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ABSTRACT 

The growing sophistication of attacks and newly emerging cyber threats requires 

advanced cyber threat detection systems. Although there are several cyber threat detection 

tools in use, cyber threats and data breaches continue to rise. This research is intended to 

improve the cyber threat detection approach by developing a cyber threat detection 

framework using two complementary technologies, search engine and machine learning, 

combining artificial intelligence and classical technologies. 

In this design science research, several artifacts such as a custom search engine 

library, a machine learning-based engine and different algorithms have been developed to 

build a new cyber threat detection framework based on self-learning search and machine 

learning engines. Apache Lucene.Net search engine library was customized in order to 

function as a cyber threat detector, and Microsoft ML.NET was used to work with and train 

the customized search engine. 

This research proves that a custom search engine can function as a cyber threat 

detection system. Using both search and machine learning engines in the newly developed 

framework provides improved cyber threat detection capabilities such as self-learning and 

predicting attack details. When the two engines run together, the search engine is 

continuously trained by the machine learning engine and grow smarter to predict yet unknown 

threats with greater accuracy. While customizing the search engine to function as a cyber 

threat detector, this research also identified and proved the best algorithms for the search 

engine based cyber threat detection model. For example, the best scoring algorithm was found 

to be the Manhattan distance. The validation case study also shows that not every network 

traffic feature makes an equal contribution to determine the status of the traffic, and thus the 

variable-dimension Vector Space Model (VSM) achieves better detection accuracy than n-

dimensional VSM.  

Although the use of different technologies and approaches improved detection results, 

this research is primarily focused on developing techniques rather than building a complete 

threat detection system. Additional components such as those that can track and investigate 

the impact of network traffic on the destination devices make the newly developed framework 

robust enough to build a comprehensive cyber threat detection appliance. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

This dissertation examines existing cyber threat detection approaches and introduces a 

new approach to cyber threat detection framework development using hybrid technologies 

such as search engines and machine learning. Although the primary purpose of search engines 

is for text mining, this research shows that they can serve as cyber threat detection 

frameworks as well.  

When people and organizations connect to the Internet, there is a corresponding 

growth in risk as they increase their exposure to cyber threats. New threats are emerging, and 

the number of previously unseen malware and attack techniques is growing (Statista, 2019). 

Threat detection systems provide the frontline defense against cyber attacks. Using machine 

learning-based threat detection techniques enhances accuracy by detecting previously unseen 

attacks (Lin et al., 2018). Furthermore, using hybrid detection techniques increases the 

accuracy of detection (Samrin & Vasumathi, 2017).  

Currently no cyber threat detection system combines search engine and machine 

learning techniques. This research focuses on the design and development of a hybrid cyber 

threat detection framework using a customized search engine model that functions as a cyber 

threat detection engine and a machine learning model. Search engines process a huge amount 

of data related to search queries every day. Search engines often generate results that match 

the search query, and the results are generally ranked based on relevancy to the search query. 

According to Yahoo research (Yin et al., 2016), ranking relevance is the most critical problem 

in search engines; search problems can be treated as filtering relevant search results from less 

relevant ones. Using machine learning classification algorithms such as decision trees on 

search engines can filter out bad search results and increases relevance (Yin et al., 2016). This 

research investigates the capabilities of a search engine used as a cyber threat detection 
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system. The purpose of threat detection systems is to filter out threat activities from normal 

activities or to detect anomalies from regular activities. Anomaly-based threat detection 

systems use machine learning classification algorithms to classify threats and normal events. 

In addition to the custom search engine, the newly developed framework uses a machine 

learning-based cyber threat detection model to work together with the search engine. The 

main purpose of the machine learning model is to reinforce and continuously train the search 

engine. 

The new framework analyzes network traffic behaviors to detect cyber threats. The 

framework is intended to be used by security analysts and security tool developers. Design 

science research methodology was used to design, develop, and evaluate the proposed 

framework. Each component of the framework has been developed using superior cutting-

edge technologies such as .NET Core to target multiple platforms, multithreading for robust 

performance, the machine learning framework used in security tools, and WebSocket for real-

time communication for alerting service. Mathematical analysis has been performed to design 

efficient algorithms when necessary. A case study has been employed to evaluate the 

framework and compare the customized search engine model with the machine learning 

model. 

1.2 Design Research Problems 

As a solution-oriented technical research project, this research designs artifacts that 

improve existing threat detection approaches and conducts experiments to answer empirical 

questions about the efficiency, accuracy, and performance of the designed artifacts. The 

following are a list of Knowledge Problems (KP) and Design Problems (DP) that are 

investigated and answered in the research: 

A. KP: How do the signature-based and anomaly-based detections systems function? 

• What specific techniques are used? 

B. KP: What are the advantages and disadvantages of signature-based and anomaly-based 

detection techniques? 

C. DP: How can the threat detection framework be designed using search engine and 

machine learning techniques? 
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• KP: What are the benefits of using a search engine for a threat detection 

framework? 

D. DP: Which system requirements and specifications need to be included in the 

proposed framework? 

E. DP: Which design makes for the best cyber threat detection framework using search 

engine and machine learning? 

• What is the training data selection strategy? 

F. KP: Are there standard evaluation criteria for intrusion detection techniques? 

• DP: What comparison criteria can be designed if they are not already 

available? 

G. KP: How should the evaluation dataset be chosen? 

• DP: What is the evaluation data selection strategy? 

H. KP: What is the performance of the proposed threat detection technique and the 

framework as a solution? 

• How fast are the algorithms? 

• How efficient are the components at handling large datasets?  

• How accurate is the detection system? 

• How broad is the training data coverage? 

1.3 Design Theories and Hypotheses 

A design science project uses prior knowledge, which includes design specifications, 

useful facts, and practical knowledge, to produce additional knowledge, called posterior 

knowledge (Wieringa, 2014). A design theory contains generalizations (treatment) about the 

effects of the interaction between an artifact and its context. The design theory describes the 

effect of an artifact in the context. Artifacts include devices, software, techniques, notations, 

and so on that are designed for the purpose of contributing to stakeholder goals (Wieringa, 

Daneva, & Condori-Fernandez, 2011). In this research, the primary artifacts include two 

engines—a custom search engine and a machine learning model—as well as algorithms and 

techniques such as indexing, searching, training, prediction, and binary classification within 

the context of cyber threat detection. The developed cyber threat detection framework is 
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intended to be used primarily by security analysts and security tool developers (stakeholders).  

Wieringa’s (2014) effect generalization states that “(an artifact designed like this) interacting 

with (a context satisfying these assumptions) produces (effects like these)” (p. 96).  This can 

be expressed as (specifications of artifact) X (assumption about context) → effects. The effect 

is a generalization over a class of similar artifacts and a class of similar contexts. The 

following design theories using effect generalization provide the basis for this research and 

are thoroughly investigated within it. These serve as warrants and arguments used to prove the 

main research hypothesis, which is that the use of a search engine as a cyber threat detection 

system with machine learning techniques provides an improved cyber threat detection 

approach:  

1. Search engines use similarity measures between indexed documents in a Vector Space 

Model (VSM) to search for matching documents for a given query (Turney & Pantel, 

2010).  

2. A search engine can be tuned up to efficiently process data within a specific context 

(for example, Google image search, Google Scholar). Therefore, a search engine can 

be customized to process network traffic data in cyber threat detection contexts. 

3. As a search engine is primarily used for text data mining, machine learning can be 

applied to it for the best result (Chauhan et al., 2015). Therefore, machine learning can 

also be applied to the custom search engine specially designed to process network 

traffic data. 

4. Network traffic data can be mapped to a special form of dataset that uniquely specifies 

the traffic, which is called feature extraction. The extracted features set can be 

arranged in a way that makes it suitable for indexing in a search engine. Based on the 

training data, the set of features data represents a single event and can be classified as 

safe and unsafe while indexing. Each feature set can be represented as a vector within 

the search engine VSM. 

5. The search engine has a searcher component that can retrieve the best matches for a 

given query from the index based on configured similarity algorithms. Input traffic 

data can be a query for the searcher to return the top matching results. Similarity 

measures can be used to compare the similarity between documents. When VSM is 

used for classification, the nearest-neighbor algorithm can use similarity measures 
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(Turney & Pantel, 2010). Therefore, the matching results likely determine the type of 

the input traffic—that is, whether it is safe or a threat. 

6. The search engine can be reinforced by machine learning techniques to increase its 

accuracy (Mitra et al., 2017; Yin et al., 2016) and to expand its capability to detect yet 

unknown malicious traffic.  

1.4 Research Goals and Scope 

The purpose of this research project is to design and develop a network traffic analysis 

framework for cyber threat detection primarily using search engine and machine learning 

techniques. The popular opensource Intrusion Detection Systems (IDS), Snort, Suricata, and 

Bro (Hu et al., 2017; Thongkanchorn et al., 2013), as well as machine learning-based 

detection techniques, are investigated to identify the basic design specifications for the 

proposed framework. This research is intended to improve cyber threat detection approaches 

by using hybrid technologies, such as a search engine that is specifically customized to 

classify traffic data, and a machine learning model in order for security analysts to analyze 

network traffic activities for the purpose of cyber threat detection.  

The scope of this research comprises customizing search engine components such as 

the analyzer, tokenizer, indexer, and searcher, developing a machine learning based threat 

detection engine, and evaluating and validating these components. The research is limited to 

the development of a threat detection framework that can be used in security tools or can 

grow to a standalone cyber threat detection application and does not produce a complete end-

to-end cyber threat detection appliance. 

1.5 Structure of the Research Paper 

This research paper has been divided into six chapters. As it involves the development 

of software, contents are organized to show the details of each major software engineering 

phase, such as requirement analysis, system design, system development, testing, and 

deployment. Chapters are organized as follows: 

Chapter 1. Introduction: This chapter discusses the background of the research, 

research problems, theories and hypothesis, and research goals and scope. 
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Chapter 2. Literature Review: The literature review chapter provides a comparative 

analysis of existing cyber threat detection tools, intrusion detection approaches, network 

traffic analysis tools, and detection algorithms. This chapter also discusses existing machine 

learning and search engine technologies. Finally, this chapter lays out the basic specifications 

for the new cyber threat detection framework. 

Chapter 3. System Design: This chapter incorporates research methodology as well 

as the new framework design from a software engineering perspective. Several architectural 

diagrams, algorithm designs, and use cases are discussed in this chapter. A prototype project 

analysis is included in this chapter to make design decisions on the core algorithms. 

Chapter 4. System Development: This chapter discusses implementation of the new 

framework and its components as designed in Chapter 3. This chapter involves mathematical 

analysis and the development of algorithms and components. 

Chapter 5. Case Study: This chapter discusses setting up evaluation metrics, 

evaluating of algorithms and components, optimizing techniques, and validating and 

deploying the new framework. Empirical analysis and performance results of the framework 

are discussed in this chapter. 

Chapter 6. Conclusion: This chapter concludes with the overall outcome of the 

research, its contributions and limitations, and recommendations for future development. 
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CHAPTER 2 

LITERATURE REVIEW 

The National Institute of Standards and Technology (NIST) defines the term intrusion 

as the “unauthorized act of bypassing the security mechanisms of a system” (p. 104). The 

institute defines the term “threat” as “any circumstance or event with the potential to 

adversely impact organizational operations (including mission, functions, image, or 

reputation), organizational assets, individuals, other organizations, or the Nation through an 

information system via unauthorized access, destruction, disclosure, modification of 

information, and/or denial of service” (Kissel, 2013, p. 202). Intrusion detection is the formal 

process of detecting intrusions, generally characterized by gathering and analyzing 

information about abnormal usage patterns and processes in order to determine if a security 

breach or violation has occurred.  

Before the development of Intrusion Detection (ID) tools, system administrators used 

to check user and device activities by sitting in front of screens. Then in the late 1970s and 

early ’80s, administrators were able to print activity logs although the manual log analysis 

was time consuming and inefficient at catching attacks in progress. In the early ’90s real-time 

intrusion detection systems that could detect attacks as they occurred emerged; in some cases, 

this allowed real-time responses to the attacks (Kemmerer & Vigna, 2002).   

The first idea of ID was published in 1980 by James P. Anderson who outlined 

computer security problems within United States Air Force operations. The first model of a 

real-time Intrusion Detection System (IDS), the Intrusion Detection Expert System (IDES), 

was developed between 1984 and 1986 by Dorothy Denning and Peter Neumann. The tool 

was a rule-based system that detected known malicious activities. Then in the 1980s and ’90s, 

research about IDS was begun and funded by the US government, and IDS tools such as 

Discovery, Haystack, Multics Intrusion Detection and Alerting System (MIDAS), and 

Network Audit Directory and Intrusion Reporter (NADIR) were developed. In 1997 the first 

commercial real-time attack detection called RealSecure was developed for Windows NT 4.0. 

But as networks expanded and got faster, carrying out network-based attack detection became 
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difficult. Therefore, to solve this problem, host-based intrusion detections such as TCP 

Wrappers, Tripwire, and Snort were introduced. Snort was introduced in 1998 for UNIX 

systems, and then was ported to Windows systems in 2000 (Bruneau, 2001). 

2.1 Intrusion Detection Systems 

Based on the scope of the detection, there are two types of IDS: Network Intrusion 

Detection Systems (NIDS) and Host-Based Intrusion Detection Systems (HIDS) (Samrin & 

Vasumathi, 2017). Based on the detection techniques, intrusion detection systems can be 

classified into two groups: signature-based detection and anomaly-based detection (Bello et 

al., 2015; García-Teodoro et al., 2009). In some research (Bello et al., 2015; Samrin & 

Vasumathi, 2017) signature-based detections are called misuse detections.  

2.1.1 Signature-Based Detection Systems 

Signature-based detection mechanisms search for predefined signatures or patterns 

within the analyzed data to determine an attack (García-Teodoro et al., 2009). There are 

several IDS in the cybersecurity industry, but the popular opensource IDS solutions are Snort, 

Suricata, and Bro (Hu et al., 2017; Thongkanchorn et al., 2013). 

 

Snort: Snort is an opensource intrusion detection and prevention system originally 

developed in 1998. Snort is capable of real-time traffic analysis and packet logging with 

minimal disruption to running operations. Snort uses rule-based pattern-matching techniques 

to detect intrusions. Snort rules specify unique characteristics of the network traffic and 

trigger an alert when conditions met. In Snort, rules are divided into two parts: the header and 

the options. The rule header contains the action, protocol, IP addresses, and port numbers of 

the rule. The rule option part contains alert messages and information on which parts of the 

packet should be inspected (Cisco, 2019). As Snort is a signature-based detection system, it 

cannot detect previously unseen attacks. Developing a Snort rule, therefore, requires a core 

understanding of how the vulnerability works. Because Snort is widely known in the industry, 

extension works have also been created to optimize it. For instance, (Gómez et al., 2009) 

extended Snort by adding a statistical anomaly-based detection feature. The training model is 
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stored in a MySQL database. The performance of this approach depends on the database 

operations and the statistical model. 

 

Suricata: Introduced in 2009, Suricata is another popular signature-based detection 

system. Like Snort, it is an opensource threat detection engine using extensive rules and 

signature language. Suricata supports standard input and output formats like YAML Ain’t 

Markup Language (YAML) and JavaScript Object Notation (JSON), and it integrates with 

external systems like Logstash, Kibana, and different databases. Suricata signatures/rules 

consist of three parts: the action that determines when the rule matches; the header that 

defines the protocol, IP addresses, and direction of rules; and the rule options that define 

specific properties of the rules. Suricata offers compatibility with Snort rules (Suricata, 2019), 

and can handle larger volumes of traffic than Snort with similar detection capability (Albin, 

2011). As Suricata is a multithreaded system, its detection capability is more accurate in 

multicore environments; however, Suricata has higher system overhead than Snort and is less 

accurate in stressed environments (Day & Burns, 2011). Suricata uses Lua scripting language, 

which provides the flexibility to create dynamic rules that would be difficult to create with 

Snort. 

 

Bro: Bro, recently renamed Zeek, is a network security monitor system used to detect 

suspicious activity, measure performance, and troubleshoot. Bro is an opensource project that 

has been in development since 1995, but the project has been widely supported since 2010.  

Unlike Snort and Suricata, Bro focuses extensively on network analysis. Bro has the 

capability to log and store network activities in high-level terms (ASCII forms) for several 

application-layer protocols, such as DNS, FTP, HTTP, IRC, SMTP, SSH, and SSL. Bro uses 

standard log file formats, which is suitable for postprocessing with external log searchers and 

databases, such as Elasticsearch. Bro supports pattern-based intrusion detection and uses an 

event-based programming model for anomaly detection. Bro is a single-threaded application 

and runs on a single core; however, it supports clustered deployment so that multiple workers 

can process the traffic streams (The Zeek Project Revision, 2019). Table 1 summarizes the 

three popular intrusion detection systems. 
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Table 1. Summary of Snort, Suricata, and Bro 

Snort Suricata Bro 

Signature-based IDS. Signature-based IDS. Comprehensive network 

logging tool and Signature-

based IDS. 

Supports multithreading and 

multicore systems. 

Supports multithreading and 

multicore systems. 

Uses single thread and 

supports single core system. 

Rule-based detection. Rule-based detection. Uses 

Lua scripting for custom 

detection. 

Rule-based detection. Uses 

Bro scripting for intrusion 

detection. 

Rules are easy to write but 

challenging to adapt to 

complex threats with high-

speed networks. 

Has flexibility to write 

dynamic rule and handles 

complex threats. 

Capable of recording 

detailed network behaviors. 

Deep-packet inspection is 

resource intensive. 

Supports Linux, FreeBSD, 

OpenBSD. 

Supports Linux, FreeBSD, 

OpenBSD, MacOS, 

Windows. 

Supports Linux, FreeBSD, 

MacOS X. 

2.1.2 Anomaly-Based Detection Systems 

Anomaly-based detections identify a suspicious event from a security perspective by 

analyzing its behavior. Anomaly-based detection techniques can be classified into three 

groups based on the nature of the behavioral model processing: statistical-based, knowledge-

based, and machine learning-based. Statistical-based detection is based on the metrics of the 

network traffic, such as traffic rate, number of packets per protocol, and number of IP 

addresses. The detection system compares the current traffic behavior with the previously 

trained statistical profile. Knowledge-based systems are expert systems intended to identify 

classes from the audit data according to a set of rules, parameters, or procedures. Machine 

learning-based techniques are based on models that enable the patterns analyzed to be 

categorized (García-Teodoro et al., 2009). 

In anomaly-based detection systems, there are two phases: the learning phase and the 

detection phase. The detection system builds a system profile in the learning phase and 

compares the current system parameters with the one stored in the learning phase; if there is a 

deviation, an alert is reported. Therefore, anomaly-based detection systems can detect yet 

unknown attacks (Al-Jarrah & Arafat, 2015). Machine learning detection techniques such as 
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Neural Networks classify different forms of network attacks (Mowla et al., 2017). Using 

intrusion detection techniques based on Convolutional Neural Networks (CNN) improves the 

accuracy of detection system since they can extract enhanced behavior features (Lin et al., 

2018). Table 2 summarizes the pros and cons of signature-based and anomaly-based intrusion 

detection systems. 

Table 2. Comparison between Signature-Based and Anomaly-Based Intrusion Detection 

Techniques 

Detection Technique Advantages Disadvantages 

Signature-based  Provides good detection result for 

known attacks. 

Not capable of detecting new 

attacks. 

Anomaly-based  Capable of detecting new 

intrusion events. 

Less accurate for known attacks. 

Resource intensive. 

Statistical-based: Prior 

knowledge of normal traffic 

activity is not required. 

Can be misled or easily trained by 

an attacker. 

 

Knowledge-based: Flexible and 

scalable. 

Depends on high-quality data, 

which is not easily available and 

time consuming. 

Machine learning: Flexible and 

scalable. 

Lack of descriptive model. 

Resource intensive. 

