CT Identification of brain 
hemorrhage from CT images  

Hermessi et 

al.,(2018)  

JA Inductive CNN Custom CNN Classification CT and 

MRI 

Developed a multi-modal fusion 

method for fusion and 
classification  in the shearlet 

domain 

Lao et 

al.,(2017) 

JA Inductive CNN CNN-S Classification MRI Developed a radiomic model for 

prediction of patients with 
Glioblastoma multiforme (GBM) 

Liang et 

al.,(2018) 

JA Inductive CNN M3D-

DenseNet 

Classification MRI Prediction of isocitrate 

dehydrogenase (IDH) genotype 
using a novel M3D DenseNet on 

multimodal MRI images 

Malla et. 

al.,(2019) 

JA Inductive CNN Custom CNN Segmentation MRI Developed DeepMedic method 

to identify and segment 
ischaemic stroke lesions from 

MR images 

Wingate et 
al.,(2019) 

JA Transductive 
(Domain 

adaptation) 

CNN-
RNN 

ResNet-50 Classification MRI Use of DNN’s to predict 
Parkinson’s disease from MRI 

images 

Zhang et 

al.,(2017) 

JA Inductive 

(multi-task) 

CNN AlexNet Classification MRI Prediction of Alzheimer’s 

disease using a multi-task 
learning strategy 

4.5 Distribution of articles by bone image analysis 

Bones can be categorized under the skeletal system of the human anatomy. The 

DCNNs have been applied to the bone images for different tasks such as segmentation, 

classification, and localization. The findings are summarized in Table 5. An interesting study 

by Feng et al., (2020) combined CNN and RNN (LSTM) to detect the presence of rheumatoid 

arthritis from CT images. As expected, the preferred imaging modality for diagnosis of bone-

related diseases was X-ray and CT and illustrated in Figure 8 as well. 

Table 5. Overview of papers using TL for bone image analysis 

Author PA TL setting Method Architecture  Task Imaging 

Modality 

Comments 

Feng e. al.,(2020) JA Inductive CNN; 
RNN 

(LSTM) 

ResNet; 
Highway 

Networks 

Classification CT Detection of rheumatoid 
arthritis based on 

diffuse optical 

tomography 

Jodeiri et. al.,(2019) CP Inductive 
(multi-

task) 

CNN Mask R-NN; 
U-Net 

Segmentation X-ray Segmentation of pelvic 
radiographs using multi-

task learning 

Tiulpin et al.,(2019) JA Inductive CNN Hour-glass 
CNN 

Localization X-ray Localization of knee 
landmarks using 

hourglass networks 

Zhou et al.,(2017) CA Inductive CNN VGGNET Classification  X-ray Automatic bone age 

assessment based on the 
region of interests (ROI) 
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4.5 Distribution  of articles by breast image analysis 

Breast cancer is a type of cancer mostly afflicting women and manifests itself in breast 

tissues. Mammograms are the most common type of modality for detecting breast cancer via 

X-rays. Other imaging modalities like ultrasound, MRI, and microscopy are equally important 

for examining signs of cancer from breast tissues. In Table 6, we summarize the findings of 

several studies from the literature on breast image analysis. All the articles focused on image 

classification with one paper by Samala et al., (2017) using multi-task transfer learning to 

classify breast cancer. Although ultrasound is considered the most safest and cost-effective 

imaging modality, only one study employed ultrasound images (Byra et al., 2018). Regarding 

the architecture used, VGGNet variants were the most popular for the diagnosis of breast 

cancer with a specific case where VGG19 (Hu et al., 2019) was used to extract 4D 

information from MRI breast images.    

 

Table 6. Overview of papers using TL for breast image analysis 

Author PA TL setting Method Architecture  Task Imaging 

Modality 

Comments 

Byra et al.,(2018) JA Inductive CNN Inception V3 
and VGG19 

Classification Ultrasound Impact of  image 
reconstruction on breast 

lesion classification using 

transfer learning 

Chang et al., 

(2017) 

CP Inductive CNN Inception V3 Classification Microscopy Detection of breast 

cancer using 

histopathology images 

Guan and Loew, 
(2017) 

CP Inductive CNN VGG16 Classification X-ray Detection of breast 
cancer 

Hadad et al., 

(2017) 

CP Inductive CNN VGG128 Classification MRI Detection of breast lesion 

Hu et al.,(2019) JA Inductive CNN VGG19 Classification MRI Breast cancer diagnosis 
using 4D information 

Huynh et al., 

(2016) 

JA Inductive CNN AlexNet Classification X-ray Detection of breast 

lesions using 5-fold 
cross-validation 

Samala et 

al.,(2017) 

JA Inductive 

(multi-
task) 

CNN ImageNet 

DCNN 

Classification Others Breast cancer diagnosis 

using multi-task transfer 

Suzuki et al., 

(2016) 

CP Inductive CNN AlexNet Classification X-ray Mass detection on 

mammographic images  

Valerio et al., 
(2019) 

CP Inductive CNN Inception 
V3;Inception-

ResNet-

v2;NASNet-
Large 

Classification X-ray Detection of Breast 
lesion  

4.6 Distribution of articles by chest image analysis 

Chest radiography, also known as a Chest X-ray, is considered as one of the most 

common forms of radiological examination used to diagnose thoracic pathologies. For many 
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years, X-rays and CT scans have been the standard imaging modality for detecting different 

chest conditions by radiologists. In recent years, two large scale datasets have been made 

publicly available: (1) ChestX-Ray-14 (Wang et al., 2017) and (2) CheXpert (Irvin et al., 

2019) for medical image classification tasks. Many types of different deep learning 

architectures have been applied to these large Chest X-Ray datasets for both binary and 

multiclass classification with varying success. Recently, Choudhary and Hazra  (2019) used a 

pretrained ImageNet model of VGG-16 (Krizhevsky et al., 2012) on the ChestX-ray14 

dataset. They achieved state-of-the-art training accuracy of 98%  and test accuracy of 97% on 

a binary classification task using transfer learning approaches by fine-tuning the higher layers 

of the pretrained model. An interesting observation was from a study by Oliveira and dose 

Santos (2018) who used unsupervised learning by training a variant of U-Net to segment and 

translate Chest X-ray images. We expect to see more research exploiting transfer learning 

approaches for both classification and segmentation tasks on Chest X-ray images.  

Table 7. Overview of papers using TL for Chest CT image analysis 

Author PA TL  

Setting 

Method Architecture  Task Imaging 

Modality 

Comments/Detection 

Alsabahi et 

al.,(2018) 

 

CP Inductive CNN Inception V3 Classification X-ray Detection of abnormal or 

normal digital 

radiographic chest images  

Choudhary and 
Hazra (2019) 

JA Inductive CNN VGG16 Classification X-ray Multi-classification of 
Chest X-Ray 14 dataset 

using transfer learning 
strategies 

Feng et al., 

(2020) 

JA Inductive CNN 3D U-Net Segmentation CT Classification of Organs at 

Risk (OAR) from thoracic 

images 

Oliveira and 

dos Santos 

(2018) 

JA Unsupervised CNN FCN;U-nets; 

SegNets;MUNIT 

Segmentation X-ray Use of DNNs for Semantic 

segmentation and image 

translation of Chest X-ray 
images 

4.7 Distribution of articles by heart image analysis 

Transfer learning approaches have been applied to the heart or cardiac image analysis 

as shown in Table 8. Despite the high rate of global deaths resulting from heart-related 

diseases, for example, ischaemic heart disease (see Figure 12.), few articles mentioned the use 

of transfer learning techniques on cardiac image analysis. Imaging modalities were varied 

from CT to Ultrasound, but the imaging task was reported as classification. Gupta et al., 

(2019) used Inception v3 architecture to investigate the impact of transforming 3D to 2D 

coronary CT images applying transfer learning with data augmentation techniques. We 

predict to see more research targeting cardiac image analysis as more large datasets of heart-
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related diseases become publicly available to researchers in the computer vision and medical 

domain. 

Table 8. Overview of papers using TL for heart image analysis 

Author PA TL  
setting 

Method Architecture  Task Imaging 
Modality 

Comments 

Gupta et al.,(2019) JA Inductive CNN Inception V3 Classification CT Impact of 3D-to-2D 

transformation using TL and 
data augmentation on small 

datasets (coronary CT images) 

Miyagawa et 
al.,(2019) 

JA Inductive CNN Custom CNN Classification Ultrasound Detecting vascular bifurcation 
on coronary CT images  

4.8 Distribution of articles by lung image analysis 

This is the category with the largest amount of reported studies related to lungs where 

transfer learning techniques were used for classification and segmentation tasks. The results 

from this category had the most balanced and varied applications regarding the TL settings 

and architectures utilized for tuberculosis diagnosis. The findings are summarized in Table 9. 

Although the unsupervised TL approach had the lowest reported application from all the 

results, it is interesting to note that three papers employed unsupervised learning for 

classification and segmentation tasks. Chen et al., (2018) proposed a semantic-aware 

generative adversarial network for unsupervised domain adaptation (SeUDA) utilizing a 

modified ResNe-t101 and CycleGAN which achieved a dice coefficient of 93.42% on lung 

segmentation task. Similarly, Sawada and kozuka, (2015) combined unsupervised transfer 

learning with a multi-prediction deep Boltzmann machine (MPDBM) on two datasets: (1) 

MNIST dataset (source domain) and (2) X-ray dataset (target domain) to classify lung tissue 

with an improved classification performance of 99.6%.  

Moreover, Hussein et al., (2019) proposed a novel unsupervised learning algorithm 

combining multi-task learning with 3D CNNs achieving a lung nodule classification accuracy 

of 78.06%. Currently, the Coronavirus disease (COVID-19) declared as a pandemic by World 

Health Organization,(2020) targeting the respiratory systems of human beings, has ravaged 

almost every continent with hundreds of thousands of fatalities recorded to date.  There is no 

known cure for COVID-19, however, research efforts are on-going to diagnose and find 

treatment for the disease. In the medical imaging field, these research efforts include the use 

of ResNet-18 and VGG-19 together with other DCNNs to diagnose COVID-19 from Chest X-

ray datasets (Abbas et al., 2020; Apostolopoulos & Mpesiana, 2020). Remarkably, a large 



30 

number of papers are devoted to addressing respiratory diseases, such as lung-related 

conditions. This is evidenced by the global statistics depicted in Figure 12. 

Table 9. Overview of papers using TL for lung image analysis 

Author PA TL  
Setting 

Method Architecture  Task Imaging 
modality 

Comments 

Abbas et 

al.,(2020) 

JA Inductive CNN ResNet18 Classification X-ray Detection of COVID-19 

from chest X-ray images 

Ahsan et. al, 
(2019) 

JA Inductive CNN VGG16 Classification X-ray Detection of Tuberculosis 
from Chest x-ray dataset 

Apostolopoulos 

et. al.,(2020) 

JA Inductive CNN VGG19; 

MobileNet 
v2;Inception; 

Xception; 

Inception ResNet-v2 

Classification X-ray Performance of several 

standard CNN 
architectures to diagnose 

COVID-19 

Chen et al.,(2018) JA Transductive 

(Unsupervised 

Domain 
Adaptation) 

GAN CycleGAN; 

ResNet101 

Segmentation X-ray Unsupervised domain 

adaptation using 

CycleGAN to segment 
Chest X-ray images 

(Montgomery dataset as 

the source domain and 
JSRT dataset as target 

domain) 

Christodoulidis et 

al., (2017) 

JA Inductive 

(multi-task) 

CNN; 

RNN 

Custom CNN Classification CT Developed a method  that 

improved accuracy and 
stability of lung tissue 

pattern characterization 

Han et al.,(2020) 
 

JA Inductive CNN Xception; VGG16; 
Mask R-CNN 

Classification 
and 

segmentation 

CT Classification and 
segmentation of lung and 

Hemorrhagic stroke from 

CT images 

Hussein et al., 
(2019) 

JA Unsupervised 
(multi-task 

learning) 

CNN 3D CNN Classification CT  Detection of Lung nodules 
and Pancreatic cysts using 

a novel unsupervised 

algorithm 

Hwang and 

Kim,(2016) 

 

JA Inductive 

(multi-task) 

CNN Custom CNN Classification X-ray Tuberculosis detection and 

localization via heatmaps 

Nóbrega et al.,  

(2018) 

 

CP Inductive CNN ResNet50 Classification CT Classification of lung 

nodules from CT images 

O’quinn et al., 
(2019) 

 

CP Inductive CNN AlexNet Classification X-ray Diagnosis of Pneumonia 
from Chest radiographs 

Paul et al., 
(2016) 

JA Inductive CNN Vgg-f;vgg-m; 
vgg-s 

Classification CT Prediction of patient’s 
survival with lung 

Adenocarcinoma using 

deep transfer learning 

Sawada and 
Kozuka,(2015) 

CP Unsupervised GAN Deep Boltzmann 
Machines (DMB) 

Classification X-ray 
and CT 

Classification of lung 
tissues using multi-

prediction deep Boltzmann 

machines. 