 

2.2 Machine Learning Algorithms in Intrusion Detection Systems 

2.2.1 Machine Learning 

There are several machine learning algorithms such as classification, logistic 

regression, etc. In machine learning the intrusion detection lies in the classification problem 

category. There are two machine learning techniques for data classification and clustering: 

supervised and unsupervised learning. The supervised learning method uses labeled datasets 

to learn the classification, whereas unsupervised learning finds similar groups within the 

training dataset (Kong et al., 2018). 



12 

 

2.2.2 Machine Learning Tools 

Machine learning tools vary by the algorithms and techniques they support, 

programming languages they use, ease of implementation, and prediction accuracy of trained 

models. Machine learning tools share trained models. For instance, a TensorFlow trained 

model can be used by ML.NET (Microsoft, 2019a). Some of the machine learning tools that 

support classification algorithms are listed as follows: 

Weka: Weka (Waikato Environment for Knowledge Analysis) is collection of data 

mining algorithms. It was first developed in C by the University of Waikato, New Zealand in 

1997, then later rewritten in Java. It is composed of several data processing and classification 

algorithms such as classification, clustering, and regression (Choudhury & Bhowal, 2015; 

Hall et al., 2009).  

TensorFlow: A machine learning tool developed by Google that focuses on deep 

neural networks, TensorFlow uses unified dataflow graphs to represent the computation in an 

algorithm, a shared state, and the operations that mutate that state. Several Google services 

use TensorFlow (Abadi et al., 2016). 

Microsoft Cognitive Toolkit (CNTK): An opensource artificial intelligence toolkit 

developed by Microsoft, (Microsoft, 2019) claims that the CNTK toolkit is commercial-grade 

quality and compatible with many programming languages and algorithms. The CNTK is 

scalable for efficiency and capable of running on CPU, GPU, and distributed environments.  

ML.NET: ML.NET framework is an opensource and cross-platform machine learning 

framework used to develop machine learning models using C# or F# languages. The ML.NET 

framework incorporates data loading, transformation, model training, and evaluation. Data 

transformation, normalization, and different machine learning algorithms, such as SymSGD, 

SDCA, FastTree, LightGBM, K-Means, SVM, and Averaged Perceptron, are supported by the 

framework. ML.NET works with other machine learning tools such as TensorFlow, 

Accord.NET, and CNTK (Microsoft, 2019a). Although ML.NET was initially released as 

recently as 2018 as an opensource machine learning component, the underlying machine 

learning components have been used for over a decade in Microsoft products such as 

Microsoft Defender Advanced Threat Protection (ATP), Windows Defender, and Anomaly 

Detection in Azure Stream Analytics (Microsoft, 2019d, 2020).   
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 2.2.3 Classification Algorithms 

In (Choudhury & Bhowal, 2015; Garg & Khurana, 2014) machine learning classifier 

techniques are grouped into several types based on their functionality and the machine 

learning algorithms they are using. The common classification groups used in both 

Choudhury and Bhowal, and Garg and Khurana include Bayes Classifier, Functional 

Classifier, Lazy Classifier, Meta Classifier, Multi-Instance Classifier, Rules Classifier, and 

Decision Tree-based classification. Table 3 shows a list of classification algorithms in recent 

research. 

 

Table 3. Classification Algorithms and Models 

Classification Algorithm Model 

SVM Vector Space 

K-Means Euclidean Space Distance 

C4.5 Decision Tree 

J.48 Decision Tree 

Random Forest Decision Tree 

Bayes Net Graph model 

 

SVM: Support Vector Machine (SVM) is a supervised learning algorithm that 

represents features data in the form of n-dimensional vectors and gives a specific score to 

each piece of feature data as the basis of evaluation (Qi et al., 2017). SVM was first 

introduced in 1963 but became widely used in deep neural network-based learning in the 

1990s (Qi et al., 2017). The SVM algorithm uses hyperplanes to classify linear datasets. 

However, in real cases the dataset may be nonlinear. Therefore, SVM uses different kernels to 

transform initial features to higher dimensional space in order to address nonlinear classifying 

techniques. Type of kernels include Linear kernel, Polynomial, RBF (Radial basis function) 

kernel, and Sigmoid kernel (Kong et al., 2018). 

K-Means: K-Means is an unsupervised algorithm to cluster data with similar 

properties using the Euclidean space distance measurement by finding the centroid of the 

clusters (Qi et al., 2017).  
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C4.5 Algorithm: Also called Statistical Classifier, this machine learning algorithm 

builds decision trees from the training data for classification (Singh & Agrawal, 2011). 

J.48: This type of decision tree depends on the variables (features in the training data). 

The dependent variables (labels) are decided by the value of the connected nodes, which 

represent the independent variables (features). The root node contains the feature with the 

highest information gain to build the decision tree (Mehmood & Rais, 2016). 

Random Forest: This decision tree-based algorithm uses several methods to obtain 

better prediction performance (Choudhury & Bhowal, 2015).  

Bayes Net: This is a probabilistic graphical model based on the Bayes theorem to 

form a Bayesian network with each node representing a random variable. The edges between 

the nodes represent probabilistic dependencies among the random variables. Statistical 

methods are often used to compute the probability of the nodes (Choudhury & Bhowal, 2015; 

Singh & Agrawal, 2011). 

2.2.4 Performance Analysis of Classification Algorithms 

In a comparative analysis of machine learning algorithms (Singh & Agrawal, 2011), 

the C4.5 and Bayes Net showed better accuracy in IP traffic classification. The experiment 

used two different datasets with 2,800 data samples, out of which 300 samples were used for 

testing. Traffic classification using the C4.5 and Bayes Net algorithms resulted in about 94% 

accuracy. The experiment used Weka as a machine learning tool.  

In another study (Choudhury & Bhowal, 2015), several algorithms were used to 

classify network traffic to detect anomalies using Weka. The training dataset consisted of 

1,166 records with 42 features and the testing dataset consisted of 7,456 records. Analysis 

results show that Random Forest and Bayes Net algorithms yielded greater accuracy with 

91% and 90%, respectively.  

In an experiment using Weka and the NSL-KDD dataset with 94,000 training data 

instances and 48,000 instances for testing, the Random Forest classification algorithm was 

among the top-performing algorithms along with Rotation Forest, Random Tree, and Random 

Committee (Garg & Khurana, 2014). Each instance in both sets was composed of 41 features. 

The dataset contained four types of attacks: DoS (Denial of Service), R2L (Remote to Local), 

U2R (Unauthorized access to local superuser), and Probing (surveillance or others). 
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In another study (Sewak et al., 2018), Random Forest classification algorithm showed 

a greater accuracy than Deep Neural Network (DNN) algorithms for malware classification. 

The experiment used 11,308 malicious files and 2,819 benign files. The Adaptive Synthetic 

(ADASYN) technique was used to balance the training dataset classes. The analysis was 

performed on the opcodes of each instances using the Linux objdump utility. The training-

testing dataset was randomly split to the ratio of 2:1. The Python libraries Sci-Kit and Keras 

with TensorFlow were used for Random Forest and DNN, respectively. Results showed that 

Random Forest, with an accuracy of 99.78%, slightly outperformed DNN, which had an 

accuracy of 99.21%.  

A different study (Narudin et al., 2016) investigated 1,000 malware families with 49 

different families out of the 1,260 MalGenome project dataset, and the top 20 free apps from 

Google Play store as benign apps. Eleven TCP/IP-based features were extracted from the 

network traffic for training and testing. The research results showed 99% malware detection 

accuracy with Random Forest classifier algorithm.  

In a study performed on traffic data to classify attacks and normal traffic using 

supervised and unsupervised learning, K-Means classification was used for unsupervised 

learning, and SVM was used for supervised learning (Kong et al., 2018). The KDD’99 

dataset, a widely used dataset in anomaly-based detection experiments, was used with 42 

features extracted based on traffic flow (Mehmood & Rais, 2016). The experimental dataset 

consisted of four types of attacks: DoS, R2L, U2R, and Probing. Further, the result showed 

91% accuracy with SVM and 83% accuracy using K-Means. However, SVM was slower to 

predict specific attacks in the dataset than the K-Means algorithm.  

In a particular study of intrusion-detection research (Mehmood & Rais, 2016), SVM, 

Naïve Bayes classifier, J.48 decision tree, and decision table algorithms were used on the 

KDD99 dataset. The analysis result showed that each algorithm had different results in the 

classification of each of the attack classes (DoS, R2L, U2R, Probe) and normal traffic. No 

algorithm outperformed the others with a high true positive rate (TPR). The J.48 decision tree 

algorithm was found to have the highest accuracy and minimum classification error.  
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Table 4. Performance of Classification Algorithms 

Algorithm Training Data Count Testing Data Count Overall Accuracy 

C4.5 2800 300 94% 

Bayes Net 2800 300 94% 

Random Forest 1166 7456 91% 

Bayes Net 1166 7456 90% 

Random Forest 14127 4700 99.78% 

DNN 14127 4700 99.21% 

 

As summarized in Table 4, decision tree-based classification algorithms provide good 

results in the context of network traffic analysis. Based on results compiled from different 

studies, Random Forest classification shows better accuracy over the other decision tree-based 

classification algorithms and DNN in network classification for intrusion detection. 

2.3 Search Engine and Vector Space Model 

Search engines are capable of efficiently processing large volumes of data and are 

known for fast information retrieval. Search engine processes have at least two major phases: 

indexing and searching. Data structure models such as VSM are used in search engines for 

efficient data processing and document matching. In search engines, the concept of VSM is 

used to represent each document mathematically as a vector in space. Document similarity is 

based on the notion that vectors that are closer to each other are semantically similar and 

vectors that are far apart are semantically less similar (The Apache Software Foundation, 

2019).  

VSM was first developed in 1975. The idea of VSM was to represent documents with 

vectors in a document space for efficient document retrieval (Salton et al., 1975). Vectors are 

common in Artificial Intelligence and cognitive sciences (Turney & Pantel, 2010). The VSM 

can be used in classification problems such as spam Short Message Service (SMS) filters in 

the telecommunication industry (Li & Zeng, 2016). In VSM, terms in the documents are 

represented by vectors, which consist of term weights to signify the semantic value of the 

term in the document. The commonly used weighting algorithms are Term Frequency (TF) 
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and Inverse Document Frequency (IDF) (Li & Zeng, 2016). The TF-IDF weight is a statistical 

measure used to evaluate the importance of a term to the document in the collection. The 

Term Frequency (TF) is the count of terms in the document. IDF measures the uniqueness of 

the term with respect to the entire corpus (Pathak & Lal, 2017). IDF is computed from the 

total documents count and the count of documents that contain at least one occurrence of the 

term. 

𝑇𝐹𝑖 = 𝑙𝑜𝑔2(𝑡𝑓𝑖𝑗) 

Where tfij represents the frequency of term i in document j. 

 

𝐼𝐷𝐹𝑖 = 𝑙𝑜𝑔2 (
𝑁

𝑛𝑗
) + 𝐼 = 𝑙𝑜𝑔2(𝑁) − 𝑙𝑜𝑔2(𝑛𝑗) + 1 

Where N is the number of total documents and nj is the count of documents that 

contain at least one occurrence of term i. 

The measure of the distance between two vectors is the measure of similarity between 

them. The most popular distance measures for vectors includes Euclidean distance, Manhattan 

distance, Cosine similarity, Dice, and Jaccard Coefficient. Research shows that the Cosine 

similarity is the best formula for similarity measurement in search engines. With the Cosine 

formula, the length of the vectors is less relevant; what is important is the angle between them 

(Turney & Pantel, 2010). The Cosine of angle θ between vectors A and B can be expressed as:  

cos(𝜃) =
A ∙ B

∥ A ∥∥ B ∥
 

As noted in (Yin et al., 2016), retrieving the most relevant result is the core problem of 

commercial search engines. The problem of relevance in search engines is beyond text 

matching. The search problem can be treated as a binary problem to filter out irrelevant 

results from relevant ones. The research work that has been tested and deployed in the Yahoo 

commercial search engine shows that adding machine learning algorithms increases 

relevance. Decision tree algorithms such as Gradient Boosting Decision Tree (GBDT) with 

logistic loss can find a decision boundary that can classify bad URLs as opposed to relevant 

ones (Yin et al., 2016). 
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Search engines can be reinforced by machine learning for accurate search results 

(Chauhan et al., 2015). There are many machine learning algorithms that can work with VSM.  

If the machine learning algorithm uses real-valued vectors, it can use vectors from VSM. 

Machine learning algorithms can handle vector comparison, and vectors from VSM may also 

be used in semi-supervised learning (Ando & Zhang, 2005). In some studies, network 

intrusion detection systems using neural networks showed better detection results than known 

intrusion detection tools like Snort (Al-Jarrah & Arafat, 2015). Neural networks also achieved 

better results over other vector-based models (Hung et al., 2017).  

2.3.1 Search Engine Libraries 

There are several commercial and opensource search engines. Google, Bing, and 

Yahoo are among the top commercial search engines. Opensource search engines include 

Lucene, Indri, Terrier, Sphinx, and Xapian. Lucene, Indri, and Terrier are the popular search 

engine libraries that are tuned up for fast execution time (Mitra et al., 2017) and support 

multiple language interfaces. 

Lucene: Lucene is an opensource fully featured search engine library with advanced 

analysis capabilities. First started in 1997 by Doug Cutting, it was  later donated to the 

Apache Software Foundation in 2001 (Białecki et al., 2012). Offering VSM and efficient 

indexing, storage, searching, and ranking functionalities, Lucene can be customized. It has a 

scalable and high-performance indexing library. Its memory requirement ranges from 1MB 

through systems with several cores. Lucene also supports concurrent searches (The Apache 

Software Foundation, 2019). Lucene is used by AOL, Comcast, Disney, Wikipedia, Twitter, 

Netflix, Instagram, and other search engines (Białecki et al., 2012; Turney & Pantel, 2010).  

Indri: An opensource search engine library that can provide text searches and 

structure query language, Indri supports multithreading and distributed search, and can run on 

a cluster of nodes for faster indexing and searching. It allows fine-grained control of searching 

and low-level access to document repositories (Van Gysel et al., 2017). 

Terrier: An opensource Java-based search engine developed at the University of 

Glasgow, Terrier supports term dependence proximity models and supervised ranking models 

via learning to rank. Learning to rank in the Terrier search engine means using multiple 

calculated features in a uniform way during ranking, and learning an appropriate method to 
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combine those features. The calculated features can be query-dependent or independent 

(University of Glasgow, 2019). 

In a study that compared the two search engines, Lucene and Indri, Indri results were 

better than Lucene for short queries; however, Lucene is faster than Indri for long queries. 

The two search engines also yield different documents, especially for short queries (Turtle et 

al., 2012). 

2.4 Network Traffic Analysis Tools 

Network traffic analysis tools involve packet capturing and analysis. Packet capturing 

is a process of collecting packets as they travel over a network. Packet capturing takes place 

in kernel space, but analysis tools run in the user space (Gracia, 2008). There are several 

network traffic analysis tools; however, this section mainly reviews the popular network 

traffic analysis tools that support packet capturing, filtering, and analysis: Microsoft Message 

Analyzer, Wireshark, NetworkMiner, Fiddler, and OpenNMS. 

2.4.1 Microsoft Message Analyzer 

The Microsoft Message Analyzer is the successor to Microsoft Network Monitor 3.4, 

used for capturing, displaying, and analyzing network traffic, events, and application log 

messages in network and other diagnostic scenarios. It can capture local or remote traffic and 

live or archived data from multiple data sources simultaneously. Highlighted features include 

automated data capturing, session filters, flexible user interface, etc. Microsoft Message 

Analyzer functionalities are enabled for PowerShell scripting environments. This includes 

stopping a trace session, saving trace session data without stopping the session, injecting a 

trace filter into a trace session at specific time, and miscellaneous scripting for remote traffic 

capturing. During a live trace session, data selection can be performed by applying session 

filters to isolated trace results for analysis. There are several session filter techniques such as 

fast filter, which operates at the kernel level; keyword filter; and Windows Filtering Platform 

(WFP) Layer set filter, which consists of kernel-mode TCP/IP stack filters that operate at the 

Transport layer. These session filter techniques allow selectively enabling or disabling of 

inbound or outbound packets at the Transport layer when capturing IPv4 or IPv6 messages. 

Other filter options include HTTP filters, which are enabled to isolate traffic based on the 
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hostname or port value. Keyword and Level filters can be used when configuring a live trace 

session that uses a system Event Tracing for a Windows (ETW) Provider (Microsoft, 2016). 

2.4.2 Wireshark 

Wireshark was first started by Gerald Combs in late 1997 with its original name, 

Ethereal. In 2006 the Ethereal project was renamed Wireshark, and version 1.0 was released 

in 2008. Wireshark is an interactive network protocol analyzer and capture tool that provides 

detailed inspection of several protocols and runs on multiple platforms. An opensource 

software, Wireshark can decrypt protocols such as SSL/TSL, WEP, WPA/WPA2, Kerberos, 

and more. Wireshark can capture traffic from many different network media types such as 

Ethernet, Wireless LAN, Bluetooth, USB, and more. Wireshark has a terminal-based version 

called TShark. TShark captures data from live traffic or from a previously saved capture file, 

prints a decoded form of the packets to the standard output, or writes packets to a file. TShark 

has several options and parameters to perform packet analysis. Without any options set, 

TShark works like Tcpdump (Wireshark, 2019). The Tcpdump tool prints out a description of 

contents of packets on a network or saves the packet data to a file. Windump is a clone of 

Tcpdump for Windows operating systems (Tcpdump, 2019). Wireshark uses Libpcap library 

to capture packets directly from the network card. Libpcap provides a high-level interface to 

network packet capturing. It was first developed by McCanne, Leres, and Jacobson in 1994 

(Gracia, 2008). Libpcap supports packet filtering at the kernel level for systems that support 

Berkeley Packet Filter (BPF).  

2.4.3 Other Tools 

These tools provide specific traffic analysis functionalities such as analyzing specific 

protocols, extract files, analyzing network status, etc. 

Telerik Fiddler: A web application debugging tool that can capture HTTP traffic 

between the client and the server, Telerik Fiddler allows users to monitor and modify HTTP 

responses and requests in transition. Fiddler provides detailed information about HTTP traffic 

and can be used for performance testing and debugging for web applications. Fiddler can also 

decrypt HTTPS traffic (Telerik, 2019). 

NetworkMiner: NetworkMiner captures and parses network packets to extract files, 

images, and other artifacts to reconstruct events that a user has received on the network.  
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Classified as a Network Forensic Analysis Tool (NFAT), NetworkMiner can process archived 

Packet Capture (PCAP) files (Netresec, 2019).  

OpenNMS: An opensource network management application that offers event and 

notification management, OpenNMS has a framework that logically groups related faults 

(alarms) into higher level objects (situations). The framework supports unsupervised machine 

learning and deep learning algorithms. OpenNMS has a web-based user interface to display 

any outages, alarms, or notifications in the network infrastructure (OpenNMS, 2019). 

CICFlowMeter: An opensource bidirectional network traffic flow generator. It can 

generate statistical features from PCAP files and live traffic. (Canadian Institute for 

Cybersecurity, 2019). CICFlowMeter will be discussed more later in the next chapters. 

2.5 Literature Review Summary 

In this section, details of signature-based and anomaly-based threat detection systems 

and widely used opensource intrusion detection systems have been discussed. In general, the 

literature review shows that anomaly-based intrusion detection is the most recent development 

in intrusion detection technologies. It is also likely the future of intrusion detection 

technologies. Specific aspects of machine learning techniques, and search engine internals 

have also been discussed. Decision tree-based classification algorithms show better attack 

classification than anomaly-based intrusion detection systems. The design of the new 

framework, which involves a custom search engine and machine learning techniques, will be 

discussed in the next chapter.  

2.5.1 Basic Design Specifications of the Proposed Framework 

In order to improve the existing traffic analysis approach for threat detection, which is 

the purpose of the research, the following specifications need to be incorporated in the 

proposed framework based on the literature review: 

1. The proposed network traffic analysis framework should support anomaly-based 

intrusion detection because anomaly-based detection approach has better detection 

capability than signature-based detection approaches. 
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2. A decision tree-based classification algorithm should be used as a primary 

classifier for machine learning because decision tree-based algorithms achieve 

greater accuracy than other algorithms. 

3. For comprehensive analysis, the proposed framework needs to use the Microsoft 

ML.NET machine learning framework because it is opensource and actively 

supported by Microsoft. It also supports the trained models of other machine 

learning tools such as TensorFlow and CNTK. Microsoft ML.NET is used by 

security tools like Windows Defender, is well documented, and supports several 

classification algorithms including decision tree-based algorithms. 

4. Lucene needs to be used as a search engine library because Lucene supports 

several functionalities, is widely used in large-scale search applications like 

Wikipedia, and is easily extensible.  

5. The proposed framework should be evaluated against a large dataset to perform 

empirical analysis on its performance and accuracy. Most studies reviewed in this 

literature review used fewer than 20,000 data instances to evaluate intrusion 

detection approaches. 

 

Chapter 2 illustrated the comparative analysis of existing cyber threat detection tools, 

intrusion detection approaches, network traffic analysis tools, and detection algorithms. This 

chapter also discussed existing machine learning and search engine technologies. Finally, this 

chapter laid out the basic specifications for the new cyber threat detection framework. 
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CHAPTER 3 

SYSTEM DESIGN  

This chapter incorporates research methodology as well as the new framework design 

from a software engineering perspective. Several architectural diagrams, algorithm designs, 

and use cases are discussed in this chapter. A prototype project analysis is included in this 

chapter in order to make design decisions on the core algorithms. 

3.1 Research Methodology 

There are three factors to consider when selecting a research approach: the research 

problem, the personal experience of the researcher, and the audience of the research. For 

example, if the problem is to identify factors that influence an outcome, then a quantitative 

approach is best. If a concept or phenomenon needs to be understood, a qualitative research 

approach is preferred (Creswell, 2014).  

This research is solution-oriented with the primary goal of improving threat detection 

system by designing new artifacts. Design science has a problem-solving paradigm that seeks 

to create new and innovative artifacts (Hevner et al., 2004). According to (Wieringa, 2014), 

design science is the design and investigation of artifacts in a specified context. Artifacts are 

designed to improve something in that context. In this research, several techniques (artifacts) 

are used to improve cyber threat detection (context) approaches. Wieringa (2014) defines 

Technical Action Research (TAR) as a way to validate the artifact in the field. TAR is artifact-

driven and part of the validation of an experimental artifact. In TAR, the researcher plays 

three roles: (a) as a technical researcher, the researcher designs a treatment intended to solve a 

class of problems; (b) as an empirical researcher, the researcher answers some validation 

questions about the treatment; (c) as a helper, the researcher applies a client-specific version 

of the treatment to help a client. In this research, the researcher designs a new approach to 

improve existing threat detection mechanisms, provides empirical evidence on the validity of 



24 

 

the new approach, and provides a means of applicability of the new approach in the field of 

cyber threat detection by designing and developing the proposed framework. 

The initial survey of (Santos & Travassos, 2009) indicates that there is an increasing 

tendency to use TAR in software engineering addressing different research topics. Wieringa 

(2014) stated that single-case mechanism experiments are useful for implementation 

evaluation in TAR because they can provide insight into the behavior of artifacts and 

problematic phenomena in the real world. Single-case experiments can be done in the lab or 

in the field. This research employs lab research for evaluation because the researcher can 

control the lab environment within the scope of this research.  

This research comprises three major phases: problem analysis, solution design, and 

evaluation and validation. The problem analysis was conducted through a literature review. In 

the literature review, existing cyber threat detection approaches such as signature-based and 

anomaly-based detection techniques were investigated. The problems of the investigated 

approaches were clearly identified. Based on the problem analysis, requirements for the new 

approach were derived. As shown in Figure 1, the new framework solution must be designed 

with respect to the identified specifications and proposed techniques. Finally, each artifact 

implementation is evaluated, and the designed solution as a whole is validated. 

 

 

Figure 1. Conceptual design of the proposed framework.    

3.2 Treatment Evaluation and Solution Validation 

Evaluation in design science research consists of evaluation of design science theories 

and artifacts (Pries-Heje et al., 2008). In this research the evaluation phase focuses on the 

newly developed artifacts such as custom search engine components and machine learning 

components. Evaluation requires researchers to demonstrate the utility, quality, and efficiency 

of artifacts using rigorous evaluation methods (Hevner et al., 2004). According to (Olan, 
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2003), validation is a process designed to ensure confidence that the program functions as 

intended. As a piece of software engineering research, software engineering phases like unit 

testing and system testing are employed in the evaluation process. Generally, validation 

involves testing. Careful testing greatly increases the confidence that a program satisfies its 

specifications. Therefore, treatment evaluation is supported by unit testing. Unit testing 

validates the correctness of program components. (Koomen & Pol, 1999). Unlike an 

observational case study, unit testing requires a unit tester to intervene in each use of the 

artifact to see “what happens” when using software development tools like debuggers. Once 

bugs are identified through unit testing, artifacts are modified for improvement until the unit 

test passes in the defined framework. System testing is applied to validate the interaction of 

artifacts and optimize efficiency of the system. 

3.3 Artifact Design and Implementation 

The proposed framework utilizes search engine capabilities such as indexing, 

searching, and VSM. The indexer and searcher components of the search engine are 

customized in order to use the VSM feature of the search engine for intrusion detection. In 

addition to the search engine, the framework uses a binary classifier engine to reinforce the 

search engine capability because a survey in the related literature shows that a single detection 

technique is not able to provide accurate detection rate and, therefore, a hybrid technique is 

suggested to increase detection accuracy (Samrin & Vasumathi, 2017). The framework has 

two major implementation phases: the training and detection phases. A high-level model of 

the framework is shown in Figure 2 (with the technical scope of the research marked in the 

dashed border). Although both the training and detection phases use a feature extractor 

component, designing a new feature extractor from live traffic is not within the scope of this 

research. Conceptual framework designs and architectural structures are provided for each 

major component of the framework in the next sections.  



26 

 

 

Figure 2. High level model of the framework. 

3.3.1 Training Phase 

As shown in the process design in Figure 3, the training phase involves the search 

engine, Machine Learning (ML)-based binary classifier, feature extractor, and indexer 

components. Since the framework is based on search engine technology that is capable of 

processing parallel tasks, a training task can be running during the detection phase. This 

facilitates the self-learning capability of the engine.  

 

Figure 3. Training process. 

Feature Extractor: The feature extractor parses the network traffic raw data and 

extracts features. The extracted feature dataset is used to train the custom search engine and 

the binary classifier. Feature extractor tools such as CICFlowMeter (Canadian Institute for 

Cybersecurity, 2019) can extract features from raw traffic data. CICFlowMeter is capable of 

extracting several features that can be used for anomaly-based detection techniques (Habibi 

Lashkari et al., 2017). Feature engineering is not a trivial task; generating a reliable and 
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compressive feature set is critical for anomaly-based intrusion detection systems (Chio & 

Freeman, 2018). 

Search Engine: A fully featured data retrieval engine such as Lucene is used to 

retrieve data from large datasets. Major features of the search engine include indexing, VSM, 

ranking, scoring, data storage, parallelism, and distributed deployment support.  

Indexer: The indexer is a search engine component that analyzes the classified set of 

features and systematically adds them to the index storage. Since the search engine is 

designed to process text files, the features dataset is converted to indexable text and treated as 

set of documents in the search engine. Therefore, the indexer component designed in the 

proposed framework is a customized indexer that overrides the default properties of the search 

engine, so that each feature set is stored as a vector in the VSM. 

ML Binary Classifier: This component is a machine learning-based binary classifier 

engine used to reinforce the decision engine that uses the search engine as threat detection. 

The Binary Classifier has two components: the predictor and trainer. The predictor accepts 

input feature data to determine the traffic state during detection phase. The trainer generates a 

model during the training phase. The trained model can be used to retrain the search engine 

for new data or undetermined traffic. During the training phase, both the search engine and 

the binary classifier train with the same features dataset. But during the detection phase, the 

binary classifier serves as a decision engine to retrain the search engine when the search 

engine fails to determine the state of the input traffic with high confidence. 

3.3.2 Detection Phase 

During the detection phase, the same feature extractor component that is used for 

training is used to extract features from the input traffic data. Once the feature set is extracted, 

it goes through the decision engine, as shown in the detection process design diagram in 

Figure 4. Then the decision engine uses the search engine to determine the status of the input. 

In cases when the search engine detection confidence is low, the decision engine is retrained 

by the binary classifier. 
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Figure 4. Detection process. 

Searcher: The searcher component takes the input feature data as a query, searches 

for the best matches, and provides the result to the decision engine. The searcher uses 

similarity algorithms discussed later in the Similarity Measurements section. 

Decision Engine: This component determines the nature of the input traffic based on 

the search result and decision algorithms. As indicated in Figure 5, the activity diagram of the 

decision engine, the engine accepts the features set as input and uses the searcher component 

to search for the top matches. If a threat match is found, it sends a notification to the alert 

service. If the search yields a low confidence score, the features set goes through the binary 

classifier. Depending on the binary classifier result, the input data is analyzed to retrain the 

search engine. This way the search engine learns by itself with the help of the Machine 

Learning (ML) Engine. 

 

Figure 5. Decision engine activity diagram. 
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Alert Service: This component is a notifier service used when the system detects a 

threat. This service receives an alert flag from the decision engine logs and triggers alerts. 

3.3.3 Development Tools  

Development tools and platform selection for this research are based on the 

accessibility, adaptability, and performance of the tool, and researcher’s expertise. 

Visual Studio: A software development environment that supports multiple 

programming languages and development tools, Visual Studio is a complete package for 

software development, testing, and deployment. The Visual Studio Community Edition is free 

for researchers and small teams, and supports building software using different third-party 

components, including search engine libraries, Lucene, and the machine learning framework 

ML.NET (Microsoft, 2019). 

Platforms: Windows is the primary development and testing platform. C-Sharp (C#) 

is used as a primary programming language to develop, test, and validate the framework. 

PowerShell, Python, and other scripting languages may be used in the evaluation and 

development phases. Microsoft .NET Core is used as the development platform for the 

proposed framework, which means the proposed framework is intended to run on Windows, 

macOS, and Linux as .NET Core runs on these environments. 

Search Engine Library: The popular opensource search engine library, Lucene is 

used as a core search engine. As discussed in the literature review, Lucene has several 

features, and is well tested, is extensible, and used in large-scale applications. 

Machine Learning Framework: The Microsoft machine learning framework 

ML.NET is used as a machine learning component. As discussed in the literature review, 

ML.NET is new, supports several other machine learning models, and is used by security 

tools like Windows Defender. 

The proposed cyber threat detection framework that incorporates Lucene, ML.NET, 

and training and evaluation components is intended to run on different environments but was 

designed, developed, and tested using Visual Studio on a Windows platform.  
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 3.3.4 Datasets 

As discussed in the literature review summary, the proposed framework uses an 

anomaly-based detection approach. Anomaly-based intrusion detection accuracy depends on 

the amount of collected behavior or features (Modi et al., 2013). Lack of a sufficient dataset 

impacts the accuracy of analysis and evaluation in anomaly-based IDS (Sharafaldin et al., 

2018). With the proposed approach, training the engines is the crucial step to generate models. 

The accuracy of the proposed model depends on the quality of the training data. For the 

purpose of training, evaluating each treatment implementation, and validating the overall 

solution, a wide variety of publicly available datasets, such as datasets collected by the 

Canadian Institute for Cybersecurity (Sharafaldin et al., 2018), and the Center for Applied 

Internet Data Analysis (CAIDA) datasets (CAIDA, 2019) were used. These datasets contain a 

variety of records. The performance of the Canadian Institute for Cybersecurity datasets in 

machine learning algorithms has been analyzed and evaluated (Sharafaldin et al., 2018). 

3.3.5 Similarity Measurements 

Extracted features from the training data are stored in a vector form within the VSM in 

the search engine. Vectors are stored in a multidimensional space. If the data has n features, 

the vector is represented in n dimensional space. In reality, several features can be extracted 

from single session traffic data. For instance, CICFlowMeter can extract over 80 features 

(Habibi Lashkari et al., 2017). Just to understand the similarity equation, let us assume we 

have a two-dimensional space with points representing vectors on a plane, as shown in Figure 

6. Suppose each traffic is represented by a vector on the coordinate plane, and suppose vector 

A represents an input traffic. 
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Figure 6. Vectors in two-dimensional space. 

The status of the input vector A is determined by the nearby vectors using similarity 

measurements such as Euclidean distance and Cosine similarities. While Euclidean distance 

similarity measures the distance between the two points A and B in space, Cosine similarity 

measures the angle between two vectors. 

 

Cosine similarity between vectors A and B, each with n elements can be expressed as: 

similarity(A, B) = cos(𝜃) =
A ∙ B

∥ A ∥∥ B ∥
=
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Euclidean distance d between two points in space A and C can be computed as: 

𝑑(𝐴, 𝐶) = √∑(𝐴𝑖 −𝐶𝑖)2
𝑛

𝑖=1

 

 

Similarity measurements produce different results. For instance, in Figure 6, vector B 

is the closest vector to the input vector A using Cosine similarity; however, point C is the 

closest point to point A using Euclidean distance. Selection of the appropriate similarity 

measurement is an experimental process. The next section discusses the results of a prototype 
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project developed to determine the appropriate similarity measurement and related algorithms. 

Similarity measurements are crucial in search engines, so a prototype project was needed to 

make the right selection.  

3.4 Prototype Project 

In software engineering, the main purpose of prototyping is for design verification of 

product development as it demonstrates the feasibility of the proposed design before 

launching the actual development. The goal of this prototype project was to assess the overall 

feasibility of the research and select the appropriate similarity algorithm used in the 

customization of the search engine VSM component. As a prototype project, a miniVSM 

component with training and prediction features was implemented from scratch. The 

prototype project was based on the hypothesis of the research, explained in short as the 

following: the nearby vectors that represent network traffic data determine the status of the 

input traffic data vector. The prototype project had data preparation, training, prediction, and 

evaluation procedures. A total of 12,000 traffic instances were involved in the training and 

evaluation, out of which 2,000 traffic instances represent attacks. The evaluation data were 

proportionally and randomly selected. Implementation of the VSM prototype involved 

building matrix of vectors from the features dataset, as shown in Listing 1. 

public static void BuildVSM(IEnumerable<string> trainingDataSet) 
{ 
    int index = 0; 
    featureVectors = new ConcurrentDictionary<int, double[]> 
                          (CONCURRENCY_LEVEL, COLLECTION_CAPACITY); 
    labelVectors = new ConcurrentDictionary<int, string> 
                          (CONCURRENCY_LEVEL, COLLECTION_CAPACITY); 
 
    foreach (string featureSet in trainingDataSet) 
    { 
        IEnumerable<string> values = featureSet.Split(','); 
        double[] vector = values.Take(FEATURES_COUNT) 
                                .Select(val => Convert.ToDouble(val)).ToArray(); 
        featureVectors.TryAdd(index, vector); 
        labelVectors.TryAdd(index, values.Last()); 
        index++; 
    } 
} 

Listing 1. Partial implementation of VSM.  
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 The VSM prototype was evaluated with a test dataset. The test dataset contains a total 

of 2,400 instances of attack and benign traffic features. The evaluation model had a simple 

prediction accuracy measure that computes the percentage of accurate predictions out of the 

total predictions, as shown in Listing 2. 

public static double EvaluateVSM(IEnumerable<string> testingDataSet) 
{ 
    int testingDataCount = testingDataSet.Count(); 
    List<(string ActualValue, string PredictedValue)> evaluationCheckList = 
          new List<(string, string)>(testingDataCount + RANDOM_PRIME_NUMBER); 
 
    foreach (var featureSet in testingDataSet) 
    { 
        IEnumerable<string> values = featureSet.Split(','); 
        double[] vector = values.Take(FEATURES_COUNT) 
                                .Select(val => Convert.ToDouble(val)).ToArray(); 
 
        string actualValue = values.Last(); 
        string predictedValue = Predict(vector); 
 
        evaluationCheckList.Add((actualValue, predictedValue)); 
    } 
     
    int accuratePredictionCount = evaluationCheckList.Where( 
                              item => item.ActualValue == item.PredictedValue 
                              ).Count(); 
    double accuracy = (double)accuratePredictionCount * 100 /  
                      (double)testingDataCount; 
    return accuracy; 
} 

Listing 2. Partial implementation of VSM evaluation. 

The prediction model uses both Cosine similarity and Euclidean similarity to measure 

the nearness value between the vectors. Listing 3 shows implementation of these similarity 

measures. 

static double EuclideanDistanceSimilarity(double[] vector1, double[] vector2) 
{ 
    double sum = 0.0; 
    int length = vector1.Length; 
    for (int i = 0; i < length; ++i) 
        sum += Math.Abs((vector1[i] - vector2[i]) * (vector1[i] - vector2[i])); 
    return Math.Sqrt(sum); 
} 
public static double CosineSimilarity(double[] vector1, double[] vector2) 
{ 
    double lengthV1 = ComputeVectorLength(vector1); 
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    double lengthV2 = ComputeVectorLength(vector2); 
    double dotProduct = ComputeDotProduct(vector1, vector2); 
    return dotProduct / (lengthV1 * lengthV2); 
} 
public static double ComputeDotProduct(double[] vector1, double[] vector2) 
{ 
    double product = 0.0; 
    if (vector1.Length == vector2.Length) 
    { 
        for (int i = 0; i < vector1.Length; i++) 
        { 
            product += vector1[i] * vector2[i]; 
        } 
    } 
    return product; 
} 
public static double ComputeVectorLength(double[] vector) 
{ 
    double length = 0.0; 
    for (int i = 0; i < vector.Length; i++) 
    { 
        length += Math.Pow(vector[i], 2); 
    } 
    return Math.Sqrt(length); 
} 

Listing 3. Implementation of similarity measures. 

 Model prediction is based on the K-Nearest Neighbors (KNN) algorithm. The KNN 

algorithm is the simplest prediction algorithm in machine learning (Chio & Freeman, 2018). 

In KNN algorithm the prediction is based on the plurality of votes of its neighbors. The input 

vector is similar to the most common class among its k nearest neighbors. Selection of the 

best value of k is heuristic. Listing 4 shows the implementation of the KNN algorithm in the 

prototype project. 

public static string Predict(double[] inputVector) 
{ 
    ConcurrentDictionary<int, double> vectorMeasures = 
    new ConcurrentDictionary<int, double>(CONCURRENCY_LEVEL, COLLECTION_CAPACITY); 
 
    Parallel.ForEach(featureVectors, (vector) => 
    { 
        if (SIMILARITY == Similarity.COSINE) 
        { 
            double cos = CosineSimilarity(inputVector, vector.Value); 
            vectorMeasures.TryAdd(vector.Key, cos); 
        } 
        else 
        { 
            //Default similarity 



35 

 

            double distance = EuclideanDistanceSimilarity(inputVector, 
                                                          vector.Value);  
            vectorMeasures.TryAdd(vector.Key, distance); 
        } 
    }); 
 
    //Sort vector measures and take the nearest K vectors to the input vector. 
    var nearestVectors = vectorMeasures.OrderBy(item => item.Value).Take(K); 
 
    //Group by label and take the majority vote among the nearest vecotors 
    var candidates = from nn in nearestVectors 
                     group nn by labelVectors[nn.Key] into g 
                     select new { Label = g.Key, Count = g.Count() }; 
 
    //Sort Candidates. The maximum vote comes first 
    candidates = candidates.OrderByDescending(item => item.Count); 
    string prediction = candidates.First().Label; 
 
    return prediction; 
} 

Listing 4. Partial implementation of prediction model and KNN algorithm. 