Suzuki et al., 

(2018) 

 

CP Inductive CNN AlexNet Classification X-ray Used two-stage transfer 

learning to classify diffuse 

lung diseases (DLDs)  

Wang et al., 
(2018) 

 

JA Inductive CNN; 
Auto-

Encoder 

VGGNet16 Classification X-ray Detection of lung lesions 
from multiple chest X-ray 

datasets using a novel 

multiple metric indexes.  

Xiong et al., 

(2019) 

 

JA Inductive CNN ResNet101 Classification CT Identification of EGFR 

mutation status in patients 

with lung adenocarcinoma 

Zhang et al., 

(2019) 

JA Inductive CNN LeNet-5; AlexNet Classification CT Using transfer learning to 

classify pulmonary nodules 

from CT images 
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4.9 Distribution of articles by pathology image analysis 

Deep learning techniques specifically transfer learning strategies have been applied for 

classification and segmentation of pathology image analysis. The most common imaging 

modality in this category is microscopy and hematoxylin and eosin (H&E) staining. In Liang 

et al., (2018) a CNN combined with RNN was presented with the best model performance 

from Xception-LSTM resulting in a classification accuracy of 90.79% when used for blood 

cell image classification. Alternatively, Gaur et al., (2016) performed membrane segmentation 

using transductive TL demonstrating its effectiveness in handling domains with scarce labeled 

datasets. More recent studies have continued to employ CNN architectures for the 

classification of blood cells. Table 10 presents a summary of each of the relevant articles in 

this category.  

Table 10. Overview of papers using TL for pathology image analysis 

Author PA TL  

Setting 

Method Architecture  Task Imaging 

Modality 

Data Comments 

Gaur et 

al.,(2016) 

CP Transductive CNN ConvNet Segmentation Microscopy Stained data Membrane 

segmentation 

using active 
learning-based 

feature transfer 

Liang et 

al.,(2018) 

JA Inductive CNN-

RNN 

Xception-LSTM; 

ResNet50-LSTM; 

InceptionV3; 

InceptionV3-
LSTM 

Xception-

ResNet50-LSTM; 

Classification Microscopy Blood cells Classification  of  

blood cell images  

Ponzio et 
al.,(2019) 

JA Inductive CNN VGG-16 Classification Microscopy 
(H&E 

staining) 

Stain data Classification of 
histopathological 

images 

Sun and 
Binder, 

(2017) 

CP Inductive CNN Caffenet; 
GoogLeNet; 

ResNet50 

Classification Microscopy 
(H&E 

staining) 

Stain data Transfer learning 
on H&E stained 

histopathology 

images 

Talo, 

(2019) 
JA Inductive CNN ResNet50; 

DenseNet161 
Classification Microscopy 

(H&E 

staining) 

Stain data Classification  of 
histopathology 

images into 24 

classes via 
transfer learning 

4.10 Distribution of articles by retinal image analysis 

Retinal disease detection is an emergent domain where DNNs have recently found 

success in diagnosing retinal diseases from fundus images. Apart from Sekou et al., (2019) 

who developed a framework for retinal image segmentation and performed experiments using 

U-Net on retinal images, all the other papers focused on classification tasks. Most recently, a 

new type of imaging modality for evaluating retinal disorders known as Optical coherence 
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tomography (OCT), has emerged allowing the application of DCNNs to classify the high-

resolution images for macular degeneration disorders (Karri et al., 2017; Motozawa et al., 

2019). As summarized in Table 11, all the papers used CNNs for the diagnosis of retinal 

diseases and conditions.  

Table 11. Overview of papers using TL for retinal image analysis 

Author PA TL setting Method Architecture used Task Imaging 
Modality 

Comments 

Choi et 

al.,(2017) 

JA Inductive CNN VGG19;MatConvnet;AlexNet Classification fundus Multi-categorical 

classification of fundus 
images 

Hagos and 

Kant,(2019) 

JA Inductive CNN Inception V3 Classification fundus Detection of diabetic 

retinopathy from 
fundus images 

Karri et al., 

(2017) 

JA Inductive CNN GoogLeNet Classification OCT Identification of 

pathologies on diabetic 

macular edema and 
macular degeneration 

images 

Li et 
al.,(2017) 

CP Inductive CNN VGG-m (128,1024,2048); 
GoogLeNet; AlexNet 

Classification fundus Impact of transfer 
learning using small 

datasets for fundus 

classification tasks 

Motozawa et 
al.,(2019) 

JA Inductive CNN Custom CNN Classification OCT Detection of age-
related macular 

degeneration from 

healthy OCT images 

Raghu et al., 

(2019) 

JA Inductive CNN ResNet50 and Inception-v3 Classification fundus Effectiveness of 

standard and pretrained  

architectures on 
medical imaging tasks 

Sekou et al., 

(2019) 

JA Inductive CNN FCNN; U-Net Segmentation fundus Classification 

performance on retinal 
image segmentation 

Xu et  

al.,(2018) 

CP Inductive CNN DenseNet Classification fundus Performance 

classification of fundus 

images 

4.12 Distribution of articles by skin image analysis 

Diagnosis of skin cancer is another application area that is attracting attention based 

on recently published articles where CNNs are increasingly used to detect different forms of 

skin cancer from dermoscopic images. Melanoma is the most common form of skin cancer 

and can be fatal if left untreated (Burdick et al., 2018). A recent work by Serte and Demirel, 

(2020), demonstrated the performance of ResNet-18 and ResNet-50 on dermoscopic images 

to classify malignant melanoma and seborrheic keratosis achieving the state-of-the-art 

sensitivity value of 78.66%. Another study by Burdick, (2018) focused on the segmentation of 

skin cancer cells to detecting Melanoma showing improved metric results when combined 

with the transfer learning paradigm. The remaining papers emphasized classification tasks of 

detecting the presence of Melanoma and the imaging modalities were all reported as digital 
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photographs except for a study by Lopez et al., (2017) who used X-ray images to diagnose 

skin lesions. Table 12 summarizes the findings from the literature. 

 

Table 12. Overview of papers using TL for skin image analysis 

Author PA TL 

setting 

Methods Architecture Task Imaging 

Modality 

Comments 

Burdick et 
al.,(2018) 

JA Inductive CNN VGG16; Inception V3 Segmentation Others 
(Total body 

photography 

Segmentation 
of skin cancer 

cells to 

diagnose 
Melanoma 

Lopez et 

al.,(2017) 

CP Inductive CNN VGGNet16 Classification X-ray Diagnosis of 

skin lesions 

through 

classification 

Mahbod et al., 

(2020) 

JA Inductive CNN EfficientNetB0; 

EfficientNetB1; 
SeReNeXt-50 

Classification Others (Clinical 

Photographs) 

Effect of image 

size for skin 
lesion 

classification 

Menegola et 

al.,(2016) 

JA Inductive CNN VGG-M + SVM Classification Others (digital 

photographs) 

Detection of 

Melanoma 
from skin 

lesion images 

Sachdev et 
al.,(2018) 

CP Inductive CNN VGG19:RESNet50; 
Inception V3 

Classification Others(Clinical 
Photographs) 

Classification 
of skin lesions 

using an 

Android 
application 

Serte and Demirel 

,(2020) 

JA Inductive CNN ResNet-18;ResNet-50 Classification Others (Clinical 

Photographs) 

Classification 

of malignant 
melanoma and 

seborrheic 

keratosis from 
skin images 

Wu et al.,(2019) JA Inductive CNN ResNet-50; Inception-

v3; DenseNet121; 

Xception and 
Inception-ResNet-v2 

Classification Others  

(Digital 

Photographs) 

Diagnosis of 

six common 

facial skin 
diseases 

4.13 Distribution of articles by others 

This is the last section where the articles addressed human anatomical regions ranging 

from reproductive to hearing organs. Table 13 gives a summary of the studies covering the 

different anatomical districts of the human body system. All the articles addressed image 

classification tasks with AlexNet being the CNN of choice to experiment with the 

effectiveness of using the inductive transfer learning approach. 
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Table 13. Overview of papers using TL for other medical image tasks 

Author PA TL  
Setting 

Method Architecture  Task Imaging 
Modality 

Anatomical 
District 

Comments/Detection 

Hermessi et. 

al.,(2019) 

JA Inductive CNN AlexNet Classification MRI Uterus Classification of 

liposarcoma and 
leiomyosarcoma through 

the transfer learning 

approach. 

Kudva et 
al.,(2019) 

JA Inductive CNN AlexNet and 
VGGNet -16 

Classification CT/MRI Cervix Classification of Uterine 
Cervix Images for 

cervical cancer using 
hybrid transfer learning 

Patrini et al, 

(2020) 

JA Inductive CNN VGG16;Inception 

v4; 

ResNet V1 101; 
ResNet V1 152; 

ResNet V2 152; 

Inception -
ResNet V2 

Classification Others 

[Narrow 

Band 
Imaging 

(NBI)] 

Throat Multi-class classification 

using transfer learning 

with SVM in selecting of 
laryngoscopic features 

(laryngeal tract)  

Shie et al., 

(2015) 

JA Inductive CNN Variant of 

AlexNet 

Classification OCT Ear Employed transfer 

learning with SVM 
classifier to classify Otitis 

Media images (ear)  

using an unsupervised 
codebook construction 

from ImageNet images. 

 

In summary, we analyzed all the deep learning architectures used in all of the articles 

we extracted for review and found that among the top five most used algorithms for transfer 

learning systems on medical images includes: (1) Inception-v3,  (2) ResNet50, (3) AlexNet, 

(4) VGG-16 and (5) VGG-19. A complete detailed representation of all the deep learning 

architectures can be found in Appendix 1. 
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5.0 DISCUSSION 

In this research, we provided a systematic literature review of transfer learning 

systems on medical images. Out of the 79 articles analyzed and reviewed in this survey, it is 

evident that the application of transfer learning systems on medical images is gaining 

attention in the medical domain even with the existing challenges of limited domain 

knowledge and scarcity of annotated images. The growth has been gradual over the last few 

years with the last two years contributing most of the articles which were published between 

the period 2018-2020. This work reveals that a majority of the applications target the nervous, 

respiratory, and integumentary systems of human anatomy.  