Running the prototype app with the prepared 12,000 traffic instances shows that the 

Euclidean distance similarity outperformed the Cosine similarity measurement in the 

miniVSM implementation. The detection accuracy was 82.63% using Cosine similarity 

whereas using Euclidean distance similarity yielded 99.42% detection accuracy. As discussed 

earlier, the purpose of the prototype is to provide insight into the new framework before 

actual development. The result of this prototype indicates the feasibility of the dataset training 

and algorithms design. However, the result also shows that the default Lucene similarity 

algorithm, Cosine similarity, is less effective than the Euclidean distance similarity.  

3.5 Deployment and Continuous Training 

While using Euclidean distance similarity measurement and KNN algorithm in the 

proposed custom search engine, the prediction confidence can be low. When this occurs, the 

ML binary classifier model is used to determine the status of the input vector; based on the 

result, the custom search engine is retrained. As discussed earlier, both the search engine and 

the ML model use the same dataset for the initial training. A larger amount of training data 

improves accuracy but consumes large storage and computational time, making it inefficient 

for real-time detection (Modi et al., 2013). This is true for both the ML engine and the search 
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engine. With the proposed technique, the search engine has an advantage over the ML engine 

as it can update itself while it is running without destroying the model. 

Another advantage of using such a search engine technique is that the indexed data 

can be stored and searched in distributed environments using parallel multisearchers, which 

also means the model can be consumed as a service by several client hosts. The detection 

framework can also be deployed on a single server.  

3.6 Summary 

In this chapter, the design of the new framework and its components has been 

described. Depending on the deployment option, the new framework can serve to analyze 

traffic coming to the local area network or to a single host. The framework can work with live 

traffic or previously captured traffic data. As shown in Figure 7, the tapped network traffic 

goes to the feature processor to produce a feature set and pass it to the threat detection engine. 

The threat detection engine uses its two models (search engine and machine learning) to 

determine the status of the traffic. The search engine model learns the incidents when 

necessary. If a threat is detected, the detection engine notifies the alert service, then the alert 

service dispatches the alert message to connected client apps. Similarity measurement is the 

core algorithm of the search engine model. Development tools and frameworks, such as 

Visual Studio, .NET Core, Lucene, ML.NET, and datasets selections, have also been 

discussed. The prototype project shows that Euclidean distance similarity is better than Cosine 

similarity, the default similarity in the Lucene search engine library. 
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Figure 7. Process flow design. 

This chapter incorporated research methodology as well as the new framework design 

from a software engineering perspective. Several architectural diagrams, algorithm designs, 

and use cases were discussed in this chapter. A prototype project analysis was included in this 

chapter to make design decisions on the core algorithms. 
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CHAPTER 4 

SYSTEM DEVELOPMENT 

This chapter discusses the technical details and implementations of techniques and 

algorithms used to develop the proposed framework as designed in Chapter 3. This chapter 

involves mathematical analysis and the development of algorithms and components. The 

proposed framework is divided into several components. Each component is developed in 

such a way that it can be separately tested and, therefore, is less dependent on other 

components. The major components of the framework include the data processor, custom 

search engine, ML based Binary Classifier Engine, decision engine, and alert service. The 

component development process involves subcomponents, implementations of algorithms, 

and procedures. 

4.1 Data Processor 

The data processing task involves converting raw PCAP files into features data, and 

partitioning, sampling, and balancing datasets. Figure 8. Data processor process flow 

diagramFigure 8 shows the process flow of the data processor component. The raw data 

contains two kinds of classes: malicious traffic data and benign traffic data. Feature datasets 

go through the data balancing process when the classes are not proportional; data balancing 

reduces the issue of class imbalance. Both undersampling and oversampling the training data 

impacts the accuracy of the detection. Undersampling can be mitigated by intelligently 

generating synthetic data for minority classes, which is also referred to as oversampling. 

Different resampling techniques have different characteristics (Chio & Freeman, 2018), and 

therefore, the best strategy is determined by running different experiments. To start the 

training process the initial dataset is assumed to be adequate, then based on the result, 

different sampling techniques such as semisupervised learning may be used. In 

semisupervised learning, the initial training model can be used to generate an additional 
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training dataset from unlabeled data. Predictions with the highest confidence are considered 

correctly labeled and added to the training data.  

 

 

Figure 8. Data processor process flow diagram. 

4.1.1 Feature Engineering 

Feature extraction is the crucial step in anomaly detection. Features depend on the 

intrusion detection domain; host intrusion detection and network intrusion detection systems 

require different feature datasets. This research focuses on building network intrusion 

detection; therefore, features are extracted from the network traffic data. The CICFlowMeter 

tool is used to extract features from traffic data. According to the documentation (Canadian 

Institute for Cybersecurity, 2019), the CICFlowMeter uses WinPcap, the standard Windows 

packet capture library, to capture network packets. In addition to the packet header and footer, 

CICFlowMeter examines signals and statistics about the traffic. Version 4.0 of CICFlowMeter 

can generate 84 different features including duration, number of packets, number of bytes, 

length of packets, and so forth in both forward and reverse directions. CICFlowMeter is 

developed in Java and can run on Windows and Linux environments. Although 

CICFlowMeter can generate features from live traffic, extracting features from live traffic is 

beyond the scope of this research. Therefore, precollected PCAP files are used to generate 

features datasets for training in this project.   

The feature extractor method uses the input directory that contains PCAP files to 

process the extracted features and the output directory to save them. Extracted features are 

saved in Comma Separated Value (CSV) format. Since CICFlowMeter is developed in Java, 

there is no direct Java code execution from C#. Therefore, the feature extractor method uses 

Windows system process components. The method starts a command prompt process by 
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passing a batch file that accepts the directory values as parameters. The batch file then starts 

the CICFlowMeter executables. The output of the CICFlowMeter executables are redirected 

to the host process console screen as shown in Listing 5. 

public static void ExtractFeatures() 
{ 
    ProcessStartInfo processStartInfo = new ProcessStartInfo 
    { 
        FileName =  $"{AppConfigSettings.CicFlowMeterPath}cfm.bat", 
        Arguments = $"\"{AppConfigSettings.InputPcapFileDirectory}\" " + 
                    $"\"{AppConfigSettings.FeaturesDataDirectory}\"", 
        WorkingDirectory = AppConfigSettings.FeaturesDataDirectory, 
        Verb = "runas", 
        UseShellExecute = false, 
        RedirectStandardOutput = true 
    }; 
 
    Process cicFlowMeterProcess = new Process 
    { 
        StartInfo = processStartInfo 
    }; 
 
    cicFlowMeterProcess.OutputDataReceived +=  
           new DataReceivedEventHandler((sender, e) => 
            { 
                if (!string.IsNullOrEmpty(e.Data)) 
                { 
                    Console.WriteLine(e.Data); 
                } 
            }); 
 
    cicFlowMeterProcess.Start(); 
    cicFlowMeterProcess.BeginOutputReadLine(); 
    cicFlowMeterProcess.WaitForExit(); 
    cicFlowMeterProcess.Close(); 
} 

Listing 5. Feature Extractor method implementation. 

4.1.2 Data Balancer 

Implementation of the data balancer depends on the accuracy of the detection result 

and initial dataset size. Data balancing is not important when adequate and proportional 

training data are available. Therefore, this component is implemented during the evaluation 

phase whenever necessary. 
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4.1.3 Data Partitioning 

The data partitioning process involves data preparation, randomization, training-

testing data selection, normalization, and data formatting.  

Data Preparation: The feature data preparation task reads all the extracted features, 

cleans invalid records, removes duplicates, and generates a list of instances with labels and 

their descriptions. Label descriptions are used by the custom search engine during indexing. 

The raw feature data reading is implemented as shown in Listing 6. The data splitter method 

is then used on the prepared feature data to generate engine-specific training data. 

public static void ReadRawFeatureData(string fileDirectory = "",  
                                      int maxGroupSize = 10000000) 
{ 
   char[] separators = {',' }; 
    int errorCounter = 0; 
    string directory = AppConfigSettings.RawDataDirectory; 
    if (!string.IsNullOrWhiteSpace(fileDirectory)) 
        directory = fileDirectory; 
    var files = Directory.GetFiles(directory, "*.csv"); 
 
    List<string> sampleLines = new List<string>(); 
    foreach (string file in files) 
    { 
        
        string fileName = Path.GetFileNameWithoutExtension(file); 
        sampleLines.Add(fileName); 
        Console.WriteLine($"Processing: {fileName}"); 
        var dataLines = File.ReadLines(file) 
                            .Where(line => !(line.Contains("Infinity") 
                                          || line.Contains("NaN"))).Distinct(); 
        sampleLines.AddRange(dataLines.Take(5));      
         
        Console.WriteLine($"Total distinct records = {dataLines.Count()}");        
        
        dataLines = dataLines.Skip(1); 
        
        Console.WriteLine("Data selection"); 
        var attackDataLines = dataLines.Where(l => !l.ToLower() 
                              .Contains("benign")).Take(maxGroupSize).ToList() 
        int attackInstanceCount = attackDataLines.Count; 
        Console.WriteLine($"{attackInstanceCount} - " + 
               $"attack instances found. Selecting random benign instances..."); 
        int benignInstanceCount = (int)(attackInstanceCount * 1.5); 
        var benignDataLines = dataLines.Where(l => l.ToLower().Contains("benign")) 
                                       .OrderBy(r => Guid.NewGuid()) 
                                       .Take(benignInstanceCount).ToList(); 
 
        Console.WriteLine("Merging instances..."); 
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        var entireDataLines = attackDataLines.Union(benignDataLines); 
        Console.WriteLine($"{entireDataLines.Count()} - " + 
                          $"total instances found."); 
         
                         
        int dataCounter = 1; 
        ConcurrentDictionary<int, string> instances =  
                                         new ConcurrentDictionary<int, string>(); 
 
         
        Parallel.ForEach(entireDataLines, line => 
        { 
            var featureItems = line.Split(separators);                    
            if (!featureItems.Any(f => string.IsNullOrWhiteSpace(f))) 
            { 
                var featuresList = featureItems.Take(featureItems.Count() - 1); 
                var label = featureItems.Last().Trim().ToLower(); 
                label = Regex.Replace(label, @"[^a-z]|\s+", "-") 
                             .Replace("---", "-").Replace("--", "-"); 
                var normalizedLabel = label == "benign" ?  
                                      benignLabelValue : attackLabelValue; 
               
                int featureLength = featuresList.Count();                       
                string featureLine = string.Empty; 
                try 
                { 
                    for (int i = 0; i < featureLength; i++) 
                    { 
                        if (!excludedColumnIndexes.Contains(i)) 
                        { 
                            double val = Convert.ToSingle(featuresList 
                                                          .ElementAt(i)); 
                            string fVal = val.ToString(); 
                            featureLine += fVal + ",";                             
                        } 
                    } 
 
                    featureLine = featureLine.Trim(' ', ','); 
                    int totalFeatureSize = featureLine.Split(separators).Length; 
                     
                    if (!string.IsNullOrWhiteSpace(featureLine)) 
                    { 
                        instances.TryAdd(dataCounter,  
                            (featureLine + "|" + normalizedLabel + "," + label) 
                            .Trim(' ', ',')); //features|labels 
                    } 
                    dataCounter++; 
                    if (dataCounter % 10000 == 0) 
                        Console.WriteLine($"{dataCounter}"); 
                } 
                catch (Exception ex) 
                { 
                    Console.WriteLine(ex.Message); 
                    Console.WriteLine(line); 
                    errorCounter++; 
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                } 
            } 
        } 
        ); 
        Console.WriteLine($"Saving {fileName}.txt ..."); 
        File.WriteAllLines(directory + fileName + "-labeled.txt", 
                           instances.Select(l => l.Value));                
    } 
} 

Listing 6. Implementation of the data preparation method. 

Data Splitting: In machine learning the training data and the testing data should be 

distinct. Usually thirty percent of the entire dataset goes to testing, and the remaining seventy 

percent is used for training. The test data fraction can be adjustable depending on the training 

data size. As shown in the implementation code in Listing 7, first, the prepared dataset is split 

into two groups: benign instances and attack instances. Then the test dataset is extracted from 

each group based on the test-fraction value. This step generates four groups of datasets: 

benign and attack instances for training and testing. Data selection is through randomization. 

In the last step, the training and testing datasets of each of the benign and attack datasets are 

merged and shuffled. This step generates two datasets, training and testing, and each group 

contains both attack and benign instances. 

private static void PrepareDateset(int instanceCount) 
{             
    IEnumerable<string> entireDataLines = ReadFeatureData(); 
 
    //Split datasets into attack and benign instances 
    var benignInstances = entireDataLines.Where(item =>  
                              Regex.IsMatch(item, @"\|" + benignLabelValue)); 
    var attackInstances = entireDataLines.Where(item =>  
                              Regex.IsMatch(item, @"\|" + attackLabelValue)); 
 
    //Make sure there is no intersection between the datasets 
    int intersection = benignInstances.Intersect(attackInstances).Count(); 
    Debug.Assert(intersection == 0, "Invalid benign-attack instances"); 
 
    int totalBenignInstances = benignInstances.Count(); 
    int totalAttackInstances = attackInstances.Count(); 
 
     
 
    //Determine the train-test benign data proportion 
    int testBenignInstancesCount = (int)(totalBenignInstances * TEST_FRACTION); 
    int trainingBenignInstancesCount =  
        totalBenignInstances - testBenignInstancesCount; 
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    //Determine the train-test attack data proportion 
    int testAttackInstancesCount = (int)(totalAttackInstances * TEST_FRACTION); 
    int trainingAttackInstancesCount =  
        totalAttackInstances - testAttackInstancesCount; 
 
    //Generate random data 
    IEnumerable<string> testAttackInstances = attackInstances.OrderBy(r =>  
                         Guid.NewGuid()).Take(testAttackInstancesCount).ToList(); 
    IEnumerable<string> trainingAttackInstances = attackInstances.Except( 
                                                        testAttackInstances); 
 
    //Make sure there is no intersection between the datasets 
    intersection = testAttackInstances.Intersect(trainingAttackInstances).Count() 
    Debug.Assert(intersection == 0, "Invalid training-test attack instances"); 
 
    IEnumerable<string> testBenignInstances = benignInstances.OrderBy(r =>  
                          Guid.NewGuid()).Take(testBenignInstancesCount).ToList() 
    IEnumerable<string> trainingBenignInstances = benignInstances.Except( 
                                                        testBenignInstances); 
 
    //Make sure there is no intersection between the datasets 
    intersection = testBenignInstances.Intersect(trainingBenignInstances).Count() 
    Debug.Assert(intersection == 0, "Invalid training-test benign instances"); 
 
    //Merge and shuffle data 
    var trainingInstances = trainingAttackInstances 
               .Union(trainingBenignInstances).OrderBy(r => Guid.NewGuid()); 
    var testingInstances = testAttackInstances.Union(testBenignInstances) 
                                              .OrderBy(r => Guid.NewGuid()); 
 
    //Make sure there is no intersection between the datasets 
    intersection = trainingInstances.Intersect(testingInstances).Count(); 
    Debug.Assert(intersection == 0, "Invalid training-test instances"); 
 
    Console.WriteLine($"            Benign\t\tAttack"); 
    Console.WriteLine($"Training\t{trainingBenignInstancesCount}\t" + 
                      $"\t{trainingAttackInstancesCount}"); 
    Console.WriteLine($"Testing\t{testBenignInstancesCount}\t" + 
                      $"\t{testAttackInstancesCount}"); 
 
    //Geenrate and save ML compatible datasets 
    File.WriteAllLines(AppConfigSettings.MlTrainingDataPath,  
                       GenerateMLCompatibleData(trainingInstances)); 
    File.WriteAllLines(AppConfigSettings.MlTestingDataPath,  
                       GenerateMLCompatibleData(testingInstances)); 
 
    //Generate and save SE compatible datasets 
    File.WriteAllLines(AppConfigSettings.SeTrainingDataPath,  
                       GenerateSECompatibleData(trainingInstances)); 
    File.WriteAllLines(AppConfigSettings.SeTestingDataPath,  
                       GenerateSECompatibleData(testingInstances));     
} 

Listing 7. Implementation of the data split method. 
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There are two detection engines in the proposed framework: the ML engine and the 

custom search engine. Both engines use different data formats. The ML engine can process 

CSV files and text files without further customization. But the search engine requires a further 

data preparation step, discussed in detail next. 

4.2 Custom Search Engine Data Preparation 

The primary use of a search engine is data mining, so it requires each data instance in 

the form of text, which is called a document in search engine terminology. During indexing, 

the indexer generates a multidimensional term-frequency vector for each document. The term 

frequency is calculated from the document. For instance, the text “the red fox and the red cat 

are smart” is stored as a term-frequency vector within the search engine VSM, as shown in 

Table 5. Articles and other stop words are not analyzed by default. 

Table 5. Term Frequency Table of a Sample Text 

Term red fox cat smart 

Frequency 2 1 1 1 

 

One of the main artifacts in this research is the customization of a search engine 

library to make it function as a threat detection engine. The customized search engine is 

expected to store vectors generated from traffic data features. For instance, the customized 

search engine should store the traffic data that contains only port number 80 and payload size 

4000 bytes in its internal vector space model, as shown in Table 6.  

 

Table 6. Feature Value Table of Sample Traffic Data Features 

Feature port payload_size   

Value 80 4000   

 

The default Lucene search engine indexer expects the terms “port” and “payload_size” 

to be repeated 80 and 4,000 times, respectively, in the text to generate values, as shown in 

Table 6. Generating the expected vector space model by repeating terms in the documents is 
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not an efficient approach, particularly for traffic data with several features. Therefore, the 

default indexer needs to be customized to generate the required vector from well-formatted 

text data like “port|80 payload_size|4000”, where the numbers indicate the frequency/value of 

the term/feature. Customization of the Lucene indexer will be discussed in detail later in the 

next section. Hence, the training data for the search engine should be prepared as a list of 

well-formatted text for efficient indexing. Listing 8 shows how the training and testing 

datasets are reprocessed for the custom search engine indexer. Feature values are rounded to 

integers because the search engine processes these values as frequency. Each feature is 

boosted by one to ensure that every feature is included in the search during the detection 

phase. However, this might change during code optimization and will be discussed later in 

Chapter 5. Case study.  

private static IEnumerable<string> GenerateSECompatibleData( 
                                         IEnumerable<string> instanceLines) 
{ 
    List<string> indexableLines = new List<string>(); 
 
    foreach(string line in instanceLines) 
    { 
        string[] featureLabel = line.Split('|'); 
        string[] features = featureLabel[0].Split(','); 
 
        string labels = featureLabel[1];                      
        string indexableLine = string.Empty; 
         
        int featuresLength = features.Length; 
        int featureCounter = 1; 
 
        for(int i =0; i<featuresLength; i++) 
        { 
            if(!EngineConstants.EXCLUDED_FEATURE_INDEXES.Contains(i)) 
            { 
                //Convert string to float and round to the ceiling integer 
                int fVal = (int)Math.Ceiling(Convert.ToSingle(features[i])); 
                fVal = Math.Abs(fVal); 
                 
                //fVal += 1; //Boost all by 1; this sets the minimum frequency to 
                //generate n-dimensional vector which results in low performance. 
                //Please read section 5.2.4 Variable Vector Dimension for details.  
                if (fVal > 0) 
                { 
                                  // ሀ|v1 ሁ|v2 ሂ|v3 … 
               indexableLine += $"{ETHIOPIC_ALPHABETS[featureCounter++]}|{fVal} "; 
                } 
            } 
        } 
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        indexableLine = indexableLine.Trim(); 
        indexableLine += "," + labels.Replace(",", "|"); 
        indexableLines.Add(indexableLine.Trim().Replace("  ", " ")); 
    } 
 
    return indexableLines; 
} 

Listing 8. Custom search engine-compatible data preparation method. 

4.2.1 Feature Name Representation 

Feature names can serve as axis names in the feature-value VSM. Feature names can 

be the actual feature names of the traffic such as “port”, “payload_size”, and so on. The 

feature value tokenizer, which will be discussed later, iterates through each character of the 

feature name during tokenization and while splitting the feature name from the feature value. 

If the traffic has several features, longer names consume memory and disk space, and the 

tokenizer could be slow as it iterates through every character. Therefore, using shorter names 

makes the VSM more efficient. One approach could be using a single character to represent a 

feature name like (a|v1 b|v2 c|v3 . . .). It only takes one byte to store an English alphabet 

character in memory; however, English alphabet characters are limited in number, and the 

approach fails to support models with several features. To support large models with several 

features, a script that contains a large number of alphabet characters and consumes less space 

in memory is needed. According to Unicode Standard 12.1, there are a total of 495 assigned 

Ethiopic characters including supplemental and extended versions. Excluding the tonal marks, 

numerals, and punctuation characters, there are 473 different pronounceable Ethiopic 

characters (Unicode, 2019). Ethiopic characters are used by Ethiopian languages such as 

Amharic, Geez, Tigrinya, and others. Each Ethiopic character takes two bytes in memory. 

There are other language scripts such as Chinese, Japanese, Korean (CJK Unified Ideographs 

Extension B) that contain several thousands of assigned characters but require more than two 

bytes to represent each character in memory. Using Ethiopic characters for feature names 

allows each feature name in a network traffic data that contains up to 473 features to be 

processed with a single character name in the search engine model. This means the model can 

grow up to a 473-dimensional vector space. Ethiopic characters are enough to represent the 

features in the dataset and provide enough space for future expansion. When using Ethiopic 

characters for feature names, the prepared dataset looks like the following: (ሀ|v1 ሁ|v2 ሂ|v3 
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…). Note that the same data generator method shown in Listing 8 is used to generate the 

custom search engine compatible data during the training and the detection phases. 

4.3 Custom Search Engine 

A search engine is an information retrieval system that can retrieve data efficiently. In 

general, a search engine involves two steps: indexing and searching. Indexing is a process of 

collecting metadata about the raw data and storing it in a systematic way for efficient 

searching. As discussed in Chapter 2, Apache Lucene is a popular opensource search engine 

library. Lucene is implemented in different programming languages such as Java, C#/.NET, 

and Python. In this section we focus on the customization of the C# version of Lucene, also 

known as Lucene.NET. At the time of this writing, the latest .NET version of Lucene is 4.8.0, 

which is behind the current Java version, which is 8.1.1. To make the Lucene library function 

as a threat detection engine, the core components such as the indexer, analyzers, searcher, and 

similarity should be customized. Customization depends on the Lucene platform and its 

version. For instance, the Java Lucene supports indexing custom term frequencies since 

version 7.0,1 but this capability does not exist in the Lucene.NET. Lucene is an extendable 

search engine library. Figure 9 shows the basic customization architecture of Lucene to make 

it function as a threat detection engine. The customized engine is intended to store the feature 

data in the form of feature-value vectors within the Lucene Index Store and apply the custom 

searcher that uses a special scoring algorithm to find the best matching vectors to the input 

traffic feature data. Each component customization will be discussed in detail in the next 

sections.    

 

 

1 https://issues.apache.org/jira/browse/LUCENE-7854 
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Figure 9. Lucene customization basic architecture. 

4.3.1 Feature Analyzer 

In Lucene library, the purpose of the Analyzer is to build tokens to extract index terms 

from the input text. The process of analysis converts the input text into indexable/searchable 

tokens. Analyzer uses Tokenizer and Token Filter components. The purpose of customizing 

the Analyzer is to convert the input traffic feature data into indexable feature tokens with the 

feature value as an attribute. Then the value attribute is used by the indexer to build a feature-

value vector. The custom Analyzer, hereafter called Feature Analyzer, extends the default 

Lucene Analyzer, and uses a custom token filter called Feature Value Token Filter as shown 

in Listing 9. As discussed in the data processing section, the search engine indexable data are 

provided in the form of a space-separated set of feature names along with its value 

concatenated by pipeline character (f1|v1 f2|v2, f3|v3, …).  The Feature Analyzer first splits 

each feature and value combination by using the Lucene built in WhitespaceTokenizer.  

public class FeatureAnalyzer : Analyzer 
{ 
    protected override TokenStreamComponents CreateComponents(string fieldName,  
                                                              TextReader reader) 
    { 
        Tokenizer source = new WhitespaceTokenizer(LuceneVersion.LUCENE_48,  
                                                   reader); 
        FeatureValueTokenFilter filter = new FeatureValueTokenFilter(source); 
        return new TokenStreamComponents(source, filter); 
    } 
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}     

Listing 9. Partial implementation of Feature Analyzer. 

The Feature Value Token Filter splits the feature and its value, and stores them as term 

attributes and frequency attributes, respectively. Note that the term-frequency and feature-

value terminologies are used interchangeably in this context. Lucene treats feature as a term, 

and value as a frequency in its internal structure. The Feature Value Token Filter extends the 

default Lucene TokenFilter class and overrides the IncrementToken method, which splits the 

feature and its values for each token as shown in Listing 10. This implementation was adapted 

from the Java implementation of DelimitedTermFrequencyTokenFilter.2  

public sealed class FeatureValueTokenFilter : TokenFilter 
{ 
    public static char DEFAULT_DELIMITER = '|'; 
    private char delimiter; 
    private ICharTermAttribute featureAtt; 
    private IFeatureValueAttribute featureValueAtt; 
 
    public FeatureValueTokenFilter(TokenStream input) : 
                         this(input, DEFAULT_DELIMITER) 
    { 
        featureAtt = m_input.AddAttribute<ICharTermAttribute>(); 
        featureValueAtt = m_input.AddAttribute<IFeatureValueAttribute>(); 
    } 
    public FeatureValueTokenFilter(TokenStream input, char delimiter) :  
                                   base(input) 
    { 
        this.delimiter = delimiter; 
    } 
 
    public override bool IncrementToken() 
    { 
        if (m_input.IncrementToken()) 
        { 
            char[] buffer = featureAtt.Buffer; 
            int length = featureAtt.Length; 
            for (int i = 0; i < length; i++) 
            { 
                if (buffer[i] == delimiter) 
                { 
                    //Sets the feature to be the value before the delimiter 
                    featureAtt.Length = i; 
                    i++; 
                     

 

2 https://lucene.apache.org/core/7_0_0/analyzers-

common/org/apache/lucene/analysis/miscellaneous/DelimitedTermFrequencyTokenFilter.html  

https://lucene.apache.org/core/7_0_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/DelimitedTermFrequencyTokenFilter.html
https://lucene.apache.org/core/7_0_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/DelimitedTermFrequencyTokenFilter.html
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                    //Sets the feature value to be the value after the delimiter 
                    featureValueAtt.FeatureValue = ArrayUtil.ParseInt32(buffer,  
                                                                      i,  
                                                                      length - i); 
                    return true; 
                } 
            } 
            return true; 
        } 
        return false; 
    } 
} 

Listing 10. Implementation of the Feature Value Token Filter. 

4.3.2 Custom Indexer 

Lucene has an Index Writer class that is used to create and maintain the index. The 

IndexWriter class is initialized by setting the index directory that is used to create or append 

indexes; the configuration setting is shown in Listing 11. The custom analyzer can be 

assigned to the Index Writer in the configuration. 

using (FSDirectory directory = FSDirectory.Open(indexDirectory)) 
{ 
    var freatureAnalyzer = new FeatureAnalyzer(); 
    var indexConfig = new IndexWriterConfig(LuceneVersion.LUCENE_48, 
                                            freatureAnalyzer); 
 
    //… 
} 

Listing 11. Assigning Feature Analyzer to the Index Writer. 

The Index Writer configured with Feature Analyzer requires the custom indexing 

process chain to read the frequency/value attribute added to each feature/term token. In 

addition to the feature-value data, metadata of the traffic such as attack type can be stored in 

the index during the training phase, which is used to determine the details of the input traffic 

later during the detection phase. Customizing the Lucene.NET 4.8 indexing chain is a very 

convoluted process and involves customization of several components such as 

TermFrequencyAttribute, FieldInvertState, DocInverterPerField 

FreqProxTermsWriterPerField, TermVectorsConsumerPerField, and TermsHashPerField.  

The customized indexing chain generates a feature-value vector for each piece of 

traffic data and stores it in the index directory. As shown in the customization architecture in 
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Figure 9, the searcher component uses the analyzer to search the stored index. In Lucene, 

searching depends on the similarity algorithms. There are several built-in similarity 

algorithms in Lucene such as TFIDFSimilarity, BM25Similarity, IBSimilarity, LMSimilarity, 

etc. TFIDFSimilarity is the default similarity in Lucene. The purpose of the similarity 

algorithm in the searcher is to score the relevancy of the stored data to the search query. 

 Lucene.NET has a component called Lucene.NET.Classification, which is used to 

classify text documents into groups. This component uses different algorithms such as KNN 

and Naïve Bayes. Although this component uses KNN or Naïve Bayes algorithms, the internal 

classification technique is based on “More-Like-This” algorithm. In Lucene search, More-

Like-This algorithm is used to generate similar queries. A typical example of a More-Like-

This algorithm is providing similar search suggestions, and “do you mean . . .” suggestions in 

search engines such as Google. Similar to the implementation in Lucene.NET, More-Like-

This algorithm internally uses TFIDFSimilarity for document matching. The built-in 

classification implementation in the Lucene library does not function as a binary classifier for 

threat detection because the scoring algorithm is TFIDFSimilarity, which is based on Cosine 

similarity, term frequency, and inverse document frequency. TIFIDFSimilarity does not 

consider all the document terms to match with the query; this results in a very low detection 

accuracy if used as threat detection because it does not consider all the traffic data features in 

the search. Therefore, a custom similarity algorithm is required. 

4.3.3 Custom Similarity  

TFIDFSimilarity is based on Cosine similarity algorithm with VSM. In VSM, 

documents are represented as weighted vectors in a multidimensional space. In Chapter 3, we 

saw that Euclidean distance similarity outperformed the Cosine similarity using the KNN 

algorithm in a VSM-based intrusion detection prototype project. Euclidean similarity is not 

implemented in Lucene. Therefore, we need to implement Euclidean similarity by extending 

the base similarity component of Lucene.NET.  

The base similarity class of Lucene, named SimilarityBase, provides a simple 

Application Programming Interface (API) for its derivative classes. Subclasses that extend 

SimilarityBase must apply their scoring formula by overriding the Score method. The Score 

method provides basic statistics of the query term, the matching term stored frequency, and 
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the document length, as shown in Listing 12. Basic properties of the term called BasicStats 

contain the field name of the document containing the matching term, the matching term 

frequency, total number of occurrences of the term across all documents, document 

frequency, query boost value, etc.   

public sealed class EuclideanDistanceSimilarity : SimilarityBase 
{ 
    public override float Score(BasicStats stats, float freq, float docLen) 
    { 
        throw new NotImplementedException();  
    } 
 
    public override string ToString() 
    { 
        return "EuclideanDistanceSimilarity"; 
    } 
} 

Listing 12. Extending Lucene Similarity Base. 

The Euclidean distance formula is the shortest distance between two points in a vector 

space. In terms of Lucene scoring, the Euclidean distance can be expressed as: 

𝑑 = √∑(𝑠𝑡𝑎𝑡𝑠. 𝑇𝑜𝑡𝑎𝑙𝐵𝑜𝑜𝑠𝑡 − 𝑓𝑟𝑒𝑞)2
𝑛

𝑖=1

 

Where n is the number of total terms/features. 

The Score method exposes only the stored term frequency (freq), and the query term 

frequency that can be retrieved from stats.TotalBoost. The total terms and the entire vector 

context are not available to apply the summation and square root operations in this method. 

The total score of the document is calculated in the document scorers. Therefore, the 

Euclidean distance formula as it is cannot be implemented in the Score method. It is possible 

to compute the Euclidean distance formula in the document scorer components of Lucene 

such as Collectors. However, customizing the internals of document scorers is more involved. 

Therefore, we need to customize the Euclidean distance formula to fit into the Score method 

without losing the context. Let us start the customization by squaring both sides of the 

Euclidean distance equation, which gives us: 
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𝑑2 =∑(𝑠𝑡𝑎𝑡𝑠. 𝑇𝑜𝑡𝑎𝑙𝐵𝑜𝑜𝑠𝑡 − 𝑓𝑟𝑒𝑞)2
𝑛

𝑖=1

 

Since the summation can be computed by the document score collector components, 

what we need to implement in the Score method is the score of the individual term score. If 

we compute a term score s as: 

𝑠 =  (𝑠𝑡𝑎𝑡𝑠. 𝑇𝑜𝑡𝑎𝑙𝐵𝑜𝑜𝑠𝑡 − 𝑓𝑟𝑒𝑞)2 

We obtain the total document score of 𝑑2, which is the square of the Euclidean 

distance. The purpose of measuring the Euclidean distance d of the given query vector is to 

find the nearest K vectors in the vector space to apply the KNN or other suitable algorithms 

for classification. What we achieved so far is the square of the Euclidean distance. However, 

we do not know if the square of Euclidean distance 𝑑2 results in the same search result as 

Euclidean distance d. Therefore, we must prove that measuring the squared Euclidean 

distance 𝑑2 produces the same nearest K vectors in the same order achieved by measuring 

Euclidean distance d. Finding the nearest vectors is attained by applying an inequality 

operation (less than or greater than) on the values. That means, for stored vectors v1 and v2, 

and query vector vq, if d1 is the distance between vq and v1, and d2 is the distance between vq 

and v2, and if d1 is less than d2, then we say v1 is nearer to vq. What if 𝑑12 is less than 𝑑22? 

Is v1 still be nearer to vq? This can be formulated as a theorem, and proving this theorem 

verifies the correctness of the Score calculation. 

Theorem: For two Euclidean distances d1 and d2, if  𝑑1 ≤ 𝑑2, then 𝑑12 ≤ 𝑑22. 

Proof: 

1:𝑑1, 𝑑2 > 0 ……… 𝑏𝑜𝑡ℎ𝑑1𝑎𝑛𝑑𝑑2𝑎𝑟𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑜𝑓𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

2:𝑑1 ≤ 𝑑2 ……… 𝑔𝑖𝑣𝑒𝑛 

3:𝑑1 ∗ 𝑑1 ≤ 𝑑2 ∗ 𝑑1 ……… 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑏𝑜𝑡ℎ𝑠𝑖𝑑𝑒𝑠𝑏𝑦𝑑1 

4:𝑑2 ∗ 𝑑1 ≤ 𝑑2 ∗ 𝑑2 …(1&2)&𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑜𝑓𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 

5:𝑑1 ∗ 𝑑1 ≤ 𝑑2 ∗ 𝑑1 ≤ 𝑑2 ∗ 𝑑2 ……… 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔(3)𝑎𝑛𝑑(4) 

6:𝑑1 ∗ 𝑑1 ≤ 𝑑2 ∗ 𝑑2 ……… 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

7:𝑑12 ≤ 𝑑22 … . . . . .∎ 
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Furthermore, since ∀𝑑1, 𝑑2 > 0 ∶ 𝑑1 ≤ 𝑑2⇒ 𝑑12 ≤ 𝑑22, the function 𝑓(𝑑) =

𝑑2 is a monotonically increasing function for d > 0. This implies that both the Euclidean 

distance and the square of Euclidean distance formulas produce the same set of K nearest 

vectors in VSM because the comparison yields the same result. Therefore, the Score formula 

of the Euclidean distance similarity can be computed as: 

𝑠 =  (𝑠𝑡𝑎𝑡𝑠. 𝑇𝑜𝑡𝑎𝑙𝐵𝑜𝑜𝑠𝑡 − 𝑓𝑟𝑒𝑞)2 

Where s is score, 

 stats.TotalBoost is the term frequency in the query, and 

 freq is the term frequency in the matching document. 

The Score method of the Euclidean distance similarity can be implemented as shown 

in Listing 13. Notice that the Score method implementation returns a negative value. This is 

intentional because in the nearest vector search, the minimum distance has higher relevancy. 

By default, Lucene searching sorts search results by descending score value, which means the 

farthest vector appears first. So, switching the sign reverses the search relevancy score, and 

the nearest vector appears first in the search result. 

public sealed class EuclideanDistanceSimilarity : SimilarityBase 
{ 
    public override float Score(BasicStats stats, float freq, float docLen) 
    { 
        return - (stats.TotalBoost - freq) * (stats.TotalBoost - freq);     
    } 
 
    public override string ToString() 
    { 
        return "EuclideanDistanceSimilarity";            
    } 
} 

Listing 13. Implementation of Score method in Euclidean distance similarity. 

Since the square root function, 𝑓(𝑥) = √𝑥 is also a monotonically increasing function 

for all 𝑥 > 0, if we apply the square root on the score equation, it can be reduced to the 

arithmetic difference between the term frequencies as: 

𝑠 = 𝑠𝑡𝑎𝑡𝑠. 𝑇𝑜𝑡𝑎𝑙𝐵𝑜𝑜𝑠𝑡 − 𝑓𝑟𝑒𝑞 

However, this may result in negative values when the stored frequency is greater than 

the query term frequency. Therefore, the score needs to be the absolute value of the 

difference, and the modified score formula can be computed as: 
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𝑠 = |𝑠𝑡𝑎𝑡𝑠. 𝑇𝑜𝑡𝑎𝑙𝐵𝑜𝑜𝑠𝑡 − 𝑓𝑟𝑒𝑞| 

This formula is equal to the Manhattan distance formula. In the Manhattan distance 

formula, the distance between two points is the absolute difference of their cartesian 

coordinates and can be expressed as: 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞) =∑ |𝑝𝑖 − 𝑞𝑖 |

𝑛

𝑖=1

 

Where p, and q are points in n-dimensional space. 

This shows that the Euclidean distance formula is logically reduced to the Manhattan 

distance formula in finding the K nearest vectors in VSM. Similarly, the score method of the 

Manhattan distance similarity in Lucene.NET can be implemented, as shown in Listing 14.  

public sealed class ManhattanDistanceSimilarity : SimilarityBase 
{ 
    public override float Score(BasicStats stats, float freq, float docLen) 
    { 
       return - Math.Abs(stats.TotalBoost - freq); 
    } 
 
    public override string ToString() 
    { 
        return "ManhattanDistanceSimilarity"; 
    } 
} 

Listing 14. Implementation of the Score method in Manhattan distance similarity. 

Although the Euclidean and Manhattan distance formulas are logically related in 

finding the nearest K vectors in VSM, they may produce different set of K nearest vectors. 

The best similarity algorithm is chosen by running and analyzing different experiments, which 

will be discussed later in the evaluation and optimization section. 

4.3.4 Custom Searcher 

In Lucene, searching involves query parsing, term boosting, scoring, and sorting. The 

custom searcher component uses a specific searching technique. In the customized searching 

chain, the input query is provided as a single line string that contains a list of feature-value 

tokens. Then each feature-value item is added to a Boolean query as a term query. Every 

feature of the query should be considered in the document matching. This can be enforced by 

setting the search occur property to Occur.MUST if necessary. The value of each feature is 
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added as a term boost in the query and is accessed in the similarity Score method. The 

searcher uses the custom similarity class specifically implemented for the nearest vector 

search. Every vector in the VSM is computed against the query vector, and the nearest K 

vectors are returned as a search result. Partial implementation of the customized searching 

chain is shown in Listing 15. Search performance optimization will be discussed later in the 

next chapter. 

public List<NeighborVector> Search(string featureData) 
{ 
    List<NeighborVector> nearestVectors = new List<NeighborVector>(); 
 
    string[] components = featureData.Split(','); 
    string[] features = components[0].Split(' '); 
        
    var query = new BooleanQuery(); 
 
    foreach (string featureValue in features) 
    { 
        string[] featureValueComponents = featureValue.Split('|'); 
        string feature = featureValueComponents[0]; 
        int value = Convert.ToInt32(featureValueComponents[1]); 
        if (value > 0) 
        { 
            var featureQuery = new TermQuery( 
                               new Term(EngineConstants.FEATURES_NAME, feature)); 
            featureQuery.Boost = value; 
            query.Add(featureQuery, Occur.SHOULD); 
        } 
    }     
 
    TopDocs topDocs = searcher.Search(query, K); 
     
    for (int i = 0; i < K; i++) 
    { 
        Document doc = searcher.Doc(topDocs.ScoreDocs[i].Doc); 
        string label = doc.Get(EngineConstants.LABEL_NAME).ToString(); 
        string description = doc.Get(EngineConstants.DESCRIPTION_NAME).ToString(); 
        nearestVectors.Add(new NeighborVector 
        { 
            Label = label, 
            Distance = Math.Abs(topDocs.ScoreDocs[i].Score), 
            Description = description 
        }); 
    }  
 
    return nearestVectors; 
} 

Listing 15. Partial implementation of Searcher returning K nearest vectors. 
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4.4 Binary Classifier Engine 

The proposed framework incorporates a machine learning-based binary classifier 

engine primarily used to train the search engine-based threat detection engine. The binary 

classifier engine is developed using the Microsoft ML.NET, as discussed in Chapter 3. The 

binary classifier engine also serves as reinforcement for the search engine-based classifier 

when its detection confidence is low. It has two major components: the model trainer and the 

predictor. 