Notably, these results are consistent with statistics from the World Health 

Organization (WHO) survey on top global causes of deaths that consists of lung cancer, 

tuberculosis, respiratory infections, and stroke among others (WHO, 2020a). However, an 

interesting observation is a paradoxical correlation between the findings in Table 8 and the 

statistical summary in Figure 12 about the heart disease. Whereas Ischaemic heart disease is 

the top global killer, limited research still exists in using transfer learning systems on cardiac 

image analysis. This discovery can be attributed twofold: First, the multi-dimensional nature 

of the brain which requires the preservation of much more information in 2D or 3D while 

training a deep neural network; Second, the limitation of large labeled datasets could 

conceivably explain the fewer publication. This phenomenon is also supported in literature 

where Litjens et. al, (2017) observed that most research papers focused on 2D, 3D, and 4D 

CNNs with exceptional cases where authors combined a CNN with an RNN to preserve more 

information during segmentation tasks.  Moreover, CNNs remain the primary workhorse for 

most of the medical image analysis tasks with the classification task ahead on applications 

involving medical images. In other words, the application of RNNs and GANs is still limited 

further opening research questions for practice in employing transfer learning systems on 

medical images. 
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Figure 12 Top global causes of deaths 

Unlike medical imaging scenarios that require training of models from scratch, results 

from the reviewed articles reveal that transfer learning approaches have significantly 

contributed to improved model performance in many medical imaging tasks across a variety 

of imaging modalities. Overall, we can state that currently, CNNs are the gold standard for 

many medical recognition problems and there exists plenty of playing ground for utilization 

of other algorithms such as recurrent convolutional neural networks (RCNNs) and GANs 

which can be a game-changer in providing alternative methods to data augmentations. 

In transfer learning settings, the most common type of approach is inductive transfer 

learning, popular with the majority of the reviewed articles. Although widely interchanged 

with transfer learning in research texts, Inductive transfer learning as described earlier by (Pan 

& Yang, 2010), is a TL approach where the source and target tasks are different, domains can 

be similar or different but with the condition of having labeled data for both source and target 

domains. The popularity of the inductive transfer learning approach can be attributed to the 

compatibility and flexibility of most CNNs to allow for pretrained models and fine-tuning of 

different higher layers to improve model performance which offers an inexpensive strategy. 

However, this approach can be severely limited by the availability of labeled datasets and 

access to the powerful configuration of computational resources (GPUs) to train deep neural 

networks that can vary in width and depth of hidden layers. 

Although transfer learning approaches on medical imaging have shown promising 

results across many medical imaging tasks and modalities, several untapped research 

opportunities remain for exploration. Looking at the findings summarized in the tables and 

observations of current trends in transfer learning systems on medical images, we can uncover 
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insights regarding unsupervised transfer learning approaches which until recently remains an 

attractive research area that still has the potential to solve the problem of unlabeled datasets. 

Furthermore, the resurgence of RCNNs (Ming Liang & Xiaolin Hu, 2015), unsupervised 

techniques such as Variational Autoencoders (Doersch, 2016; Kingma & Welling, 2014), 

GANs (Goodfellow et al., 2014) coupled with domain adaptation could potentially extend the 

successes of CNNs to integrate and enhance contextual information which is relevant for most 

object recognition tasks. Most importantly, these unsupervised methods can be trained to 

learn internal and discriminative features from unlabeled data in both source and target 

domains, mitigating the scarcity of labeled datasets in the medical domain by leveraging the 

already existing huge amounts of unlabeled medical images. We also predict a gradual growth 

in the use of multi-instance learning (Kotzias et al., 2014), multi-task learning (Samala et al., 

2017),  multi-source learning (Christodoulidis et al., 2017) in combination with unsupervised 

domain adaptation. 

Finally, transfer learning systems not only will have a great deal of research impact in 

medical image analysis but gain traction in the growth of sustained research publications in 

the medical imaging domain into the foreseeable future. Participatory involvement of 

Physicians and medical practitioners in the deployment of these deep learning models for 

medical imaging tasks will significantly benefit the complementary efforts of accurate, timely, 

and efficient diagnosis of diseases from mobile devices to cloud computing scenarios. The net 

effect is to advance the goals of public health organizations of enhancing diagnosis and 

offering effective treatment strategies to different population groups by leveraging Artificial 

Intelligence (AI) initiatives. Cutting edge deep learning systems will play a greater role in the 

healthcare industry by providing newer and efficient models that can learn multi-faceted and 

complex data types from heterogenous sources, for example, early diagnoses of Alzheimer’s 

disease. 
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6.0 CONCLUSION, LIMITATIONS AND FUTURE WORK 

6.1 Conclusion 

Deep learning, specifically TL approaches has shown great promise in the fast-

changing landscape of medical imaging for efficient diagnosis and improved treatment 

strategies with demonstrated evidence of pervading almost every facet of medical image 

analysis.  Throughout this research, we examined the extent to which transfer learning 

systems have been applied to medical images through a comprehensive systematic literature 

review. Using PRISMA methodology, the insights from the analysis reveal that transfer 

learning systems have proved its beneficial application in the medical domain by offering 

various approaches for handling scarcity of labeled datasets and alleviating the shortage of 

domain expertise in the medical field. However, the present findings confirm that there 

continue to be opportunities for exploitation of other innovations such as unsupervised 

learning, and GANs, needing further research in the medical imaging domain.  

In this research, firstly we summarized recent surveys of deep learning in medical 

imaging analysis, and definitions of transfer learning concepts were also provided. Secondly, 

a comprehensive literature review was conducted following the PRISMA methodology and 

results categorized in tables. Afterward, a novel conceptual framework was developed 

grounded in literature and guided by concepts from both medical and deep learning domains. 

Next, a detailed analysis of the survey findings was summarized in Tables 3-13 Subsequently, 

we discussed in detail the implications of this work in section 5. The insights from the survey 

identify several research gaps, for example, very few studies addressed transductive and 

unsupervised transfer learning approaches. Also, applications in some anatomical areas were 

identified that can further inform future research developments. 

Our major contributions in this research, therefore, include a novel systematic 

literature review. In prior research, several surveys focused on general aspects of deep 

learning technologies ranging from the impact of data quality to review of CNNs used for 

medical image analysis. To our knowledge, this is the first systematic literature review that 

specifically focuses on transfer learning approaches in medical image analysis emphasizing 

on the application areas of the human anatomy. The hallmark of a novel survey is the creation 
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of an appropriate conceptual framework to organize the findings from the literature. By doing 

so, we developed a new conceptual framework to map the results to inform both practitioners 

and academic researchers in the medical imaging fields. Accordingly, this work can motivate 

researchers in the computer vision field to explore the underrepresented TL approaches, 

methods, tasks, and application areas of the human body concerning the use of transfer 

learning systems as a potential research opportunity area in the future. 

6.2 Limitations and future work 

Since this is a fledgling research area, this work had two major limitations. First, our 

survey employed only four online databases. A future literature review could expand the 

scope to include additional databases and further refine the search terms. Second, despite 

using articles written only in English for the review process, future research could provide for 

the inclusion of peer-reviewed articles published in different languages. Accordingly, our 

future work may benefit from an expanded scope and dimensions to include the general 

medical domain, for example, application of transfer learning systems in drug discovery.  

For many years, deep learning systems have been criticized as a “black-box” due to its 

complex, opaque, and unpredictable nature. In other words, the operations that begin from the 

input and end with the output are not very transparent. Additionally, it remains inherently 

unclear to users how these DL systems arrive at a decision (less transparent). Current research 

efforts could continue focusing on developing and streamlining deep learning libraries that 

improve interpretability, transparency, and visualization of the internal workings of the deep 

learning models to explain their predictions for a much easier decision-making process. 

Likewise, the impact of data augmentation on transfer learning systems may be investigated 

further as a research dimension and its effect on medical image analysis especially in cases 

where limited labeled datasets exist. Correspondingly, the future of using unsupervised 

transfer learning techniques presents a fresh opportunity for further exploration within the 

medical imaging domain, specifically with the recent development and application of GANs 

(Goodfellow et al., 2014). 

Currently, most TL systems leverage deep neural networks to accomplish image 

recognition tasks. Future research could focus on streamlined architectures, specifically 

lightweight deep neural networks like MobileNets (Howard et al., 2017), MobileNetV2 
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(Sandler et al., 2019) that are optimized for mobile devices. These lightweight architectures 

can be memory-efficient hence maximizing the trade-off on size, latency, and accuracy in 

environments with restricted computational resources, for example, in mobile devices. This 

area is still nascent and remains an open research area for the exploration of transfer learning 

systems on medical images with the potential of improving predictive performance even 

further. 
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PART II: THE EFFECTIVENESS OF TRANSFER 

LEARNING ON MEDICAL IMAGES 

1.0 INTRODUCTION 

The fundamental building blocks, models, and underlying algorithms of Deep 

Learning (DL)  have existed for many years. In the era of big data, data has become much 

more pervasive in everyday life. These DL algorithms require huge amounts of data for 

training to succeed in many machine learning tasks such as medical image recognition. 

Current DL architectures are massively parallelized allowing them to tremendously take 

advantage of modern GPU’s parallel processing platform and specialized hardware to 

accelerate the speed training of very large scale datasets. Equally, the availability of improved 

techniques and open-source software libraries for deep neural networks, for example, 

TensorFlow (Abadi et al., 2016) and Keras (Chollet & others, 2015), have streamlined the 

efficiency of deploying DL algorithms.  

Despite these impressive advancements, training of deep neural networks with large 

amounts of data is computationally expensive and time-consuming, a challenge that remains 

in the medical domain. Furthermore, the scarcity of large annotated datasets, specifically 

medical images persists. To solve these challenges, recent studies have demonstrated the 

successes of using the transfer learning (TL) paradigm on medical image recognition 

problems (Litjens et al., 2017; Shie et al., 2015; Shin et al., 2016a; Wang et al., 2017).TL, a 

popular approach in deep learning, allows us to use a pretrained model and transfer 

knowledge learned from one domain to solve a new problem in a related domain. Motivated 

by the success of TL in resolving the shortage of very large labeled datasets, we address these 

challenges by developing a novel DL network to evaluate the effectiveness of transfer 

learning on medical images.  

The remainder of this section is organized as follows. In section 2, the literature 

review is discussed. We describe the methodology in Section 3. The experiments and results 
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are discussed in Section 4. Next, we present a discussion of the findings in Section 5. Finally, 

section 6 presents the conclusion, limitations, and future research. 
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2.0 LITERATURE REVIEW 

2.1 Overview 

This section provides a general review of the literature using transfer learning on 

medical images. We also provide a background of deep learning and transfer learning for 

medical image classification followed by a detailed explanation of the proposed artifact. 

2.2 Deep learning 

Deep learning (DL) is an ongoing and popular research area in the mature field of 

Machine Intelligence providing researchers tools and techniques to solve complex tasks 

involving very large-scale datasets. Furthermore, DL is a subclass of machine learning 

applying mathematical algorithms to mimic the cognitive abilities of the human brain to 

perform human-level tasks, for example, speech and image recognition. The idea of deep 

learning is to train a computer to mimic the structure and function of the human brain, 

specifically the biological neural networks through the fundamental concepts of Artificial 

Neural Networks (ANN) to solve computer vision and recognition problems. For example, 

Waymo, formerly Google self-driving car project, is an autonomous driving company that 

uses deep learning techniques to develop self-driving vehicles trained on millions of miles of 

public roads and over a billion simulated miles to handle complex scenarios such as traffic 

signs, pedestrians, car surroundings, etc. within the context of real-world driving conditions 

(Waymo, 2019). According to LeCun et al., (2015) deep learning “allows computational 

models that are composed of multiple processing layers to learn representations of data with 

multiple levels of abstraction”. Deep learning models, for example, DCNNs have 

demonstrated tremendous achievements in the classification of medical images (Ker et al., 

2018; Litjens et al., 2017). Within the DCNNs, the convolutional filters provide the 

workhorse power by convolving across the underlying images to extract features necessary 

for the learning and prediction of outputs. 

Deep learning models can comprise hundreds of hidden layers or convolutions 

generating millions of parameters that require powerful and large-scale computing resources 

to train the deep neural network. Often in practice, training convolutional neural networks 
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(CNN) on large datasets from scratch requires an enormous amount of resources such as time, 

money, and computing infrastructure. Although a primary challenge with DCNN’s is the 

enormous data and huge computational resources required for training purposes, recent 

advancements in Next-generation computing architectures; modern innovations in DL 

algorithms, such as Generative Adversarial Networks (GAN); and the dawn of powerful and 

efficient Graphical Processing Units (GPUs) known for their high performance in computing 

large matrix operations and convolutions simultaneously, have accelerated the use of efficient 

hyperparameters necessary for the optimization of deep learning models. Additionally, deep 

learning frameworks, for example, TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 

2017) and Keras (Chollet & others, 2015) have been optimized to scaleup and speed up the 

use of federated and distributed learning algorithms for deep neural networks (O. Gupta & 

Raskar, 2018; McMahan et al., 2017). Therefore, with transfer learning, we do not need to 

retrain the entire CNN network from scratch.  As has been previously reported in the 

literature, using different transfer learning approaches can efficiently improve performance 

(Yosinski et al., 2014)  and accuracy of training deep learning models. Table 14 below 

summarizes the different types of transfer learning settings (Pan & Yang, 2010). 

Table 14. Types of transfer learning and their different settings 

Learning 

Strategy 

Related 

areas 

Source and 

Target 

domains 

Source 

domain 

labels 

Target 

domain 

labels 

Source and 

target tasks 

Tasks 

Inductive 

Transfer 

Learning 

Multi-task 

Learning 

Similar Available Available Different but 

Related 

Regression 

Classification 

Self-taught 

Learning 

Similar Unavailable Available Different but 

Related 

Regression 

Classification 

Transductive 

Transfer 

Learning 

Domain 

Adaptation, 

Sample 

Selection 

bias, Co-

variate shift 

Different but 

Related 

Available Unavailable Similar Regression 

Classification 

Unsupervised 

Transfer 

Learning 

 Different but 

Related 

Unavailable Unavailable Different but 

Related 

Clustering, 

Dimensionality 

Reduction 

 

The following scenarios also provide classifications or further categorization on 

different settings of when to apply transfer learning (Pan & Yang, 2010). 
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1. Instance transfer: This approach aims to reuse knowledge gained from parts of the 

source domain data to learn the tasks of a target domain. In other words, the importance is 

given to re-weighting and sampling. 

2. Feature-representation learning: The idea behind this approach is to apply optimal 

features learned from the source domain that can better represent features in the target 

domain. The objective, in this case, is to minimize error rates and significantly improve 

the performance of learned features of the target tasks. 

3. Parameter transfer: The assumption in this scenario is that models used for similar tasks 

between the source and target domains share common parameters or prior distribution of 

priors. Essentially, this means that learned weights can be transferred across different 

domain tasks.  

4. Relational-knowledge transfer: The intuition behind this case, is that unlike the other 

three previous approaches, the contextual relationship is between the source and the target 

tasks based on similar data. The implication is that the relational knowledge learned from 

similar data can be inherently transferred across source and target tasks. 

The relationship between the different settings and approaches to transfer learning is 

summarized in Table 15. 

 
Table 15. Methodological approaches to transfer learning  

 Inductive Transfer 
Learning 

Transductive Transfer 
Learning 

Unsupervised Transfer 
Learning 

Instance transfer x x  

Feature-Representation 
Learning 

x x x 

Parameter-Transfer x   

Relational-Knowledge Transfer x   

2.3 Transfer learning 

Transfer learning using pretrained DCNN’s are increasingly finding wide adoption in 

solving a considerable number of challenging problems in the medical domain. We introduce 

this section with a formal definition of transfer learning following the works of  Pan and 

Yang, (2010) to describe the problem domain in transfer learning. According to Pan and Yang 

(2010), they proposed two unified definitions and notations for transfer learning as follows: 



46 

Definition 1: Given a source domain DS and learning task TS, a target domain DT 

and learning task TT, transfer learning aims to help improve the learning of the target 

predictive function fT (·) in DT using the knowledge in DS and TS, where DS ̸= DT, or TS ̸= 

TT. 

In the above definition, a domain is a pair D = {X, P(X)}, thus the condition DS /= DT 

implies that either XS /= XT or PS(X) /= PT (X). Similarly, a task is defined as a pair T = {Y, 

P (Y |X)}. Thus, the condition TS /= TT implies that either YS /= YT or P(YS|XS) /= P (YT 

|XT). When the target and source domains are the same, i.e. DS = DT, and their learning tasks 

are the same, i.e., TS = TT, the learning problem becomes a traditional machine learning 

problem.  

Definition 2: Given a source domain DS and a learning task TS, a target domain DT 

and a learning task TT, inductive transfer learning aims to help improve the learning of the 

target predictive function fT (·) in DT using the knowledge in DS and TS, where TS ̸= TT. 

This formal definition applies to inductive transfer learning as summarized in Table 14.  

From the above definition, the inductive transfer learning scenario refers to where the 

source and target domains are similar while the specific target tasks to be performed are 

different but related. Perhaps, Multi-Task Learning (MTL), an inductive transfer approach is 

one of the most successful and widely adopted approaches because of its ability to improve 

generalization by utilizing specific domain information obtained from training signals of 

related tasks (Caruana, 1997; Ruder, 2017). Some of the many successful applications of 

MTL range from drug discovery (Ramsundar et al., 2015) to NLP (McCann et al., 2018). 

Regardless of the selected TL approach, the goal is to find an accurate marginal or conditional 

distribution difference in the source domain or a combination of both (Weiss et al., 2016). In 

this work, we focus on the feature-representation learning of the transfer learning approach 

where the source and target class labels are different, but we pick the optimal features from 

the source domain to classify our target labels.  

2.4 Transfer learning for medical image classification 

Humans have the inherent capacity to conceptualize complex concepts learned in one 

domain and use that knowledge learned to solve another related task in either a similar or 

different domain. For example, a person can learn how to play the guitar and use this 
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knowledge to learn how to play the violin. The underlying concepts are such that it is much 

easier to cross-reference related tasks and using the knowledge learned from these tasks to 

solve other related tasks. Researchers and data scientists believe that this concept of 

knowledge transfer to solve related tasks from one domain to another domain is very 

paramount towards achieving the goal of strong AI. Traditionally, in the context of deep 

learning, accessing very large datasets with labeled data for supervised learning is not only 

tedious but time-consuming and expensive. Therefore, the concept of transfer learning is 

gaining wide adoption and finding success in computer recognition tasks. 

Given the formal definition and notations of transfer learning (TL) described earlier, 

TL can also be defined as the ability to identify deep connections (Cook et al., 2013); the 

ability to extend what has been learned from one domain to a new domain (Z. Li et al., 2018). 

The insight behind TL is to leverage pretrained models to transfer knowledge gained through 

solving a specific task and then reuse that knowledge learned to decode different problems 

unrelated to the same domain. One popular computer vision problem is medical image 

classification, localization and segmentation tasks where one can retrieve knowledge learned 

from a non-medical image domain (source) and make predictions in a medical image domain 

(target). Recent studies in computer and vision literature have provided empirical evidence on 

the successes of using TL with CNNs to represent learned features trained on very large-scale 

datasets. For instance, the following studies demonstrated the use of CNNs architectures 

pretrained on ImageNet as either feature extractors (Donahue et al., 2014; Razavian et al., 

2014; Bolei Zhou et al., 2018) or fine-tuning (Girshick et al., 2014; Oquab et al., 2014) 

networks. With the success of CNNs, the transferability of deep representations across tasks 

has been comprehensibly investigated, especially using the transfer learning paradigm 

(Azizpour et al., 2016; Huh et al., 2016; Yosinski et al., 2014). Also, the use of pretrained 

networks in TL enables deep convolutional neural network (DCNN) models to improve its 

generalization performance to new classification tasks previously unseen by the model. In a 

pretrained model, the trained weights enable the bottom hidden layers of the ConvNets to 

learn low-level universal features such as curves, edges, and lines useful for most image 

analysis tasks. The top convolutional layers tend to specialize in learning more abstract 

features (e.g., eyes, nose, ears) and fit those features to the specific classification task of 
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interest (e.g., face or jawlines). Transfer learning improves the learning of interaction of 

relationships or patterns in the target domain by leveraging knowledge from related domains. 

In many image recognition tasks where limited dataset exists, application of TL 

techniques has achieved considerable success in transferring knowledge from one domain to 

another to solve different image recognition problems. Medical image classification is 

considered a sub-domain of image classification problems and inherent neural networks such 

as CNNs for classification challenges can also be applied to it. Furthermore, in the computer 

vision domain, specifically the medical domain, prior research suggests that using TL with 

ImageNet pretrained models can have a significant impact on the success of medical image 

classification tasks (Bar et al., 2015; Shin et al., 2016b). The literature review also shows that 

the use of a transfer learning system on the classification of Optical Coherence Tomography 

(OCT) images yielded an accurate model that rivaled the judgment of six human experts 

(Kermany et al., 2018). Regarding medical image classification tasks, Wang et al., (2017), 

demonstrated a multi-label classification task using DCNN architecture to evaluate the 

performance on the Chest X-ray 14 dataset.  

Over the past years, several studies have contributed to the development of deep 

learning networks with capabilities to learn representations of feature maps with multiple 

levels of abstraction (Goodfellow et al., 2016), for example, AlexNet (Krizhevsky et al., 

2012), GoogleNet (Szegedy et al., 2015), VGGNet (Simonyan & Zisserman, 2015), ResNet 

(He et al., 2016), and DenseNet (Huang et al., 2017). Representation learning refers to a 

collection of methods that allow machines to automatically discover insights from raw data 

(Hwang & Kim, 2016). Prior studies have also focused on the use of pretrained ResNet-50 

and DenseNet-121 architectures on medical images to develop state-of-the-art models to 

address classification and detection problems. For example, Baltruschat et al.,(2018) 

leveraged the ResNet-50 architecture pretrained on ImageNet to build a deep model using TL 

on the Chest X-ray 14 dataset. Moreover, weakly supervised learning has been used to 

examine pathology localization through the classification of thoracic diseases (Hwang & Kim, 

2016; Z. Li et al., 2018; Sedai et al., 2018; Yan et al., 2018; Yao et al., 2018; Bo Zhou et al., 

2018). In binary classification tasks, researchers used the ChestX-ray 14 dataset for 

pneumonia detection using the CheXNet model (Q. Guan et al., 2018; X. Guan et al., 2018; 

Rajpurkar et al., 2017). CheXNet is a recent DCNN effort on the classification of chest X-ray 
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images using a fine-tuned DenseNet-121 with a modified fully connected layer. Researchers 

have found that higher resolution images can improve model performance especially with the 

use of spatial location information, which greatly improves classification accuracy (Guendel 

et al., 2018). Our approach extends the depth of the proposed network and introduces active 

interactions among the learned feature maps into the network. We use pretrained models for 

our novel method and apply transfer learning strategies, which benefit from less time spent in 

learning new tasks. 

2.5 Proposed artifact 

In recent years, the popularity of deep CNNs with the ability to learn multi-scale 

features in different visual recognition tasks has given rise to the design of other multi-scale 

CNNs to improve some of the inherent computer vision challenges. Inception network 

(Szegedy et al., 2015) is one such heavily engineered class of CNN, consisting of 22 layers of 

neural networks to solve classification and detection tasks. The Inception model based on the 

prior work by Line et al., (2014) incorporated a dimensionality reduction layer (1 x 1 

convolutional filter) to improve the expensive computation and training process of the 

network. Additionally, the other notable novel contributions of Inception networks were the 

introduction of inception modules, and kernel tricks to improve performance. The 

introduction of auxiliary classifiers in the Inception network helped to mitigate the problem of 

vanishing gradients, in other words, preventing parts of the network from ‘dying out’. 

Similarly, later versions of Inception networks introduced further improvements such as the 

use of residual connections which in effect dramatically improved the speed and efficiency of 

training the network (Szegedy, Ioffe, et al., 2016). An illustration of the inception module is 

shown in Figure 13. Our proposed novel method uses the architectural configuration of the 

Inception network but excludes the auxiliary classifiers as shown in Appendix 2 (Szegedy et 

al., 2015). 
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Figure 13. An inception module with dimensionality reduction  

Another class of deep CNN is the DenseNet architecture, which proved that CNNs can 

substantially go deeper and give much more accuracy without sacrificing performance, 

especially when training deep networks.  DenseNet comprises 121 layers concatenated 

together in a feed-forward version as shown in Figure 14 (Huang et al., 2017). Like Inception, 

DenseNet has the advantage of alleviating the problem of vanishing gradients. Other 

compelling benefits that DenseNets offers include feature reuse, strong feature propagation, 

and a significant reduction of the number of parameters thus improving the efficiency of 

training deep networks (Huang et al., 2017). Our proposed novel method incorporates the 

beneficial aspects of DenseNet such as parameter efficiency, and concatenation of feature 

maps which promotes feature reuse and replaces the inception modules in favor of DenseNet 

modules. 