4.4.1 Model Trainer 

The model trainer uses preprocessed data using the ML.NET data processor 

component discussed in Section 4.1. This section explains implementation of the model 

trainer component. The model trainer goes through three steps: first, the trainer creates a data 

reader and loads the input data into a DataView object. The feature values are processed as 

vectors, and the label is processed separately, as shown in Listing 1. After the data is loaded, 

in the second step, the model trainer goes through different algorithms such as normalization 

and classification algorithms. MinMaxNormalization algorithm is used to scale down the 

feature values based on observed minimum and maximum values of the data. FastTree 

classification algorithm is selected to train the model because FastTree is a decision tree-

based classification algorithm. The literature review in Chapter 2 shows that decision tree-

based algorithms outperform other algorithms in binary classification for intrusion detection. 

Parameter selection in the FastTree algorithm is a heuristic process. The initial values, such as 

the number of decision trees, leaves, and count per leaf, are set based on the prototype project 

discussed in Chapter 3. Further parametrization and optimization will be discussed in Chapter 

5. Finally, the trained model is saved as an archive file. As of this writing, FastTree trainer 

algorithm is not in the list of retrainable algorithms in ML.NET (Microsoft, 2019g). 

Therefore, a new model needs to be trained with the updated dataset when retraining the ML-

based binary classification engine is necessary. 

public static void Train() 
{ 
    var mlContext = new MLContext(); 
 
    // Load the data 
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    var reader = mlContext.Data.CreateTextLoader( 
        columns: new TextLoader.Column[] 
        { 
            new TextLoader.Column(EngineConstants.FEATURES_NAME,  
                                  DataKind.Single, 0, 
                                  EngineConstants.FEATURES_LAST_INDEX), 
            new TextLoader.Column(EngineConstants.LABEL_NAME,  
                                  DataKind.Boolean, 
                                  EngineConstants.LABEL_INDEX) 
        }, 
        separatorChar: EngineConstants.FEATURE_DATA_SEPARATOR, 
        hasHeader: false 
    ); 
    var trainingDataset = reader.Load(AppConfigSettings.MlTrainingDataPath); 
 
    //Train the Model 
    var pipeline = mlContext.Transforms 
                            .NormalizeMinMax(EngineConstants.FEATURES_NAME) 
                            .AppendCacheCheckpoint(mlContext) 
                            .Append(mlContext.BinaryClassification.Trainers 
                                     .FastTree(numberOfLeaves: 70, 
                                               numberOfTrees: 70, 
                                               minimumExampleCountPerLeaf: 20)); 
    var model = pipeline.Fit(trainingDataset); 
 
    //Save the model 
    using (var fileStream = new FileStream(AppConfigSettings.MLModelPath,  
                                           FileMode.Create, 
                                           FileAccess.Write, FileShare.Write)) 
    { 
        mlContext.Model.Save(model, trainingDataset.Schema, fileStream); 
    }    
} 

Listing 16. ML Model Trainer implementation. 

The accuracy and performance of the trained model is measured by running the model 

evaluator method against the test data, as implemented in Listing 17. The model evaluator 

loads the trained model that was created by the model trainer. Then for each input data the 

model trainer compares the prediction result with the original label value and populates the 

binary classification metrics object. The details of the evaluation metrics will be discussed 

later in Chapter 5.  

public static EvaluationMetrics Evaluate() 
{ 
    var mlContext = new MLContext(); 
 
    // Create data reader. 
    var reader = mlContext.Data.CreateTextLoader( 
        columns: new TextLoader.Column[] 
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        { 
            new TextLoader.Column(EngineConstants.FEATURES_NAME,  
                                  DataKind.Single, 0, 
                                  EngineConstants.FEATURES_LAST_INDEX), 
            new TextLoader.Column(EngineConstants.LABEL_NAME,  
                                  DataKind.Boolean, 
                                  EngineConstants.LABEL_INDEX) 
        }, 
        separatorChar: EngineConstants.FEATURE_DATA_SEPARATOR, 
        hasHeader: false 
    ); 
 
    DataViewSchema modelSchema; 
    var trainedModel = mlContext.Model.Load(AppConfigSettings.MLModelPath,  
                                            out modelSchema); 
 
    //Evaluate the Model 
    var testingDataset = reader.Load(AppConfigSettings.MlTestingDataPath); 
 
    IDataView predictions = trainedModel.Transform(testingDataset);   
 
    CalibratedBinaryClassificationMetrics metrics = mlContext 
                                         .BinaryClassification 
                                         .Evaluate(predictions,  
                                                   EngineConstants.LABEL_NAME);    
 
 
    //Test speed of the prediction engine 
    List<(string ActualValue, string PredictedValue)> evaluationResult =  
                              new List<(string, string)>(); 
    IEnumerable<string> testDataList = File.ReadAllLines( 
                                       AppConfigSettings.MlTestingDataPath); 
    int testDataCount = testDataList.Count(); 
 
    var watch = Stopwatch.StartNew(); 
 
    var predictor = ModelPredictor.Instance;           
 
    foreach (string dataLine in testDataList)           
    { 
        string[] components = dataLine.Split(','); 
        string features = string.Join(",", components.Take(components.Count()-1)); 
        string label = components.Last(); 
 
        FeatureData featureData = new FeatureData 
        { 
            MLFeaturesString = features, 
            Features = features.Split(EngineConstants.FEATURE_DATA_SEPARATOR) 
                               .Select(val => Convert.ToSingle(val)).ToArray(), 
            Label = label 
        }; 
        MLPrediction predictionResult = predictor.Predict(featureData); 
 
        string prediction = predictionResult.PredictedLabel? "1" : "0"; 
        evaluationResult.Add((label, prediction)); 
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    }            
 
    watch.Stop(); 
    double elapsedMs = watch.Elapsed.TotalMilliseconds / testDataCount; 
 
    EvaluationMetrics evaluationMetrics = MetricsCalcualtor 
                                          .Compute(evaluationResult); 
 
    evaluationMetrics.EngineName = "ML.NET"; 
    evaluationMetrics.AUC = metrics.AreaUnderRocCurve; 
    evaluationMetrics.AUPRC = metrics.AreaUnderPrecisionRecallCurve;            
    evaluationMetrics.DetectionSpeedPerSample = elapsedMs;            
 
    return evaluationMetrics; 
} 

Listing 17. Implementation of model evaluation. 

4.4.2 Predictor 

The predictor component of the binary classification engine is used to predict the 

status of the input traffic data. The predictor uses the trained model. The input traffic features 

data extracted from the FeatureExtractor are in a text format. The input data is converted to an 

input object called FeatureData. Instead of creating one property for each feature, all features 

are combined as a single float vector, as shown in Listing 18. This reduces the complexity of 

data conversion and makes the predictor model less dependent on the input data structure. 

public class FeatureData 
{    
    public string RawFeatureString { get; set; } 
    public string SEFeaturesString { get; set; } 
    public string MLFeaturesString { get; set; } 
    public string Label { get; set; } 
    public string Description { get; set; } 
 
    [LoadColumn(0, EngineConstants.FEATURES_LAST_INDEX)] 
    [VectorType(EngineConstants.FEATURES_LAST_INDEX + 1)] 
    public float[] Features { get; set; } 
} 

Listing 18. Feature Data class. 

The Predict method in the Predictor class accepts input traffic feature data as a string 

value. The feature data then converts to a FeatureData object and is passed to the prediction 

engine. Finally, the prediction engine returns the prediction result.  As shown in Listing 19, 
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the ModelPredictor class uses a thread-safe singleton3 pattern, which means no instance of 

this class is created in the application domain during prediction; only one instance of this class 

stays in the memory and performs prediction. The reason for this is to improve performance 

because reconstructing the prediction engine at every prediction slows down the detection 

process.  

public sealed class ModelPredictor : CoreMLEngine 
{ 
    private static PredictionEngine<FeatureData, MLPrediction> predictionEngine 
    private static volatile ModelPredictor instance; 
    private static readonly object syncLock = new object(); 
    private static readonly object threadLock = new object(); 
    private static MLContext mlContext; 
    private ModelPredictor() 
    { 
         mlContext = new MLContext(); 
        var trainedModel = mlContext.Model. 
            Load(AppConfigSettings.MLModelPath, out DataViewSchema modelSchema); 
        predictionEngine = mlContext.Model 
            .CreatePredictionEngine<FeatureData, MLPrediction>(trainedModel); 
    } 
    public static ModelPredictor Instance 
    { 
        get 
        { 
            if (instance == null) 
            { 
                lock (syncLock) 
                { 
                    if (instance == null) 
                        instance = new ModelPredictor(); 
                } 
            } 
            return instance; 
        } 
    }  
 
    public MLPrediction Predict(FeatureData featureData) 
    { 
        lock (threadLock) 
        {             
            return predictionEngine.Predict(featureData); 
        } 
    } 
} 

Listing 19. Implementation of ML Model Predictor. 

 

3 https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff650316(v=pandp.10) 
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4.5 Decision Engine 

The decision engine serves as a dispatcher in the detection process. The decision 

engine first receives the input traffic data and sends it to the search engine searcher and 

collects the nearest matches. The decision engine applies the KNN algorithm on the returned 

search results to determine the status of the input traffic data. The decision engine also 

computes the confidence level of the prediction. When the confidence level is high, the 

prediction result becomes final. However, when the confidence level is low, the decision 

engine sends the input traffic data to the binary classifier engine, the binary classifier engine 

returns the final prediction, and the input traffic data is sent to the search engine for training. 

Therefore, the decision engine is responsible for continuously retraining the search engine, as 

discussed in Chapter 3 and shown in Figure 5’s activity diagram.  

4.5.1 Detection Engine 

The decision engine has a detection engine that runs several subprocesses such as 

detecting threats, sending alerts, and triggering retraining. Performance is critical for the 

detection engine, especially when analyzing live traffic. Therefore, the detection engine runs 

in a multithreaded context where operations run in parallel. In multithreaded contexts, 

multiple tasks can run asynchronously without blocking each other. The detection engine 

creates a detection process task for every input traffic. This task is separate from the main 

thread. This makes the detection engine concurrently run multiple detection process tasks. 

Each detection process task creates another threat detection task that is responsible for 

executing detection algorithms and returning prediction results. After the threat detector task 

completes, the returned prediction result passes to other child tasks such as alert sender task 

and search engine retrainer task; the child tasks run in parallel. The predictor and the searcher 

engines are developed to be thread-safe using a singleton design pattern to handle multiple 

threads at the same time. 

 

The .NET Framework supports multithreading and asynchronous programming and 

has several kinds of implementations. In .NET Framework there are three concepts of parallel 

programming: Thread, ThreadPool, and Task. Thread represents the low-level Operating 

System (OS) thread that allows programs the highest degree of control. ThreadPool is a 
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wrapper of a pool of Threads maintained by the Common Language Runtime (CLR), which 

can be used to execute Tasks, asynchronous activities, and process timers. Task provides the 

benefits of both Thread and ThreadPool. Task provides efficient and scalable use of system 

resources, provides better control, and has a rich set of APIs. In the .NET Framework, Task 

Parallel Library (TPL), which is based on the concept of Tasks and asynchronous operation, is 

the preferred API for multithreaded, asynchronous, and parallel programming (Microsoft, 

2017). Therefore, the decision engine is developed based on task-based asynchronous 

programming. The partial implementation of the detection engine component (the core of the 

decision engine) is shown in Listing 20.  

public static EngineName ACTIVE_DETECTION_ENGINE = EngineName.SEML; 
private static ConcurrentBag<Task> concurrentTasks = new ConcurrentBag<Task>(); 
public static ConcurrencyMethod CONCURRENCY_METHOD = ConcurrencyMethod.Ct; 
private static readonly object trainerThreadLock = new object(); 
 
public static async Task RunDetectionEngineWithCt() 
{    
    while (!STOP_ENGINE) 
    {                 
        if (concurrentTasks.Count > 0) 
        { 
            RUNNING = true;                   
            var firstFinishedTask = await Task.WhenAny(concurrentTasks);          
            concurrentTasks.TryTake(out firstFinishedTask); 
            await firstFinishedTask;                  
        } 
    }  
} 
public static void DetectWithCt(FeatureData featureData) 
{        
    if(!STOP_ENGINE) 
       concurrentTasks.Add(DetectTask(featureData)); 
}               
private static void Detect(FeatureData featureData) 
{ 
    DetectTask(featureData); 
} 
private static Task DetectTask(FeatureData featureData) 
{ 
    var threatDetectorTask = Task.Run(() => 
    { 
        //… Please see the implementation in Listing 21. 
    }); 
 
    return threatDetectorTask; 
} 

Listing 20. Partial implementation of the detection engine. 
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4.5.2 Decision Algorithms 

The decision engine uses two prediction models: the search engine and the ML engine. 

The search engine uses KNN as a primary classifier algorithm, and the ML binary classifier 

uses Fast Tree-based binary classifier algorithm. The prediction confidence of the search 

engine is computed as a percentage value of the number of the nearest vector labels that 

match the predicted label. When the confidence level is lower than a preset value, the feature 

data goes through the ML binary classifier. If the binary classifier returns different prediction 

results, the search engine is retrained. The value of the confidence level threshold determined 

by running different experiments will be discussed later in Chapter 5. Listing 21 shows the 

implementation of the detection method. 

private static Task DetectTask(FeatureData featureData) 
{ 
    var threatDetectorTask = Task.Run(() => 
    { 
        PredictionResult predictionResult = null; 
        var predictedLabel = string.Empty; 
        if (ACTIVE_DETECTION_ENGINE == EngineName.SE) 
           { 
               predictionResult = searcher.Predict(featureData.SEFeaturesString); 
               predictedLabel = predictionResult.Label; 
               predictionResult.EngineName = "SE"; 
           }   
        else if (ACTIVE_DETECTION_ENGINE == EngineName.SEML) 
        { 
            predictionResult = searcher.Predict(featureData.SEFeaturesString); 
            predictionResult.EngineName = "SE"; 
            predictedLabel = predictionResult.Label; 
            if (predictionResult.Confidence < GOOD_CONFIDENCE_PERCENTAGE) 
            { 
                var mlPrediction = mlPredictor.Predict(featureData); 
                predictedLabel = mlPrediction.PredictedLabel ? "1" : "0"; 
                if (predictionResult.Label != predictedLabel) 
                { 
                    predictionResult = mlPrediction; 
                    predictionResult.Confidence = mlPrediction.Probability * 100; 
                    predictionResult.EngineName = "ML";    
                    // … Call Retrainer.  
                    // Please see the implementation in Listing 
29.                
                } 
            } 
        } 
        else 
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        { 
            var mlPrediction = mlPredictor.Predict(featureData); 
            predictionResult = mlPrediction; 
            predictionResult.Confidence = mlPrediction.Probability * 100; 
            predictionResult.EngineName = "ML"; 
            predictedLabel = mlPrediction.PredictedLabel ? "1" : "0";             
        } 
 
        string[] components = featureData.RawFeatureString.Split(','); 
        predictionResult.SourceIp = components[0]; 
        predictionResult.SourcePort = components[1]; 
        predictionResult.DestinationIp = components[2]; 
        predictionResult.DestinationPort = components[3]; 
        predictionResult.Protocol = components[4]; 
        predictionResult.TimeStamp = DateTime.Now.ToString();  
        predictionResult.FlowDuration = components[5]; 
        predictionResult.TotalForwardPackets = components[6]; 
        predictionResult.TotalBackwardPackets = components[7]; 
        predictionResult.TotalForwardPacketsLength = components[8]; 
        predictionResult.TotalBackwardPacketsLength = components[9]; 
        predictionResult.Label = predictedLabel; 
 
        SendAlert(predictionResult); 
    }); 
 
    return threatDetectorTask; 
} 

Listing 21. Implementation of threat detection method. 

When the search engine retrainer method is called, the input feature data along with 

the prediction label is collected to retrain the search engine. The search engine retraining is 

processed by updating the search engine index. Unlike the ML binary classification model, 

the search engine can be trained without recreating the index. This is one benefit of the search 

engine model. However, the updated index is not available as soon as the index is updated 

because the searcher is implemented using the singleton pattern, which does not release 

previous indexes stored in the memory for performance reasons. This process will be 

discussed in detail later in Chapter 5 section 5.4.1 Continuous Training.   

4.6 Alert Service 

Although intrusion detection systems monitor network traffic for suspicious activities, 

they may not be capable of stopping the activity from further propagation. Usually intrusion 

detection systems issue alerts when potentially malicious activities or anomalies are detected 
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based on their configurations. Alerts could be in the form of emails, texts, log files, 

dashboards, etc.  

The alert service in the proposed framework is implemented by extending the log4net 

library. Log4net is a high-performance logging library developed based on the Apache log4j 

logging library, which has been in development since 1996. Log4net supports multiple 

logging targets such as the Windows console screen, trace pages, log files, Windows Event 

Log, Windows Messenger service, syslog service (Linux), email address (SMTP services), 

memory buffer, etc. (Apache Software Foundation, 2017). Log4net uses a configuration file 

to set up logging targets, formatting, and other settings. Listing 22 shows the initial setup of 

log4net, which reads settings from the log4net config file. The config file contains different 

logging targets and settings, which means the custom configured logger can send email and 

text messages, as well as trigger alerts to connected dashboards. 

public class AlertLogManager 
{ 
    private static readonly log4net.ILog log = log4net.LogManager 
                                              .GetLogger(typeof(AlertLogManager)); 
    private static bool isLoggerConfigured; 
    public static log4net.ILog Log 
    { 
        get 
        { 
            if (!isLoggerConfigured) 
            { 
                XmlDocument log4netConfig = new XmlDocument(); 
                log4netConfig.Load(File.OpenRead("log4net.config")); 
                var repository = log4net.LogManager 
                               .CreateRepository(Assembly.GetEntryAssembly(), 
                                typeof(log4net.Repository.Hierarchy.Hierarchy)); 
                log4net.Config.XmlConfigurator.Configure(repository, 
                                              log4netConfig["log4net"]); 
                isLoggerConfigured = true; 
            } 
            return log; 
        } 
    } 
} 

Listing 22. Log4net logger instance configuration. 

In the customized logger, when a threat is detected, the alert service writes the alert 

message in a log file and in a memory buffer through the log4net MemoryAppender 
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component. The log4net MemoryAppender class has been extended to handle a custom event 

when a new log message is added to the log, as shown in Listing 23.  

 

 public class AlertLogMemoryAppender : MemoryAppender 
 { 
     public event EventHandler LogUpdated; 
 
     protected override void Append(LoggingEvent loggingEvent) 
     {             
         base.Append(loggingEvent);             
         LogUpdated?.Invoke(this, new EventArgs()); 
     } 
 } 

Listing 23. Custom MemoryAppender implementation. 