 
Figure 14. A 5-layer dense block with a growth rate of k=4  

Thus, TL techniques and results from medical image classification have been reported 

in the literature but it is not clear to what extent the findings are effective towards 

generalizing the models in the medical images domain. In this study, we seek to answer the 

central objective of determining the effectiveness of transfer learning using our novel deep 

model on medical images and finding an optimal cut-off point through the fine-tuning 

technique.  
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In this work, we develop a deep model based on a deep transfer learning method with 

increased depth for medical image classification. Then we further investigate the effectiveness 

of TL on medical image classification and potentially advance the learned knowledge (model) 

to generalize for other unrelated problems in the medical image domain. Finally, in medical 

image diagnosis, it is worth noting that a deep learning system that minimizes the occurrences 

of false positives is much more beneficial in mitigating the risks associated with misdiagnosis. 
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3.0 METHODOLOGY 

This section presents the steps and procedures taken for the medical image 

classification task. Section 3.1 describes the datasets and data pre-processing steps taken for 

the classification task.  Sections 3.2 and 3.3 describes the experimental setup and 

implementation environment for achieving the task. Moreover, in this work, we apply a 

machine learning methodology, specifically using non-linearity functions on medical imaging 

recognition tasks. A pretrained DIM network is used for transfer learning purposes to leverage 

feature learning from source data (non-image data) to our target data (medical images). 

Finally, the DIM network is trained using versions of the novel deep architecture to 

investigate the effectiveness of fine-tuning on the medical images. 

3.1 Datasets  

To ensure the robustness of our proposed method, we trained and evaluated it on two 

publicly available datasets: CIFAR-10, and ChestX-ray 8. The datasets were randomly split 

into 90:10 (CIFAR-10) and 80:10:10 (ChestX-ray 14) proportions for training and validation 

respectively. The two datasets are used for the training and validation phase of our novel 

method. The following is a description of each of the datasets: 

 3.1.1 CIFAR-10   

The CIFAR-10 dataset comprises of 60,000 color images from diverse objects with an 

image size of 32×32 pixels for each image and categorized into 10 classes (airplane, bird, 

dog, frog, deer, dog, horse, ship, truck, automobile) for a total of  6000 images per class 

(Krizhevsky, 2009). During the training of the proposed method, the datasets were 

automatically split into 50000 training images and 10000 test images.  

3.1.2 ChestX-ray 14  

Chest X-ray is one of the popular imaging modalities due to its cost-effectiveness in 

performing medical examinations. Although the diagnosis of Chest X-rays can be challenging 

enough, this dataset is one of the largest publicly available medical images focusing on 

clinical diagnosis of Chest X-rays. This dataset consists of 112,120 frontal-view chest X-ray 

images extracted from 30,805 unique patients spanning 14 different classes of thoracic 
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pathologies including Cardiomegaly, Consolidation, Edema, Emphysema, Effusion, Fibrosis, 

Hernia, Infiltration, Nodule, Mass, Pleural_thickening, Pneumonia, and Pneumothorax (Wang 

et al., 2017). Accordingly, this dataset is considered suitable for weakly supervised learning 

with labels that have acceptable accuracy for research efforts. 

 3.1.3 Data preprocessing and transformation 

Data pre-processing is important and is an on-going research area in machine learning. 

A well-balanced dataset is critical for obtaining a much more accurate model on image 

recognition tasks. According to Garcia et al., (2015), data pre-processing may include data 

cleaning, integration, transformation, and reduction operations. Quality decisions depend on 

quality data which leverages the ability to transform data into a form that can be efficiently 

and accurately processed by computers. Figure 15 shows the distribution of all the diagnoses 

associated with the Chest X-rays. As shown in Figure 15, the classes in the Chest X-ray 

dataset is heavily imbalanced, a term known as linear imbalance where minority classes are 

almost equal, and a big gap exists between majority and minority classes. For example, the 

majority class has over 60,000 images classified as No finding at the expense of the rare 

classes such as Pneumonia, requiring adjustments to balance the distributions across the other 

classes.  

 

 

Figure 15. The probability distribution of Chest X-ray classes  
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To overcome this problem of class imbalance, we applied the undersampling method 

on the No Finding class to standardize the count around the mean. After the data 

preprocessing step, the results are displayed in Figure 16 where the goal is to distribute the 

weights across the classes to minimize the large differences between the majority and 

minority class. 

 

Figure 16. Adjusted distribution after pre-processing  

In Figure 17, the sample images show the different types of thoracic pathologies with 

their associated labels. 

 

Figure 17. Images showing types of Chest X-ray diagnoses  
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In data transformation, a Keras library  flow_from_dataframe was used to binarize the 

labels to binary vectors from the categorical data by applying one hot encoder. The reason for 

using a one-hot encoder is to transform the categorical variables into a form that the machine 

algorithms can understand (e.g. into 1 and 0s). Afterward, the images were resized to a 

dimension of 112 x112 pixels to match the input layer of the pretrained model and assist with 

minimizing the overhead during the training step thus improving the overall learning speed. 

Additional preprocessing steps included normalization and standardization of training and 

validation datasets.                                

3.2 Deep CNN phase 

For our experimental setup, we developed our model using stacked CNNs, pooling, 

and fully connected layers. Next, we prepared our novel deep model by training it on the 

CIFAR-10 dataset as a pretrained network. Many CNN architectures developed for different 

deep learning tasks have been proposed in the literature (Szegedy et al., 2015). In this work, 

we use our novel architecture with additional structural and functional improvements by 

introducing a DenseNet module (DIM module) into the network. The DIM modules provide 

an efficient yet simple block that maximizes on multiscale representations of learned features.  

3.3 Implementation details 

We developed our implementation strategy for our proposed model in Python using 

Keras (Chollet & others, 2015), a deep learning framework with TensorFlow (Abadi et al., 

2016) as the backend to implement the network architecture. Following prior work, we trained 

our network using stochastic gradient descent (SGD) with weight decay of 0.0001, a 

momentum of 0.9 (He et al., 2016; Szegedy, Vanhoucke, et al., 2016), and a mini-batch was 

set to 1024. Unlike Adam and RMSprop optimizers which tend to converge faster, SGD was 

selected for its better generalization properties (Luo et al., 2019). All experiments were 

conducted using model and data-parallelism. The setup included a multiple GPU environment 

running Windows 10 operating system, utilizing dual NVIDIA TITAN V 12GB/16GB GPU 

for training and transfer learning with Intel core i7 processor to facilitate computation more 

rapidly. Additionally, more rigorous training of the proposed method was deployed on 
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Lawrence Supercomputer running CentOS Linux operating system which comprised of over 

2,000 CPU cores, 1.5TB memory and multiple GPU accelerators (2x NIVIDIA Tesla P100 

16GB/1x NVIDIA Tesla V100 32GB). By using this GPU configuration platform, we 

implemented a pretrained DIM network on CIFAR-10 and re-trained the network on the Chest 

X-ray dataset using fine-tuning approaches. The transfer learning approach involved jointly 

training the pretrained model with our new classifier on Chest X-ray images and later fine-

tuned the higher layers to find the optimal cut-off layers. Moreover, we considered an 

adaptive learning schedule where each iteration of the learning process used 200 epochs with 

a decreasing learning rate schedule of 5% for every 10 epochs. 
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4.0 EXPERIMENTS AND RESULTS  

4.1 Overview 

This section discusses the transfer learning approach, experiments, and metrics used to 

measure the performance of the proposed DINET. Section 4.2 explains the transfer learning 

approach selected for the medical image classification task. Section 4.3 and section 4.4 

describes the experiments and evaluation used in this work. The results are presented in 

Section 4.5. We trained and fine-tuned three versions of the DIM network as shown in Table 

16. Notably, all the experiments were fine-tuned based on the pretrained model trained on the 

CIFAR-10 dataset.  

4.2 Transfer learning method 

In transfer learning approaches, the encoded information of the DCNN residing at the 

lower level layers is responsible for detecting low-level features such as colors, visual edges, 

contours, shapes, and textures which are universal across most image recognition problems. 

Likewise, the higher-level layers detect more complex abstract concepts and objects (such as 

“human eye”, or “human ear” ). Therefore, the lower level layers were trained in a feed-

forward fashion to discover the universal features that will be reused during the training of the 

medical images (target domain). In this work, we adopted transfer learning with a fine-tuning 

approach, a popular strategy for model reuse where the weights of the pretrained model were 

adjusted by unfreezing the higher-level layers of the network for training on the medical 

image classification task. The common practice is to remove the last layer (SoftMax layer) of 

the pretrained model and replace it with a new SoftMax layer relevant to the problem under 

investigation. The new classifier is then retrained on top of the network with the new dataset 

(medical images). Furthermore, the other vanilla practice involves freezing the weights of the 

lower-level layers of the pretrained network, this is because basic features that are relevant to 

our problem such as edges, and curves are already captured. By unfreezing higher-level layers 

of the pretrained network for training or jointly training with the classifier, and continuing 

with backpropagation, the network can focus on learning specific data-centric features of our 
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medical images. Figure 18 illustrates the transfer learning workflow for common practices 

when training a pretrained network (mathworks, 2020). 

 

Figure 18. Transfer learning workflow in training a network  

4.3 Experiments 

We set up several experiments, training the pretrained model for the three DINET 

versions, where the DIM modules were strategically positioned at different parts (top, middle, 

and bottom) of the proposed architecture. The original size of the CIFAR-10 images was 32 x 

32. The images were then up-sampled resulting in image sizes of 112 x 112. Similarly, the 

medical images were resized and cropped resulting in an image size of 112 x 112. For data 

augmentation, we employed the following variations: size rescale, rotation, width, and height 

range, shift range, zoom range, horizontal flip, and fill mode. 

In experiment (1), the DIM ver1 network (top part) was then pretrained on the CIFAR-

10 dataset (source domain) in preparation to learn our medical images (target domain).  Once 

the pretrained model was trained until convergence, the next step was to save on disk the 

performance of the model together with the trained weights in preparation for the next step of 

transferring the model to the problem of interest (medical image classification). The fully 

connected layers of the pretrained model were truncated, and a new classifier defined on top 

of the network. We used dropout (Srivastava et al., 2014) regularization with a ratio of 0.25 in 

the fully connected layers and created a SoftMax layer in the new classifier.  We also added a 

batch normalization layer consistent with current practice to facilitate accelerated learning 

rates during the training of the network. Next, the new classifier was trained with the medical 

image dataset to ensure that minimal error signal was propagated throughout the network 

during the training process. Lastly, the fine-tuning step was applied, where several blocks of 

the pretrained network (higher layers) were unfrozen and retrained together with our medical 
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images while freezing the rest of the network. The process was iterated until the best 

performing OCL was identified and the results are presented in Table 16. The structure of the 

network architecture is illustrated in Appendix 3. 

In experiment (2), we experimented with DIM ver2 and DIM ver3. First, the DIM 

module was strategically positioned in the middle of the network for DIM ver2. The training 

procedure followed in the experiment (1) was implemented for DIM ver 2 as well. Second, 

the DIM module was also strategically positioned at the bottom of the network and we called 

this DIM ver3. Similarly, the training procedure used for DIM ver2 was utilized here as well. 

The results for both experiments are shown in Table 16. In summary, the main application of 

our novel method was in the use of transfer learning systems in the diagnosis of medical 

images, more specifically, Chest X-ray images. 

4.4 Evaluation procedures and techniques 

To assess our proposed network, we empirically examine the effectiveness of 

knowledge transfer through incremental fine-tuning to evaluate how learned feature 

representations mitigate the problem of vanishing gradients and identify the OCL that 

achieves performance improvements in the multi-class classification problem. Also, 

evaluation metrics like classification losses (categorical cross-entropy loss) metrics were used. 

The network was incrementally fine-tuned beginning with the top layer to the next few upper 

ones. With the GPU capabilities, each training scenario took hours to train with fine-tuning of 

different higher-level layers of the network to determine the OCL.  

4.5 Results 

Table 16 presents the results of our experiments on the performance of different DIMx 

versions. The results reveal that when our proposed model was trained using variants of DIMx 

modules strategically positioned in the network, DIM v1 produced better performance while 

alleviating the problem of vanishing gradients.  The training and loss graphs are depicted in 

Figure 19 to Figure 21. 
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Table 16. Performance of different DIMx versions  

DIMx version Fine-tuning layer (OCL) epochs Parameters Accuracy Loss 

DIM v1 Conv_152 200 6,195,615 0.6871 1.7961 

DIM v1 Conv_154 200 6,195,615 0.6851 1.8665 

DIM v1  Conv_155 200 6,195,615 0.6851 1.8076 

DIM v2 Conv_152 200 6,001,210 0.5844 1.84 

DIM v3 Conv_264 200 6,004,095 0.5899 1.70 

 

The results in Table 16 are from a multi-class classification of 15 thoracic pathologies. 

The classification accuracy that gave the best balance between bias and variance trade-off was 

68.71%. After each fine-tuning step, we identified the OCL (see Table 16) that gave the best 

model performance while balancing the overfitting and underfitting problem, a concept 

known as the bias-variance trade-off. We believe these results are significant and promising 

on medical image tasks showing that with correct hyper-parameter tuning on our proposed 

model, transfer learning approaches can produce respectable performances while mitigating 

the problem of vanishing gradients. 

 

Figure 19. DIM v1 fine-tuned layer i=97  
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Figure 20. DIM v1 fine-tuned layer i=82  

 

 

 

Figure 21. DIM v1 fine-tuned layer i=90  
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Figure 22 DIM v2 fine-tuned layer i=95 

 

Figure 23. DIM v3 fine-tuned layer i=97 

The results of experiment 2 are shown in Figure 22 and Figure 23 respectively.  
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5.0 DISCUSSION 

5.1 Overview 

The recent achievements of leveraging transfer learning in reusing the weights from 

pretrained models and re-training the networks on a new problem of interest have received 

increased attention in the medical imaging domain. TL is currently very attractive in deep 

learning because of its ability to train deep neural networks where scarcity of very-large 

labeled data such as medical images still exists. However, fine-tuning pretrained models on 

similar datasets have proven to be successful in addressing the challenges with limited data. 

The proposed deep model has shown that it can increase learned characteristics of the medical 

image dataset thereby avoiding the effort to train the network from scratch. In particular, the 

transfer learning approach we used enhanced the robustness of the model by alleviating the 

problem of vanishing gradients and therefore, improving the convergence of the model. In 

other words, the convergence concept infers that neither significant change in the error is 

observed nor any performance increase is reported.   

Another observation was that retraining a few of the batch normalization layers jointly 

with the new classifier improved accuracy and minimized the overfitting problem. Also, we 

noted that when we introduce a batch normalization layer on top of our classifier, the 

efficiency of the learning rate improved thus leading to better model performance. This 

finding can be observed from the experiments performed on DIM v1 where we achieved 

better results than all the other DIMx versions while mitigating the problem of vanishing 

gradients. Extraction of knowledge from pretrained models using natural images seems a 

viable strategy compared to the traditional method of training from scratch especially 

instances where large labeled domain-specific datasets are limited. Also, the optimal cut-off 

layers were identified and summarized in Table 16. 

Recent studies by  Esteva et al., (2017)  and Gulshan et al., (2016) where they used 

Inception V3 demonstrated the success of using pretrained models on natural images and used 

the deep model to fine-tune on medical data. In this work, we also showed that using transfer 

learning from nonmedical images that are considerably different from Chest X-rays, can be 

successfully employed to learn or generalize contextual information from medical images and 
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achieve comparable classification performance. Therefore, this approach to transfer learning 

could be a viable solution when the availability of domain-specific datasets and computational 

resources are limited or severely constrained. 
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6.0 CONCLUSION, LIMITATIONS, AND FUTURE WORK 

6.1 Conclusion 

In this work, we proposed a novel deep model called the “DenseBlock-Inception 

Network” (DINET) network to demonstrate the effectiveness of transfer learning systems on 

medical images and address the problem of scarcity in having domain expertise in the medical 

field, a major challenge in medical image analysis. The innovation of DINET is its ability to 

combine the parameter efficiency of DenseBlocks and the feature map extraction abilities of 

Inception networks while mitigating the vanishing gradient problem. The experiments have 

empirically confirmed that performance improvements can be achieved when DIM modules 

are strategically positioned in the network. The proposed deep model was able to successfully 

perform the classification of medical images from non-image data using a supervised 

inductive transfer learning approach.  

Furthermore, we demonstrated that with transfer learning, the use of non-medical data 

is a relevant strategy that can be leveraged to train and fine-tune deep neural networks to 

extract feature maps in the medical images. However, there is more room for improvement, 

for example, combining features extracted from multi-task and multi-source approaches and 

then jointly training with the medical images. The results achieved by our proposed model 

show promising results in the classification of thoracic diseases. Healthcare practitioners such 

as radiologists can potentially benefit from these DCNN models which can provide an 

automatic diagnosis of diseases thereby saving time and reduce the workload required to 

analyze medical images thus shifting their focus on other high-level risk medical images. 

Finally, the findings in this work have implications for theory and practice. First, our 

findings confirm that the effectiveness of using transfer learning systems for medical image 

tasks while leveraging pretrained models using natural images is achievable. This was 

successfully established by Shin et al., (2016b) who demonstrated the beneficial aspects of 

transfer learning systems in transmission of learned representations from natural images that 

are disparate to medical datasets. Second, while transfer learning systems can offer 

satisfactory performances with the correct amount of hyperparameter tuning, applying 

different kernel tricks could potentially help to extract relevant amounts of contextual 
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information and discriminative features in solving various medical image recognition tasks. 

To this end, we have demonstrated that pretrained models in combination with transfer 

learning is a relevant strategy for generating learned representations in the Chest X-ray 

Images and can potentially overcome the problem of limited availability of large labeled data 

(domain-specific).  

6.2 Limitations 

Despite promising performance results from our proposed deep model, there exist 

limitations in this work. Training deep neural networks often require very large datasets 

which in most cases is difficult to access or acquire. While transfer learning may help resolve 

the problem of having large amounts of labeled data, training requires tedious amounts of 

time and technology infrastructure (e.g. more GPUs) to evaluate a robust model. Although we 

achieved the research objectives in this work, due to memory limitations and time-constraint, 

the CheXpert dataset (Irvin et al., 2019) was not used in this work to further evaluate the 

generalizability of our deep model.  

Data imbalance and the quality of data was another observed limitation. A noisy 

dataset could negatively impact the performance of deep learning models. Moreover, 

unbalanced data may lead to biases, especially during the learning process. Despite our efforts 

to use available techniques to address the class imbalances, the data quality may have 

impacted the performance of the model to accurately classify all the thoracic pathologies. 

Researchers widely believe that the medical image dataset has several problematic issues 

relating to unlabeled images and noise which could potentially prevent deep neural networks 

from achieving desired performance capabilities. To motivate future research advancements, 

other datasets could be made available to support the evaluation of different DCNN network 

architecture performances, generalizability, and effectiveness of transfer learning systems. 

6.3 Future work 

As mentioned previously, this dissertation focused on the implementation and 

evaluation of a novel deep model to evaluate the effectiveness of transfer learning systems on 

medical images. Future work may focus on improving the effectiveness of transfer learning 
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by training with more data to improve the discriminative features and increase learned 

interactions on new data to solve medical image recognition tasks. Potential improvements 

may also focus on using different class balancing techniques such as Synthetic Minority Over-

sampling Technique (SMOTE) (Chawla et al., 2002) to address the issues present in many 

deep learning datasets of under-sampling and over-sampling in classes. 

In future research, we may consider other approaches of transfer learning like multi-

task learning (Caruana, 1997; Y. Zhang & Yang, 2018), multi-source learning 

(Christodoulidis et al., 2017), and multi-source domain adaptation (Sun et al., 2015; S. Zhao 

et al., 2020) to examine in much more depth, the effectiveness of the cross-domain transfer of 

features and the effectiveness of fine-tuning of pretrained models on other classes of deep 

neural networks. In the literature survey, we observed the limited application of unsupervised 

transfer learning which could be another attractive research area for researchers. Moreover, 

the impact of data quality and dataset size on transfer learning systems may be investigated 

further to measure the effectiveness of the underlying functions from the input (source 

domain) to outputs (target domain). 

Ultimately, we believe that input from domain experts should be included in the 

evaluation efforts to enhance the design, development, and implementation of deep neural 

networks for solving medical imaging problems. Finally, although some of the issues continue 

to exist, we believe our findings may further create and drive opportunities to motivate future 

research directions on medical image tasks. 
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PART III: DOMAIN ADAPTATION USING AN 

AUTOENCODER ON MEDICAL IMAGES 

1.0 INTRODUCTION 

Recently, deep neural networks, especially CNNs have achieved remarkable success 

in computer vision problems such as segmentation tasks. However, technical issues may make 

effective application of deep learning algorithms challenging since they are highly reliant on 

huge volumes of annotated data. While large volumes of data are usually generated and 

remain unlabeled in most fields, the human cost associated with annotating data with labels is 

still prohibitive, especially in the medical domain. To tackle these challenges of acquiring 

labeled data, solutions in literature have been proposed to overcome unlabeled data scenarios, 

for example, domain adaptation. Domain adaptation is an important paradigm in machine 

learning that has in recent times received tremendous attention in computer vision and natural 

language processing domains. Pan and Yang, (2010) stated domain adaptation as “the 

difference between the marginal probability distributions of source and target data” (same 

tasks but different domains) and classified it under the transductive transfer learning 

approach. In other words, domain adaptation can be defined as a transfer learning scenario 

where the sample and label spaces are the same but only the probability distributions are 

different (Kouw & Loog, 2019).  

With transductive transfer learning, the target tasks are similar, but the source domains 

are dissimilar. Because of its ability to transfer knowledge from labeled data (source domain) 

to unlabeled data (target domain), domain adaptation provides a cost-effective solution in 

adapting deep learning algorithms to new application domains that suffer from the 

unavailability of unlabeled data. Besides, the popularity and immense success of CNNs in 

image recognition tasks (LeCun et al., 2010), have enabled the exploitation of different 

transfer learning approaches, including the domain adaptation paradigm. Recently, transfer 

learning domain adaptation has found success in medical imaging tasks. For instance, Chen et 

al., (2018), proposed a novel approach based on unsupervised domain adaptation leveraging 
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GANs for lung segmentation in chest X-rays. Furthermore, Ghafoorian et al., (2017), applied 

domain adaptation and transfer learning leveraging CNNs for brain lesion segmentation 

achieving a dice score of 0.76. To this end, domain adaptation can be considered as an 

instance of transfer learning and an extensive listing of domain adaptation materials is 

collated and maintained by Zhao, (2020). For a comprehensive review of domain adaptation 

for visual tasks, please refer to Csurka, (2017) and Patel et al.,(2015b); single-source 

unsupervised domain adaptation (Wilson & Cook, 2020); and multi-source domain adaptation 

(Sun et al., 2015). 