There is a separate class called AlertLogWatcher that monitors the activity of the 

custom MemoryAppender class, called AlertLogMemoryAppender. This class intercepts the 

newly appended event by handling the custom LogUpdated event of the MemoryAppender 

class, as shown in Listing 24. 

public class AlertLogWatcher 
{ 
    private AlertLogMemoryAppender memoryAppender; 
    public event EventHandler LogUpdated; 
    public string LogContent { get; private set; } 
 
    public AlertLogWatcher() 
    {           
        memoryAppender = (AlertLogMemoryAppender)Array.Find( 
               AlertLogManager.Log.Logger.Repository.GetAppenders(), 
              (appender) => appender.Name.Equals("AlertLogMemoryAppender"));  
         
        LogContent = GetEvents(memoryAppender);             
        memoryAppender.LogUpdated += HandleLogUpdate; 
    } 
 
    public void HandleLogUpdate(object sender, EventArgs e) 
    { 
        LogContent = GetEvents(memoryAppender); 
        LogUpdated?.Invoke(this, new EventArgs()); 
    }        
 
    public string GetEvents(AlertLogMemoryAppender memoryAppender) 
    { 
        StringBuilder output = new StringBuilder();            
        LoggingEvent[] logEvents = memoryAppender.GetEvents();            
        if (logEvents != null && logEvents.Length > 0) 
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        {                 
            memoryAppender.Clear();                
            foreach (LoggingEvent ev in logEvents) 
            {                 
                output.Append(ev.RenderedMessage); 
            } 
        }           
        return output.ToString(); 
    } 
} 

Listing 24. Implementation of AlertLogWatcher class. 

The main purpose of the AlertLogWatcher class is to expose the newly added event to 

external services, such as the monitoring application and dashboards. By using the 

AlertLogWatcher class, external services are notified in real time when a new log event is 

triggered. This will be discussed in the next section. 

4.7 Monitor Application 

To block detected malicious activities, automated systems such as Intrusion 

Prevention Systems (IPS) or manual activities may be required. Discussing IPS is beyond the 

scope of this research; however, in order to demonstrate the validity of the proposed 

framework, a simple monitor application that shows the detection activities and provides 

control services has been developed. The monitor application is developed using Web 

technologies such as JavaScript, HTML, and CSS so that it can be remotely accessed through 

HTTP on different platforms such as Desktops, Tablets, and Mobile devices.  

The monitor application uses WebSocket technology for real-time communication 

with the detection engine. According to the Internet Engineering Task Force (IETF, 2011), 

WebSocket is a protocol that enables two-way communication channels over TCP 

connections that do not rely on opening multiple HTTP connections. WebSocket technology 

is used in real-time communication apps such as chat, dashboard, and stock ticker apps. In 

.NET Framework, WebSocket can be implemented using different libraries such as SignalR. 

The ASP.NET Core SignalR is an opensource library that supports WebSocket as a real-time 

web functionality to applications. SignalR applies “server push” functionality using Remote 

Procedure Calls (RPC) rather than the request-response model. SignalIR uses a high-level 

pipeline called a hub, which allows method calls between the client and server 
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communication. WebSocket is fully supported in Microsoft Internet Explorer, Google 

Chrome, and Mozilla Firefox and partially supported in Opera and Safari. When the client 

browser does not support WebSocket, SignalR falls back to other transports such as Server-

Sent Events, ForeverFrame, and Ajax Long Polling (Microsoft, 2014, 2018). 

The monitor application is an ASP.NET Core application. The application serves as a 

dashboard and a control board to the threat detection system. The application can send 

commands such as to restart and stop services and enables the system administrators to 

control the entire detection system using browsers.  A high-level process flow diagram of the 

monitor application is shown in Figure 10. 

 

Figure 10. Process flow diagram of the monitor application. 

The service hub class in the ASP.NET Core application has an instance of the 

AlertLogWatcher class, as shown in Listing 25. When an alert is triggered, the 

AlertLogWatcher_Updated method sends the alert message to all connected clients of the 

monitor application by invoking their ReceiveAlert function. 

public class ServiceHub : Hub 
{ 
    private AlertLogWatcher alertLogWatcher; 
    protected IHubContext<ServiceHub> _context; 
    public ServiceHub(IHubContext<ServiceHub> context) 
    { 
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        if(alertLogWatcher == null) 
        { 
            alertLogWatcher = new AlertLogWatcher(); 
            alertLogWatcher.LogUpdated += AlertLogWatcher_Updated; 
            EngineService.StartDetectionEngineLiveTraffic( 
                        activeDetectionEngine: EngineName.SEML); 
            //EngineService.StartDetectionEngineSimulation(); 
        } 
        _context = context; 
         
    } 
 
    private async void AlertLogWatcher_Updated(object sender, EventArgs e) 
    { 
        var connectedClients = Startup.hubContext.Clients; 
        if (connectedClients != null) 
        { 
            string msg = alertLogWatcher.LogContent; 
            await connectedClients.All.SendAsync("ReceiveAlert", msg); 
        } 
    }        
} 

Listing 25. Partial implementation of SignalR Service Hub. 

In this context, clients are user browsers. The monitor application can be hosted in a 

web server, so that clients can access it through a URL. On the first page load event, the 

connected client makes a call to the service hub through the hub URL. Once the connection is 

established, the client can send messages to, and receive messages from, the server in real 

time through the JavaScript SignalR component, as shown in Listing 26. 

$(document).ready(function () { 
    adjustResultLayout(); 
 
    var connection = new signalR.HubConnectionBuilder() 
        .withUrl("/service-hub").build(); 
 
    connection.on("ReceiveAlert", function (alert) { 
        displayAlert(alert); 
    }); 
 
    connection.start().then(function () { 
    }).catch(function (err) { 
        return console.error(err.toString()); 
    }); 
     
}); 

Listing 26. Partial implementation of client-side service. 
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4.8 Summary 

This chapter discussed implementation of algorithms and components for the proposed 

cyber threat detection framework. The main components of the framework are the data 

processor, the two core detection engines—the search engine and ML engine—the decision 

engine, alert service, and monitor application. Each component is designed and developed to 

be loosely coupled to one another. The search engine customization involved the introduction 

of new similarity algorithms and the customization of default components of Lucene such as 

Analyzers, Tokenizers, and the Indexing process chain. Implementation of the ML.NET-

based binary classifier engine is easier than the search engine customization. The decision 

engine is multithreaded to speed up the detection process. When an attack is detected, the alert 

service records the event in a multitargeted logger service. The detection system has a monitor 

application subscribed to the logger service to watch alerts. If alerts are pushed, the monitor 

application notifies connected clients in real time. The real-time communication of the client 

and server is implemented using WebSocket and SignalR library. In the next chapter we will 

discuss the evaluation, optimization approaches, and validation of the developed framework.    

This concludes Chapter 4. System Development. This chapter discussed 

implementation of the new framework and its components as designed in Chapter 3. This 

chapter involved mathematical analysis and the development of algorithms and components. 
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CHAPTER 5 

CASE STUDY 

Chapter 4 provided implementation of the core framework and its components. Each 

component was tested for its basic functionality during development. This chapter discusses 

several additional test cases such as performance, detection accuracy, scalability, load testing, 

and overall system validation. Setting up evaluation metrics, optimizing techniques, empirical 

analysis and performance results of the framework are also discussed in this chapter. 

5.1. Initial Evaluation 

According to Microsoft documentation (Microsoft, 2019e), metrics for the binary 

classification model include accuracy, precision, recall, Area Under the Curve (AUC), Area 

Under the Curve of a Precision Recall Curve (AUCPR), and F1-Score. In general, the 

performance of an IDS is evaluated in terms of detection accuracy and rate. Detection 

accuracy can be further analyzed by positive prediction and negative prediction rates based on 

the context of the problem. 

5.1.1. Evaluation Metrics 

Definition: In the context of this model evaluation, an attack instance is treated as a 

positive class, and a benign instance is treated as a negative class.  

True Positive (TP): A prediction outcome where the model correctly predicts the 

positive class (attack class). It is a measure of positive (attack) instances detected accurately. 

False Positive (FP): A prediction outcome where the model incorrectly predicts the 

positive class. It is a measure of negative (benign) instances detected as positive (attack). 

True Negative (TN): A prediction outcome where the model correctly predicts the 

negative class (benign class). It is the measure of negative (benign) instances detected 

accurately. 

False Negative (FN): A prediction outcome where the model incorrectly predicts the 

negative class. It is a measure of positive (attack) instances detected as negative (benign). 
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Accuracy (ACC): The percentage of total number of instances correctly classified. It 

is the proportion of the predictions of the model got right. The closer the accuracy is to 100% 

the better. A 100% accuracy, however, could indicate issues such as label leakage, model 

overfitting, or testing with the training data. An unbalanced or very small amount of test data 

could make the accuracy approach the extremes of 0 or 100% (Microsoft, 2019e). 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision (Pr): The proportion of correctly predicted positive (attack) classes to the 

total number of instances predicted as positive (attack). 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (Rc): The proportion of actual positives (attacks) predicted correctly to the 

total number of correctly predicted positives or incorrectly predicted negatives. Recall is also 

called the True Positive Rate (TPR). 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False Positive Rate (FPR): The measure of the proportion of negative (benign) 

instances that are correctly predicted. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

F1-Score (F1): The harmonic mean of the Precision and Recall. It indicates the 

balance between the Precision and Recall. 

𝐹1 =
2 ∗ 𝑇𝑃𝑅 ∗ 𝑃𝑟

𝑃𝑟 + 𝑇𝑃𝑅
 

Receiver Operating Characteristic (ROC) Curve: A graph that shows the 

performance of a binary classification model at all classification thresholds. Figure 11 shows 

the ROC curve. It plots the TPR or Recall versus FPR. As the ROC indicates, lowering the 

classification threshold makes the model classify more positives. 
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Figure 11. ROC curve. 

Area Under the ROC Curve (AUC): The measure of the area under the curve 

created by sweeping the True Positive Rate or Recall and the False Positive Rate. For 

acceptable models, AUC should be greater than 0.50. The closer the AUC is to 1.0, the better.  

If we let x be FPR and TPR be f(x), the area of the region under the curve can be 

calculated as the integral of f(x) by dx. 

𝐴𝑟𝑒𝑎 = ∫ 𝑓(𝑥)𝑑𝑥
1

0

 

⇒ 𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝑇𝑃𝑅)

1

0

 

The ML.NET documentation defines AUC as the probability that the binary classifier 

ranks a randomly chosen positive instance higher than a randomly chosen negative instance, 

and that AUC has been implemented accordingly in the ML.NET source code.4 

Area Under the Curve of Precision Recall Curve (AUCPR): The measure of the 

success of prediction when the classes are very imbalanced. An AUCPR value closer to 1.00 

 

4 https://github.com/dotnet/machinelearning/blob/610ffcb67083c2e5e6e1a14884ba24b1da0384c7/ 

src/Microsoft.ML.Data/Evaluators/BinaryClassifierEvaluator.cs 
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shows that the binary classifier is returning high-precision accurate results, as well as 

returning the majority of all positive results (high recall).  

Average Detection Speed Per Sample: The average time the prediction engine takes 

to predict the class of a single instance. Speed depends on several factors such as the testing 

computer performance and its configurations.  

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑒𝑒𝑑 =
𝑇𝑜𝑡𝑎𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

Implementation of algebraic metrics for both the search engine and binary classifier 

engine are shown in Listing 27. 

public class MetricsCalcualtor 
{ 
    public static EvaluationMetrics Compute(IEnumerable<(string ActualValue,  
                                    string PredictedValue)> evaluationResult) 
    {            
        double tp = evaluationResult.Where(item => (item.PredictedValue == "1")  
                                           && item.ActualValue == "1").Count(); 
        double fp = evaluationResult.Where(item => (item.PredictedValue == "1")  
                                           && item.ActualValue == "0").Count(); 
        double tn = evaluationResult.Where(item => (item.PredictedValue == "0")  
                                           && item.ActualValue == "0").Count(); 
        double fn = evaluationResult.Where(item => (item.PredictedValue == "0")  
                                           && item.ActualValue == "1").Count(); 
 
        double acc = (tp + tn) / (tp + tn + fp + fn); 
        double pr = tp / (tp + fp); 
        double tpr = tp / (tp + fn); 
        double fpr = fp / (fp + tn); 
        double f1Score = (2 * tpr * pr) / (pr + tpr); 
 
        EvaluationMetrics metrics = new EvaluationMetrics 
        { 
            Accuracy = acc, 
            Precision = pr, 
            TPR = tpr, 
            FPR = fpr, 
            F1Score = f1Score                  
        }; 
 
        return metrics; 
    } 
} 

Listing 27. Implementation of evaluation metrics. 
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5.1.2. Model Evaluation 

For the initial evaluation, both the search engine and the ML binary classification 

models are trained with the same dataset. A total of 129,924 training instances and 55,253 

testing instances, which is one third of the training instances, are used for building and 

evaluating the models. The datasets contain different kinds of network attacks such as 

DoS/DDoS, brute force Cross Site Scripting (XSS), SQL injection, port scan, infiltration, and 

FTP/SSH patator.5 The class balance for both the training and testing datasets is one to one, 

which means the number of attack and benign instances are equal in each dataset. Initial 

parameters of the selected algorithms to train the initial models are shown in Table 7. These 

parameters are set based on the prototype project and theoretical assumptions. 

 

Table 7. Initial Model Parameters 

Model Algorithms and Parameters 

Search Engine Classification Algorithm  KNN 

 Similarity Algorithm Squared Euclidean Distance 

 Number of Neighbors (K) 69 

 Vector Dimension Fixed 

ML.NET Classification Algorithm FastTree (Decision Tree) 

 Number of Trees 50 

 Number of Leaves 50 

 Sample Count Per Leaf 20 

 

Table 8 shows the initial model evaluation result before applying any optimization. A 

Windows 10 developer workstation with 16GB RAM and 3.1GHz processor speed was used 

in this evaluation. The detection time per instance is the amount of time spent in milliseconds 

to process a single traffic instance in a synchronous operation. Unlike the other evaluation 

metrics, the detection time changes at every test run. The listed detection speed is the average 

value. 

 

5 Patator is a Python script used to make multiple brute force attacks. https://en.kali.tools/?p=147  
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Table 8. Initial Evaluation of Classification Models 

Metrics Detection Models 

Search Engine ML.NET 

Accuracy 0.86 0.89 

Precision 0.91 0.89  

True Positive Rate (Recall) 0.81 0.87 

False Positive Rate (FPR) 0.09 0.10 

F1 Score 0.86 0.88 

Detection Time Per Instance (ms) 531.52 145.68 

 

The initial evaluation result shows that the search engine is slower than the ML.NET 

model. As the search engine is using VSM, this is expected because each vector in the VSM 

needs to be visited to compute distances from the input vector. Detection accuracy and speed 

can be improved by applying different optimization techniques, which will be discussed in the 

next section. 

5.2. Optimization 

The search engine uses the VSM model and KNN algorithm for binary classification. 

The time complexity (big O notation) O of the model to detect a single instance of traffic can 

be expressed as:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑛 ∗ 𝑓) ⇒ 𝑂(𝑛) 

Where n is the number of training instances (number of vectors in the VSM), and f is 

the number of features of each instance.   

The time complexity of the VSM model can be optimized by either reducing the 

number of visited vectors n or reducing the number of less important features f. 

5.2.1 Feature Reduction 

Feature reduction is a process of selecting the most important features by excluding 

the less important features. Feature reduction reduces noise and training time, increasing the 
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performance of the model. In machine learning, the internals of feature processing are less 

clear, and the models are often considered black boxes. The most important features can be 

selected by randomly shuffling data and calculating the delta on the performance metrics; the 

larger the delta is, the more the important the feature (Breiman, 2001). ML.NET classification 

and regression models provide feature details such as feature weight and change in metrics 

using Permutation Feature Importance (PFI) technique (Microsoft, 2019f). For the binary 

classification model, PFI computes all possible classification evaluation metrics for each 

feature by running a given number of iterations called the permutation count.  

The PFI runs after training the first model. To obtain the importance of each feature, 

thirty permutations have been performed and each evaluation metric was collected as shown 

in the implementation Listing 28. Then the result was ordered by change in performance.  

public static List<string> ComputePermutationFeatureImportance() 
{ 
    var mlContext = new MLContext(); 
 
    // Load the data 
    var reader = mlContext.Data.CreateTextLoader( 
        columns: new TextLoader.Column[] 
        { 
            new TextLoader.Column(EngineConstants.FEATURES_NAME,  
                                  DataKind.Single, 0, 
                                  EngineConstants.FEATURES_LAST_INDEX), 
            new TextLoader.Column(EngineConstants.LABEL_NAME,  
                                  DataKind.Boolean, 
                                  EngineConstants.LABEL_INDEX) 
        }, 
        separatorChar: EngineConstants.FEATURE_DATA_SEPARATOR, 
        hasHeader: false 
    ); 
    var trainingDataset = reader.Load(AppConfigSettings.MlTrainingDataPath); 
 
    //Train the Model 
    var pipeline = mlContext.Transforms.NormalizeMinMax( 
                                        EngineConstants.FEATURES_NAME) 
                            .AppendCacheCheckpoint(mlContext) 
                            .Append(mlContext.BinaryClassification.Trainers 
                                    .FastTree(numberOfLeaves: 50, 
                                          numberOfTrees: 50, 
                                          minimumExampleCountPerLeaf: 20)); 
    var model = pipeline.Fit(trainingDataset); 
               
    var transformedData = model.Transform(trainingDataset); 
    var linearPredictor = model.LastTransformer; 
    
    var permutationMetrics = mlContext.BinaryClassification 
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        .PermutationFeatureImportance(linearPredictor, transformedData, 
        permutationCount: 30); 
     
    var featureDetails = permutationMetrics.Select((metrics, index) => new 
        { 
            Index = index, 
            AUC = metrics.AreaUnderRocCurve, 
            metrics.Accuracy, 
            metrics.F1Score, 
            Precision = metrics.PositivePrecision, 
            TPR = metrics.PositiveRecall, 
            FPR = metrics.NegativeRecall 
        }).OrderByDescending(feature => Math.Abs(feature.AUC.Mean)) 
          .ThenByDescending(feature => Math.Abs(feature.Accuracy.Mean)) 
          .ThenByDescending(feature => Math.Abs(feature.F1Score.Mean)) 
          .ThenByDescending(feature => Math.Abs(feature.Precision.Mean)) 
          .ThenByDescending(feature => Math.Abs(feature.TPR.Mean)) 
          .ThenByDescending(feature => Math.Abs(feature.FPR.Mean)); 
 
    string featureDetailsString = "Feature\tWeight\tAUC\tAccuracy\tF1Score" + 
                                  "\tPrecison\tTPR\tFPR\tAUC-Confidence"; 
    List<string> featuresDetailList = new List<string>(); 
    featuresDetailList.Add(featureDetailsString); 
    Console.WriteLine(featureDetailsString); 
 
    VBuffer<float> featureWeights = new VBuffer<float>(); 
    linearPredictor.Model.SubModel.GetFeatureWeights(ref featureWeights); 
    foreach (var fd in featureDetails) 
    { 
        string detailsString = string.Format("{0}\t{1:0.00}\t{2:G4}\t{3:G4}" + 
            "\t{4:G4}\t{5:G4}\t{6:G4}\t{7:G4}\t{8:G4}", 
             fd.Index, 
             featureWeights.GetValues()[fd.Index], 
             Math.Abs(fd.AUC.Mean), 
             Math.Abs(fd.Accuracy.Mean), 
             Math.Abs(fd.F1Score.Mean), 
             Math.Abs(fd.Precision.Mean), 
             Math.Abs(fd.TPR.Mean), 
             Math.Abs(fd.FPR.Mean), 
             1.96 * fd.AUC.StandardError); 
        featuresDetailList.Add(detailsString); 
        Console.WriteLine(detailsString);                 
    } 
    File.WriteAllLines(AppConfigSettings.FeaturesImportancePath,  
                        featuresDetailList); 
    return featuresDetailList; 
} 

Listing 28. Partial implementation of Permutation Feature Importance (PFI). 

There is a total of 78 features used in each instance of the initial training dataset. 

These features were generated from PCAP files using CICFlowMeter. Although 

CICFlowMeter generates over 80 features, the PFI result shows that eighteen features have no 
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impact on any of the evaluation metrics. The complete result of features and importance 

metrics is listed in Appendix B: List of Features. The eighteen least important features have 

been removed from the dataset, and the models are retrained with the remaining 60 features. 