In this work, we mainly focus on the unsupervised domain adaptation where we train 

an autoencoder with labeled source data and use the probability distribution to learn the 

unlabeled target data (M. Long et al., 2015). Consequently, we aim to classify our medical 

image dataset, specifically Chest X-rays through fine-tuning technique. To achieve this goal, 

we adopt the classification scheme in transductive transfer learning (Pan & Yang, 2010) using 

a domain adaptation paradigm to harmonize the learning of the different distributions between 

the source domain (labeled) and the target domain (unlabeled). To explore this problem, we 

aim to examine the effectiveness of transfer learning using U-Net architecture on our medical 

images. The main idea is to extract local and contextual information for the segmentation task 

while ensuring less error in the prediction of the unlabeled medical images. 

The rest of this work is organized as follows. In section 2, the background literature is 

provided. Section 3 covers the methodology and datasets adopted in this work. In section 4, 

the evaluation of the experiments is formulated, and the results reported. Discussions of the 

experiments are elaborated and presented in Section 5. Finally, the conclusion, limitations, 

and future work are summarized in Section 6. 
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2.0 BACKGROUND AND MOTIVATION 

Artificial intelligence (AI) is rapidly transforming and revolutionizing our day-to-day 

lives, in almost all sectors like transportation, healthcare, and manufacturing industries. With 

AI leveraging advancements in machine learning and deep learning, continued enhancement 

in computing is creating a paradigm shift towards automation of tasks and improvements in 

decision-making processes. In the past few years, breakthroughs in deep neural networks 

trained on very large datasets (ImageNet), (Krizhevsky et al., 2012), have paved the way for 

the development of even deeper networks (Simonyan & Zisserman, 2015). The success of 

deep convolutional networks have surpassed the state-of-the-art benchmarks in many visual 

recognition tasks, for example, in the work by Girshick et al., (2014) where they improved the 

existing mean average precision (mAP) on a very large dataset by 30% using domain-specific 

fine-tuning approaches. Although, many hospitals generate vast amounts of clinical images 

stored in their digital repositories, acquiring annotated large-scale medical image datasets for 

the most common tasks in medical image analysis: classification and image segmentation, 

remains a challenge.  

In the domain of medical imaging, deep learning technologies are rapidly finding 

applications in various medical image analysis tasks due to the availability of imaging data. 

Nevertheless, except for the recently released ChestX-ray 14 (Wang et al., 2017) and 

ChestXpert (Irvin et al., 2019) datasets, considered as some of the largest publicly available 

database of labeled datasets, there still exist difficulties in finding huge amounts of labeled 

medical images which is fundamental for training in deep learning. As has previously been 

reported in the literature, several issues exist when sourcing for labeled medical images: (1) 

Lack of specialized tools for annotations; (2) Limited domain expertise to label images; (3) 

Very expensive to have radiologists for annotations of medical images; and (4) 

Inconsistencies when labeling images, thus creating a barrier especially when the goal is to 

train an effective DL model for medical image analysis (Sahiner et al., 2019). These 

underlying issues are emblematic of the medical image domain exacerbated by the difficulties 

in accessing annotated medical images and the presence of distribution shifts especially when 

data is from the same source, persists (Ciga et al., 2019). The distribution shift is a 
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phenomenon in machine learning where the training examples differ from real-world 

examples thereby affecting the ML algorithms to draw wrong conclusions.  

Currently, unsupervised learning is still in nascent research stages when compared to 

supervised and semi-supervised learning approaches. Although unsupervised learning has 

gained importance over the last few years, especially in addressing the issue of unlabeled 

datasets, there is a relatively low number of existing studies towards incorporating transfer 

learning systems on medical image tasks. Dosovitskiy et al.,(2014), demonstrated the 

effectiveness of using unsupervised feature learning combined with data augmentation 

techniques for visual object recognition. A similar approach was used by Ronneberger et al., 

(2015) where they developed a novel architecture known as U-Net which incorporated skip-

connections in the network to utilize spatial and semantic information. The U-Net model was 

used for biomedical cell segmentation and surpassed the benchmark scores of a previous 

state-of-the-art method by Ciresan et al.,(2012). Besides, data augmentation has been reported 

in the literature as techniques that increase the amount of limited labeled images (Christ et al., 

2017; Milletari et al., 2016). Nonetheless, one of the most popular applications of 

unsupervised learning is an autoencoder. Autoencoders are a class of neural networks that 

aims to replicate their inputs to be equal to their outputs. In this regard, U-Net is also known 

as autoencoders based on the functionality of an autoencoder. Towards this end, autoencoders 

are designed as an efficient dimensionality reduction technique that works very well by 

preserving information from original input and removes noise from the data in the process. 

2.1  Semantic segmentation in medical image analysis 

Recently, the World Health Organization declared the Coronavirus disease 2019 

(COVID-19) outbreak a global pandemic (WHO, 2020b). The COVID-19 infections occur in 

the respiratory system of the human body, more specifically in the lower lobes of the lung 

area (Bernheim et al., 2020). As a result, the computer vision and medical imaging community 

have witnessed an unprecedented amount of research effort devoted to understanding, 

exploring, and in combating the novel coronavirus through innovative DL methods with U-

Net leading at the forefront. At the same, over 4500 research publications have been identified 

that implement AI and DL methods to diagnose the novel coronavirus (Bullock et al., 2019). 

Accordingly, the U-Net architecture has continued to receive renewed and sustained interests 
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especially in the wake of the COVID-19 pandemic. Table 17 summarizes and illustrates the 

latest applications of the U-Net model in the diagnosis of coronavirus disease. 

Table 17. Current application of U-Net architectures in COVID-19 diagnosis  

Author Architecture Imaging 

modality 

Performance Remarks 

Chen et 

al.,(2020) 

UNet++ CT Sensitivity 

(100%);Specificity(93.55%); 

Accuracy(95,24%) 

Over 40,000 CT images were used to 

diagnose COVID-19 and were able to 

identify correctly 51 out of 106 patients 

with pneumonia 

Gaál et 

al.,(2020) 

Attention U-Net X-rays Dice score of 97.5% Used JSRT and Shenzhen dataset to 

diagnose COVID-19 applying contrast 

limited adaptive histogram equalization 

(CLAHE) 

Gozes et 

al.,(2020) 

U-Net CT AUC(0.996); Sensitivity 

(98.2%);Specificity(92.2%); 

 

Used Resnet-50 as a base model with U-

Net architecture as a segmentor model for 

COVID-19 diagnosis. 

Jin et 

al.,(2020) 

3D U-Net++ CT AUC 0.991, specificity 

0.922 and sensitivity 0.974 

Used transfer learning on ResNet-50 and 

applied 3D U-Net++ as a segmentor model 

for diagnosing COVID-19 

Li et al., 

(2020) 

U-Net CT Sensitivity 

(90%);Specificity(96%); 

 

ResNet50 was used to extract volumetric 

information with U-Net as the segmentor 

model 

Zheng et 

al.,(2020) 

UNET CT 0.959 ROC AUC Detection of COVID-19 using 3D CNN  

 

Advances in neural network developments especially autoencoders based on CNN 

breakthroughs have shown great promise towards incorporating domain-specific knowledge 

into DCNNs specifically for semantic segmentation tasks of medical images. In the medical 

imaging domain, U-Net architectures and its variant have been successful in many image 

segmentation tasks across the human anatomy system, for example, brain tumor (Dong et al., 

2017), bones (Zeng et al., 2017), kidney (Çiçek et al., 2016), prostate (Yu et al., 2017), lung 

nodule (Setio et al., 2017), skin lesion (B. S. Lin et al., 2017), liver (Christ et al., 2017) and 

histology (Sirinukunwattana et al., 2016), etc. 

2.2 U-Net network architecture 

In the last few years, the U-Net (Ronneberger et al., 2015) has gained a lot of attention 

as a successful encode-decoder network. The U-Net architecture is synonymously associated 
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with an encoder-decoder architecture based on the improvements of the works by (J. Long et 

al., 2015) on Fully Convolutional Networks (FCNs) which was very successful for image 

segmentation tasks exceeding approaches in the period it was developed. FCNs have no dense 

layers resulting in a reduced number of parameters and less computation time required. Dense 

layers also known as fully connected layers are parts of a CNN that take the results from the 

convolution and pooling operations to inform the classification decision of an object. 

Additionally, prior work by Badrinayarayanan et al.,(2017) made improvements on the FCNs 

by proposing a novel architecture known as SegNet which comprised of 13 layers of in each 

of the encoder and decoder networks. Another seminal contribution towards the advancement 

of FCNs included the works of Chen et al.,(2016) who proposed a DeepLab system 

incorporating an innovative atrous algorithm inside the network. These studies were 

instrumental in image segmentation tasks and paved the way for the development of the 

currently popular U-Net architecture.  

The U-Net architecture takes the form of a “U” shape hence its name. It is widely 

considered as one of the first and most common methods for semantic medical image 

segmentation. According to Ronneberger et al., (2015), this architecture comprises three parts: 

Contraction, bottleneck, and the expansion parts. In the contraction part (encoder or 

downsampling path), analogous to the traditional CNN network, often takes in the input and 

outputs the feature maps through several convolutional (contraction blocks) operations via 

down-sampling thus preserving the contextual information. In between the contraction and the 

expansion path lies the bottleneck part. This part of the architecture accelerates the 

convolutional operations to increase the number of feature maps. At each step of the 

expansion path (decoder or upsampling path), a 2x2 convolution is used to half the number of 

feature maps via the upsampling layer to combine localization and contextual information 

critical for the precise prediction of segmentation maps. In other words, the decoder takes the 

feature maps (output of encoder)  as input and estimates the best representations of the 

original input or the predicted output. Perhaps, one of the main innovations of U-Net is the 

introduction of skip connections. A diagram of the U-Net network architecture is illustrated in 

Figure 24 (Tsang, 2019). 
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Figure 24. U-Net architecture  

Although U-Net has found great success in the medical imaging domain, other 

achievements of applications in computer vision tasks have been documented in the literature 

(R. Li et al., 2017; Z. Zhang et al., 2018). The success and popularity of U-Net architecture can 

be attributed to several key observations. First, the model requires very few labeled datasets 

for training, unlike other DL models. Second, it lacks a fully connected layer making it 

attractive, and highly customizable to have multiple classes. Another benefit of the U-Net 

model is that there is no specific requirement to have a fixed size of an input image meaning 

different image sizes can be used to extract features. 

Inspired by the latest literature in understanding more about domain adaptation, 

transfer learning, and the recent improvements in the use of autoencoders, we aim to examine 

the transferability of features within the transductive transfer learning approach on medical 

images. Therefore, through this work, we believe that transfer learning with fine-tuning on 

medical images leveraging domain adaptation can significantly increase learned feature 

interactions inside the networks for various performance vision tasks thus improving the goal 

of finding an optimal model that is robust and can perform across multiple but similar 

domains. 
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3.0 METHODOLOGY 

In this section, we discuss the steps undertaken to train an autoencoder for the Chest 

X-ray disease segmentation of organs. Section 3.1 describes the datasets used in this work. 

Data pre-processing tasks are explained in section 3.2.  Section 3.3 describes the environment 

used for model deployment. 

3.1 Datasets 

The primary datasets used in this work for both training and validation include: (1) 

The Japanese Society of Radiological Technology (JSRT) (Shiraishi et al., 2000) and, (2) The 

Montgomery and Shenzhen dataset (Candemir et al., 2014; Jaeger et al., 2014). The two 

datasets are publicly available and contain organ segmentation masks that have been carefully 

reviewed by radiologists. For our evaluation, we used the ChestX-ray14 dataset (Wang et al., 

2017). These datasets are widely considered as the gold standard for Chest X-ray images. 

The JSRT dataset comprises a total of 247 images with 154 of those images containing 

lung nodules. The dimensions of the X-ray images are 2048 x 2048 pixels with 12-bit 

grayscale intensity values. This dataset contains both the lung and heart segmentation masks 

for training purposes. 

The Montgomery dataset consists of 138 Chest X-rays, from which 80 X-rays denote 

the healthy patients and the rest of the images represent patients with tuberculosis. The images 

are extracted from the Department of Health and Human Services, Montgomery County, 

Maryland, USA. The dimensions of the images vary from images with a resolution of 4020 x 

4892 pixels and other images with 4892 x 4020 pixels consisting of 12-bit grayscale intensity 

values. Unlike the JSRT dataset, this dataset only contains the lung segmentation masks. All 

the images are in portable network graphics (*.png) format. Figure 25 illustrates two 

examples of Chest X-ray images from JSRT and Montgomery datasets (Dai et al., 2017). The 

upper half (two images) shows the JSRT Chest X-ray images while the bottom half (two 

images) represents images from the Montgomery Dataset. 
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Figure 25. Sample images of JSRT and Shenzhen Chest X-rays  

The Shenzhen dataset includes a total of 662 Chest X-ray images, from which 326 

represent the healthy patients while the remaining images are of patients with tuberculosis. 

While the images are of high resolution, they vary in sizes but have an approximate resolution 

of 3000 x 3000 pixels with 8-bit grayscale intensity values. This dataset was collected from 

Shenzhen No. 3 People’s Hospital in Shenzhen, China. Further, the Chest X-ray images were 

manually and carefully segmented by Stirenko et al.,(2018). 

The ChestX-ray14 dataset is a large publicly available dataset containing a total of 

112,120 frontal-view chest X-ray images extracted from 30,805 unique patients. The Chest X-

ray images characterize 14 different classes of thorax diseases including Cardiomegaly, 

Consolidation, Edema, Emphysema, Effusion, Fibrosis, Hernia, Infiltration, Nodule, Mass, 

Pleural_thickening, Pneumonia, and Pneumothorax. The dimensions of the images are 1024 x 

1024 pixels with 8-bit grayscale intensity values. 

3.2 Data preprocessing 

The X-ray images are usually in black and white format (i.e. grayscale form) 

containing a low amount of light representing the intensity of information which can be a 

difficult task to analyze. To tackle this problem, the contrast was limited to the adaptive 

histogram equalization (CLAHE) technique to ensure optimally balanced images. In other 

words, images that have high contrast ratios tend to lose subtle information. The goal is to 

have an image that contains the right number of contours which in effect removes some noise 

from the image and can improve the model’s performance. Next, we combined both the JSRT 

and Shenzhen datasets, however, the masks were unequal to the total number of images. To 
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resolve this problem, we performed a 1 to 1 mapping between the masks and the images. 

Further, a sanity check was conducted to ensure that the data correspondence reflected the 

mapping between the masks and images. Finally, the images were cropped and resized to a 

resolution of 512 x 512 pixels and mapped to the input layer of the U-Net architecture before 

the training step. Other preprocessing procedures that were introduced to improve the 

visualization of the chest radiographs included bone suppression techniques. 

3.3 Environment 

The U-Net network architecture was implemented using open-source deep learning 

libraries like Keras (Chollet & others, 2015) with TensorFlow (Abadi et al., 2016) as the back 

end. For the model training, we used Adam (Kingma & Lei, 2015) optimizer. The dataset was 

split in the 80:10:10 (train-test-validation) ratio using the Scikit machine learning library. The 

experiments and analyses were conducted on a 12 core Intel(R) Core(TM) CPU i7 with Dual 

NVIDIA TITAN V GPU consisting of a total of 28 GB memory.  
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4.0 EXPERIMENT AND RESULTS 

4.1 Training and optimization 

In this experiment, we implemented the U-Net architecture introduced by Ronneberger 

et al., (2015). We used the JSRT and Shenzhen datasets as inputs to the network for training 

purposes. The images were resized to 512 x 512 pixels and normalized. Afterward, the 

combined dataset was split into 8:1:1 ratio for training, validation, and test portions 

respectively. Next, the training process was initialized using Adam optimizer with a learning 

rate of 2e-4 and trained the datasets. We performed a multi-class image segmentation thereby 

adopting two evaluation metrics, for example, Dice Score and accuracy measures. The Dice 

score is a common metric that is widely used for binary segmentation tasks in the medical 

domain because of its robustness to class imbalance (Fidon et al., 2018). It can be expressed 

as follows: 

 

   

 

Where P is the pixels to be predicted in the segmentation mask for class G while G is 

the pixels of the ground truth mask belonging to the same segmentation class (Dai et al., 

2017). Early stop mechanism was utilized on the validation set while where the training of the 

model stopped if no further improvement of the model was realized. Concurrently, we closely 

monitored the values of the Dice coefficient as well on the training and validation sets. To 

examine the accuracy of the model, the final model was saved and used to predict the Chest 

X-ray datasets. Figure 26 shows the visualization correspondence of images from the training 

and test. 
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Figure 26. Training and validation results  

 

Several training iterations (50 and 100 epochs) were performed on the training and 

validation datasets following the early stop mechanism protocol. The results from the 

accuracy and loss values are shown in Figure 27 and Figure 28. In this training phase, we 

achieved a Dice score of over 96% with an accuracy of about 98%. We found that applying 

data augmentation techniques such as the horizontal and vertical orientation of the images as 

well as increasing the contrast or brightness of the image during the training process had a 

marginal effect on the performance of the model. 

 

 

Figure 27. Training and validation accuracy @ 50 epochs  
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Figure 28. Training and validation accuracy @ 100 epochs  

The final model was used on the test dataset and the results are shown in Figure 26. 

The evaluation results in Figure 29 shows the comparison between the ground truth and the 

predicted image. To visualize the predictions of the Chest X-ray dataset, we used sequential 

colormaps such as bone to represent much more information at pixel level intensity. Similarly, 

Figure 30 shows the results of the final model when predicted on the Chest X-ray dataset. 

 

 

Figure 29 Results of the test model on training and validation set  
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Figure 30. Prediction on the Chest X-ray dataset  

4.2 Fine-tuning 

To investigate the effectiveness of transfer learning techniques on the U-Net 

architecture, we split the network into two sections (contracting and expansion parts) for fine-

tuning. First, we froze the expansion path (includes 10 convolution layers) and trained the 

network on the unfrozen part of the contraction path (includes 10 convolutions). The process 

was repeated for several convolutional blocks of the contraction path while noting the model 

performances. Each of the blocks for fine-tuning included two convolutional layers. Second, 

the same procedure was performed on the unfrozen expansion path by freezing the contraction 

path while fine-tuning several convolutional blocks with the JSRT and Shenzhen datasets. 

This experiment aimed to determine whether the shallow layers (contracting path) and the 

deeper layers (expansion path) offer significant differences in performance. Lastly, the 

prediction was also performed on the Chest X-ray to analyze the accuracy of the fine-tuned 

models. The findings indicated that indeed the higher-level layers of the U-Net architecture 

contributed towards marginal improvement in performance while we also observed 

accelerated training speeds when fine-tuning with different higher layers.  
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5.0 DISCUSSION 

Currently, the most common imaging modality is CT and X-rays. These images 

provide the mechanism to rapidly diagnose and accurately evaluate lung-related diseases. In 

this work, we demonstrated the application of a transductive transfer learning approach where 

we have similar source and domain data for image analysis leveraging an autoencoder for 

domain adaptation. This approach to transfer learning is highly beneficial in instances where 

small amounts of labeled images are available for training. Furthermore, the lack of domain 

expertise in the medical imaging field, makes it an attractive proposition as well. In our 

experiments, we selected U-Net as the autoencoder for training and evaluation of the selected 

datasets. The results in Figure 27 and Figure 28, suggest that potential high performance can 

be achieved with a moderate amount of training epochs (approximately 30-60).  

The training behavior of the U-Net architecture on the medical datasets shows a good 

balance between overfitting and underfitting, a phenomenon known as the bias-variance 

trade-off. In Figure 27, the model shows properties of convergence meaning the error moves 

closer to the local or global minimum. This property sometimes is referred to as convexity 

meaning the results follow a curved shape much like the exterior of a circle which represents 

the ideal scenario for model performance as a result of various hyperparameter tuning steps.  

In the computer vision field, fine-tuning is currently one of the popular techniques 

used in transfer learning. We noticed that fine-tuning the deeper layers of the U-Net 

architecture yielded a marginal increase in performance which may provide opportunities for 

further investigations on performance improvements. However, in a recent work by Amiri et 

al.,(2020), a contrary observation was made when they fine-tuned a U-Net architecture on 

ultrasound images. The results showed that fine-tuning of the shallow layers surpassed the 

results from the fine-tuning of deeper layers. The findings in our work are consistent with the 

literature where performance increase can be observed when fine-tuning higher layers of a 

deep neural network rather than the juvenile layers (Choudhary & Hazra, 2019; J. Long et al., 

2015). 
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6.0 CONCLUSION, LIMITATIONS AND FUTURE WORK 

6.1 Conclusion 

Autoencoders have presented a very promising opportunity to work on unlabeled 

datasets which is essential in the real-world. Notably, U-Net architecture, a very popular 

autoencoder in the medical imaging community, has proven its remarkable performance on 

many medical imaging tasks. In this work, we demonstrated that deep feature transfer can 

occur successfully when using transfer learning approaches leveraging an autoencoder (U-

Net) while ensuring high model performance. Moreover, we selected two datasets (JSRT and 

Shenzhen datasets) for training and validation while the Chest X-ray dataset was used for 

evaluation. It is worth noting that the autoencoder was able to segment the Chest X-ray 

images even with low light intensity present across the images. While additional research 

would be desirable in improving the performance of the model even further, we achieved 

satisfactory performance using the U-Net based autoencoder in the experiment. The findings 

have great potential in the diagnosis of Chest X-ray related diseases via segmentation tasks.  

6.2 Limitations 

Despite the promising potential for autoencoders to overcome the problem of 

unlabeled datasets, this work had some limitations. First, the issue of data scarcity and class 

imbalance. The datasets we used for training and validation suffered from the issue of class 

imbalance. We had to apply data pre-processing tricks to match the images and masks thus 

reducing the total number of images available for training. Relevant images and masks may 

have been excluded during preprocessing which could affect the overall performance of the 

model. Also, domain-specific datasets currently remain limited for training purposes, 

therefore, we are restricted in using only publicly available labeled datasets to train many 

other medical images. Second, the issue of balancing the trade-offs between finding an 

effective model and computational efficiency remains a challenge. While determining an 

effective model requires rigorous experiments, the computational requirement for each step 

may affect experiments that require huge amounts of data.  This technical issue deserves 

further investigation in future work. 
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6.3 Future work 

Future research may focus on exploiting other methods such as attention U-Net 

adversarial architectures for Chest X-ray segmentations  (Gaál et al., 2020) and other medical 

images to enhance consistency of the segmentation outputs. Other variants of U-Net, for 

example, U-Net++ (Z. Zhou et al., 2020) and MultiResUNET (Ibtehaz & Rahman, 2020) may 

be explored in the future to investigate multiscale features of chest X-rays in image 

segmentation tasks. Also, we aim to employ the multi-task learning technique to further 

improve the robustness and accuracy of the model. 

The use of pretrained models is a popular technique in transfer learning. In this regard, 

a future research perspective may include using pretrained models like VGG-16 (Simonyan & 

Zisserman, 2015) and ResNet-50 (He et al., 2016) as base models to pretrain on the medical 

images using U-Net as the segmentor model. Additionally, we may extend this work by 

exploring recent works on light architectures by Google, for example, MobileNetV2 (Sandler 

et al., 2019), plugged in as an encoder part of the U-Net architecture.  

In essence, with fewer ground truth images available for training, we would focus on 

generalizing the proposed model on other medical imaging tasks (e.g. skin lesions) from 

different imaging modalities such as CT scans. Also, the use of hybrid U-Net architectures 

may shed deeper insights on model performance, generalizability, and interpretability of 

medical imaging tasks thus enhancing the accurate diagnosis of diseases in clinical practice. 

Finally, unsupervised domain adaptation is a promising field that deserves further 

investigation to evaluate the performance of deep neural networks on unlabeled data in target 

domains. 
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APPENDICES 

Appendix 1: Architectures used with TL for Medical Image analysis  
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Appendix 2: Inception network showing auxiliary classifiers  
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Appendix 3: DIM V1 Architecture  
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