The evaluation result in Table 9 clearly shows that accuracy was not reduced because the 

removed features are not important. As a result of feature reduction, the search engine 

detection time was improved by 186 milliseconds on average per detection, and the overall 

performance of ML.NET model was also improved. 

Table 9. Model Evaluation Metrics Using Important Features 

Metrics Detection Models 

Search Engine ML.NET 

Accuracy 0.86 0.92 

Precision 0.91 0.96  

True Positive Rate (Recall) 0.81 0.87 

False Positive Rate (FPR) 0.09 0.04 

F1 Score 0.86 0.91 

Detection Time Per Instance (ms) 345.08 117.70 

 

5.2.2 Euclidean Distance versus Manhattan Distance 

In Chapter 4, we discussed similarity algorithms, so we have seen that the square of 

Euclidean distance can be logically reduced to Manhattan distance in searching for nearest 

neighbors. This means that both the squared Euclidean distance and the Manhattan distance 

formulas yield the same set of nearest vectors in Lucene VSM because the square and the 

square root functions are monotonically increasing functions on real numbers greater or equal 

to one. In this section we will verify the logic by comparing the performance difference 

between the two similarity algorithms as shown in Table 10.  
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Table 10. Euclidean Distance versus Manhattan Distance 

Metrics Search Engine Model Algorithms 

Euclidean Distance Manhattan Distance 

Accuracy 0.86 0.86 

Precision 0.91 0.91  

True Positive Rate (Recall) 0.81 0.81 

False Positive Rate (FPR) 0.09 0.09 

F1 Score 0.86 0.86 

Detection Time Per Instance (ms) 345.08 336.19 

 Both the Euclidean distance and the Manhattan distance similarities yielded the same 

set of nearest vectors and detection performance except the Manhattan distance is little faster 

than the Euclidean distance. This result verifies that using the square of Euclidean distance 

and Manhattan distance in Lucene VSM yields the same accuracy in the KNN algorithm. 

5.2.3 Changing the Number of Nearest Vectors in KNN Algorithm 

As discussed in Chapters 2 and 4, the KNN algorithm depends on the number of 

nearest neighbors K. Varying the value of K impacts the performance, and finding the optimal 

value of K is a heuristic process. Usually the simple approach to choose the value of K for 

binary classification is to take an odd integer closer to the square root of the total training 

dataset (Chio & Freeman, 2018). Table 11 shows the accuracy variation of ten randomly 

chosen values of 𝐾 ∈ [3, √𝑛]; where √𝑛 ≅ 359. The initial value of K was 69; changing K to 

29 slightly improves the performance because it reduces the number of nearest vectors, and 

there is no performance difference when switching between these values. 

Table 11. Number of Nearest Vectors versus Accuracy 

K 3 9 19 29 43 69 89 119 229 359 

Accuracy (%) 85 83 84 86 86 86 85 82 82 83 
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5.2.4 Variable Vector Dimension 

In the initial training, all features with zero values were boosted to 1 to keep all the 

stored vectors at the same dimension. Documents in the search engine can have variable term 

lengths, so the corresponding term-frequency vectors can have variable dimensions. The 

training data has 60 features, but all these features may not have non-zero values all the time.  

In this process the search engine model was retrained by excluding the zero values, which 

creates vectors with variable dimensions in Lucene VSM. This improved both the detection 

accuracy and the speed, as shown in Table 12. The training used Manhattan distance 

similarity and 29 nearest vectors (K=29). 

Table 12. Performance of Variable versus Fixed Dimension Vectors 

Metrics VSM Vector Dimension 

Variable Dimension Fixed Dimension 

Accuracy 0.89 0.86 

Precision 0.93 0.91  

True Positive Rate (Recall) 0.84 0.81 

False Positive Rate (FPR) 0.06 0.09 

F1 Score 0.88 0.86 

Detection Time Per Instance (ms) 195.83 336.19 

 

5.2.5 ML.NET Binary Classifier Optimization 

The ML.NET binary classifier engine uses FastTree algorithm, which is a decision 

tree-based algorithm. This algorithm takes three parameters: the number of trees, leaves, and 

sample counts per leaf. Changing these parameters yields different metrics. The data 

normalization algorithm also impacts the accuracy of the model. After running several 

combinations of the parameter values and normalization algorithms, using the min-max 

normalization algorithm and setting the number of decision trees to 70 with 70 leaves per tree 

and 20 minimum sample count per leaf yielded the optimal result, as shown in Table 13. 
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Table 13. Optimized ML.NET Binary Classifier Model 

Metrics Value 

Accuracy 0.92 

Precision 0.95 

True Positive Rate (Recall) 0.87 

False Positive Rate (FPR) 0.04 

F1 Score 0.91 

AUC 0.98 

AUCPR 0.97 

Detection Time Per Instance (ms) 117.70 

5.2.6 Class Balancing 

The model training so far used equally partitioned numbers of attack and benign 

instances. In real cases, most traffic instances in a network are not attacks. With this logic in 

mind, we increased the number of benign instances by one third in the training dataset without 

changing the number of attack instances. This made the attack-benign ratio 2:3. The new 

model result shows improvement on the detection accuracy, precision, and FPR. However, 

both models were slightly reduced in F1Score, TPR, and detection speed (for the search 

engine), as shown in Table 14. 

Table 14. Detection Performance with 2:3 Attack-Benign Ratio Training Dataset 

Metrics Detection Models 

Search Engine ML.NET 

Accuracy 0.92 0.94 

Precision 0.96 0.97  

True Positive Rate (Recall) 0.80 0.84 

False Positive Rate (FPR) 0.02 0.02 

F1 Score 0.87 0.90 

Detection Time Per Instance (ms) 275.95 117.70 
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5.3 Final Evaluation 

Algorithm selection and parameter optimization depend on the type of the dataset used 

for training and testing. Table 15 shows the optimized parameters and algorithms for each 

detection model. Table 16 also shows the final evaluation results of the models.  

Table 15. Optimized Model Parameters 

Model Algorithms and Parameters 

Search Engine Classification Algorithm KNN 

 Similarity Algorithm Manhattan Distance 

 Number of Neighbors (K) 29 

ML.NET Classification Algorithm FastTree (Decision Tree) 

 Number of Trees 70 

 Number of Leaves 70 

 Sample Count Per Leaf 30 

 

Table 16. Final Model Evaluation Result 

Metrics Detection Models 

Search Engine ML.NET 

Accuracy 0.92 0.94 

Precision 0.96 0.97  

True Positive Rate (Recall) 0.80 0.84 

False Positive Rate (FPR) 0.02 0.02 

F1 Score 0.87 0.90 

Detection Time Per Instance (ms) 275.95 117.70 

 

The evaluation and optimization techniques used so far show that the models can be 

further tuned up by changing techniques and parameter values based on business 

requirements. One technique or parameter may not improve all the metrics in all instances. 

For example, class unbalancing improves accuracy and precision but reduces the TPR and F1 

Score. Although the overall detection accuracy of the search engine and the ML.NET are 



86 

 

closer to each other, ML.NET is faster than the search engine when processing a single traffic 

instance in a synchronous operation. However, the detection engine runs asynchronously, 

which means that several detection operations can run in parallel without blocking each other. 

A new traffic instance runs into the detection engine as soon as it arrives, without waiting for 

the previous instance to complete. When running the engine with asynchronous parallel tasks, 

the search engine takes an average of 87 milliseconds to process a single traffic instance, 

whereas ML.NET takes 0.03 milliseconds. 

5.4 System Testing 

The threat detection framework incorporates components such as a data processor, 

detection engine, alert service, and dashboard application. In this section, system testing 

addresses the integration of these components in a complete system environment in different 

scenarios. Since feature extraction is beyond the scope of this research, a prelabeled flood of 

traffic instances was used to simulate high volume network traffic. About 10,000 traffic 

instances continuously passed to a running detection engine using a loop code. The detection 

engine uses the search engine as the primary detection, and the ML engine backs it up when 

the search engine detection confidence is low. Figure 12 shows the dashboard application 

with the detection results. Unlike the ML engine, the search engine can predict the details of 

the attack such as the type of the attack. The description column shows the probability of the 

attacks by type. For instance, as shown in Figure 12, the expanded description cell shows the 

probability of possible attack types, which means out of selected K nearest vectors, 17% of 

the vectors are labeled benign, and the remaining 83% are labeled as attacks. Out of 83% of 

attack labeled vectors, 87.5% are labeled as DOS Slowloris, 8.3% are labeled as FTP Patator, 

and 4.2% are labeled as port scan. 
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Figure 12. Detection framework dashboard. 

5.4.1 Continuous Training 

As previously discussed in Chapters 3 and 4, when search engine detection confidence 

is below some configurable value, the ML engine takes the prediction task and the search 

engine learns the incident. In this research, the default confidence value is set to be 95, which 

means a prediction score of less than 95% is considered low. When the detection confidence 

of the search engine is low, the decision engine uses the ML model to process the traffic 

feature. If the ML model predicts a different result than the search engine does, the decision 

engine takes the prediction result of the ML model, and the search engine learns the incident 

in a separate task, as shown in Listing 29.  

During the retraining process, the input traffic data has the result predicted from the 

ML model as a label. The search engine model gets updated with the new training data. This 

changes the future prediction for similar traffic data because the nearest vectors set may 

include the newly added vector. Therefore, continuous training makes the search engine grow 

smarter as it increases the search engine prediction confidence. 
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private static Task DetectTask(FeatureData featureData) 
{ 
    var threatDetectorTask = Task.Run(() => 
    { 
        PredictionResult predictionResult = null; 
        var predictedLabel = string.Empty; 
        if (ACTIVE_DETECTION_ENGINE == EngineName.SE) 
            { 
               //… 
            }    
     else if (ACTIVE_DETECTION_ENGINE == EngineName.SEML) 
        { 
            predictionResult = searcher.Predict(featureData.SEFeaturesString); 
            predictionResult.EngineName = "SE"; 
            predictedLabel = predictionResult.Label; 
            if (predictionResult.Confidence < GOOD_CONFIDENCE_PERCENTAGE) 
            { 
                var mlPrediction = mlPredictor.Predict(featureData); 
                predictedLabel = mlPrediction.PredictedLabel ? "1" : "0"; 
                if (predictionResult.Label != predictedLabel) 
                { 
                    predictionResult = mlPrediction; 
                    predictionResult.Confidence = mlPrediction.Probability * 100; 
                    predictionResult.EngineName = "ML"; 
 
                    var searchEngineRetrainerTask = Task.Factory.StartNew(() => 
                           { 
                               ReTrainSearchEngine(featureData.SEFeaturesString,  
                                   predictedLabel); 
                           }); 
                } 
            } 
        } 
        else 
        { 
            var mlPrediction = mlPredictor.Predict(featureData); 
            predictionResult = mlPrediction; 
            predictionResult.Confidence = mlPrediction.Probability * 100; 
            predictionResult.EngineName = "ML"; 
            predictedLabel = mlPrediction.PredictedLabel ? "1" : "0"; 
        } 
 
        //… 
 
        SendAlert(predictionResult); 
    }); 
 
    return threatDetectorTask; 
} 

Listing 29. Partial implementation of threat detection task. 
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The searcher component of the search engine is managed in a singleton instance. After 

the retraining task is completed, the singleton instance should be updated to include the newly 

trained model. Starting the searcher component takes a few seconds on average. To mitigate 

this issue, when the retraining task starts, the decision engine uses the ML engine until the 

training is complete and the model is refreshed, as shown in Listing 30. 

private static void ReTrainSearchEngine(string seFeatureString,  
                                        string predictedLabel) 
{         
    lock (trainerThreadLock) 
    {                
        ACTIVE_DETECTION_ENGINE = EngineName.ML;  
 
        string labelDescription = "benign"; 
        if (predictedLabel == "1") 
            labelDescription = "attack"; //ML BC cannot predict the attack type 
        string featureData = seFeatureString + "," + predictedLabel + "|" +  
                             labelDescription; 
        var indexer = new Indexer(); 
        indexer.UpdateIndex(featureData); 
        
        Searcher.ResetInstance(); 
        searcher = Searcher.Instance; //restart searcher 
       
        ACTIVE_DETECTION_ENGINE = EngineName.SEML; 
    } 
} 

Listing 30. Implementation of search engine retraining. 

5.4.2 Enterprise Scale Testing 

In this section we will discuss the performance of the detection engine with respect to 

enterprise testing metrics. Table 17 shows the Visual Studio diagnostic tools results, such as 

CPU, memory usage, and system stability, while the detection engine is processing 

approximately 10,000 simulated flood of traffic instances being passed to the detection engine 

at a time.  
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Table 17. Load Testing Performance Comparison Table 

Search Engine ML.NET 

 

 

Detection Time Per Instance: 87ms Detection Time Per Instance: 0.03ms 

Exceptions: 0 Exceptions: 0 

Crashes: 0 Crashes: 0 

 

Load Testing: As the performance comparison table shows, the search engine 

consumes more resources than the ML engine. The search engine consumes up to all the 

available CPU power while processing the flood of traffic instances. This implies that the 

search engine-based detection is CPU intensive and requires more CPU resources for high 

volume traffic detection. Testing the search engine detection on a different machine (Intel 

Xeon CPU E5-2430 v2 2.5Ghz) reduced the average single instance detection time from 87ms 

to 70ms. This indicates that increasing the CPU power increases the performance of the 

search engine. 

Stability: The detection framework uses the popular logger log4net for logging and 

alerting services. Any exception during the detection can be logged. The logger can also be 

further configured for notification. During the testing session, both engines completed without 

a failure or exception. The detection engine has a restart option in case of crash recovery.  

 Extensibility: As the detection engine is based on a search engine library, it can be 

trained to function as a text classifier such as a spam detector. By extending the data 

processor, indexer, and searcher components of the engine based on the input data, a new 

detection model can be generated without further customizing the internals of the search 

engine.  
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Portability: The whole framework and its components are developed using Microsoft 

.NET Core framework. The .NET Core framework is a multiplatform framework that supports 

Windows, Linux, and macOS operating systems. For instance, Figure 13 shows the publish 

settings of the framework project to target multiple platforms. The detection framework has 

been designed and developed to run on these platforms but tested only on Windows.  

 

Figure 13. Project publish settings. 

Deployment: The new cyber threat detection framework was deployed as a host-based 

threat detection system in a real environment for validation purposes. Although feature 

extraction from live traffic is beyond the scope of this research, CICFlowMeter was used to 

extract features from live traffic. CICFlowMeter saves the extracted feature to a csv file 

during live traffic feature extraction. To connect the CICFlowMeter process to the detection 

engine, the detection engine uses a file watcher component, which triggers an event when the 

CICFlowMeter appends a new feature data to the csv file. When the new feature data arrives, 

it is passed to the running detection engine, as shown in the code of Listing 31. Then the 

detection engine determines the status of the traffic data and passes the result to the dashboard 

through the alert service.  Figure 14 and Figure 15 show both CICFlowMeter and the 

detection engine running at the same time.  
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public static void StartLiveTrafficFeatureExtraction() 
{ 
    string featuresFileIdentifier = DateTime.Now.ToString("yyy-MM-dd"); 
    string featuresFileName = $"{featuresFileIdentifier}_Flow.csv"; 
    FileSystemWatcher watcher = new FileSystemWatcher(); 
    watcher.Path = AppConfigSettings.LiveTrafficFeaturePath; 
    watcher.Filter = featuresFileName; 
    watcher.NotifyFilter = (NotifyFilters.LastWrite); 
    watcher.Changed += new FileSystemEventHandler(OnNewFeatureDataAdded); 
    watcher.Created += new FileSystemEventHandler(OnNewFeatureDataAdded); 
 
    var featuresFileStream = new FileStream( 
                   AppConfigSettings.LiveTrafficFeaturePath + featuresFileName, 
                   FileMode.Open, FileAccess.Read, FileShare.ReadWrite); 
    featuresFileReader = new StreamReader(featuresFileStream); 
 
    watcher.EnableRaisingEvents = true; 
} 
 
private static void OnNewFeatureDataAdded(object sender, FileSystemEventArgs e) 
{ 
    var lines = featuresFileReader.ReadToEnd(); 
    IEnumerable<string> featureLines = lines.Split('\n').TakeLast(10); 
    foreach (string line in featureLines) 
    { 
        if (!string.IsNullOrWhiteSpace(line)) 
        { 
            if (!line.StartsWith("Flow") && !line.Contains("Infinity")  
                 && !line.Contains("NaN")) 
            { 
                var features = line.Split(',').SkipLast(1).ToList(); 
                features.RemoveAt(6); 
                features.RemoveAt(0); 
                string featureString = string.Join(",", features); 
                var featureData = DataConverter.ConvertToFeatureDataObject( 
                                                               featureString); 
 
                DetectionEngine.DetectWithCt(featureData); 
            } 
        } 
    } 
} 

Listing 31. Live traffic feature file watcher implementation. 
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Figure 14. CICFlowMeter extracting features from live traffic. 

 

Figure 15. Detection engine processing live traffic features.6 

 Table 18 shows the performance of the detection engine running as a host-based threat 

detection system using the search engine and the ML.NET engine. As the result shows, 

neither engine consumes much resources. 

 

6 The detection engine processed 60 different features for each traffic data, but the dashboard grid shows only 

selected features. 
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Table 18. Performance of the Detection Engine Running as a Host-Based Detection System 

Search Engine ML.NET 

  

5.5 Summary 

In this chapter we have discussed several evaluation, validation, and optimization 

techniques. Evaluation metrics include accuracy, precision, and recall rates of the detection 

engine. The initial evaluation result was optimized by applying different techniques such as 

choosing important features and optimizing scoring algorithms. The search engine-based 

detection engine yielded a detection accuracy closer to the ML.NET engine; however, the 

ML.NET engine is faster and consumes fewer CPU resources than the search engine, 

especially in high-volume traffic detection. Unlike the ML.NET binary model, the search 

engine can be continuously trained without destroying the original model. Both engines have 

passed through load testing and stability testing by simulating high-volume traffic. The newly 

developed cyber threat detection framework has the capabilities of both engines. 

This concludes Chapter 5. Case Study. This chapter discussed setting up evaluation 

metrics, evaluation of algorithms and components, optimizing techniques, and validating and 

deploying the new framework. Empirical analysis and performance results of the framework 

were discussed in this chapter. 
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CHAPTER 6 

CONCLUSIONS 

This chapter concludes with the overall outcome of the research, a list of 

contributions, limitations of the research, and recommendations for future research. 

This research shows the possibility of a search engine serving as a cyber threat 

detection framework. It also shows that the search engine-based threat detection engine can be 

reinforced by a machine learning-based engine. As a result, using the search- and machine 

learning-based engines working together improves the capability of the cyber threat detection 

system.  

Using two different technologies, search engines and machine learning, the newly 

developed framework was focused on the analysis of network traffic for cyber threat 

detection. Several artifacts such as traffic feature processors, detection engines, an alert 

service, and dashboard applications have been developed. A search engine library, Lucene 

was customized to function as a threat detection tool. During customization, several 

algorithms and techniques have also been investigated. The developed framework was tested 

and validated. In this chapter we will explore the outcomes of the research, its contributions 

and limitations, and recommendations for future research. 

6.1 Contributions 

1. A VSM-based search engine can function as a cyber threat detection engine. 

The primary purpose of search engines is text mining and document ranking. However, this 

research showed that search engines can also function as cyber threat detection systems. The 

opensource search engine library Lucene was used to validate the theory that search engines 

could function as cyber threat detection frameworks. To achieve this, customization of 

Lucene components such as the analyzer, tokenizer, indexer chain, scoring algorithms, and 

searcher was necessary. The detection accuracy of the customized search engine was initially 

closer (2% accuracy difference) to that of the Microsoft machine learning framework 
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ML.NET used by cyber security tools such as Microsoft Defender. The search engine can 

improve its detection accuracy through self-learning. 

 

2. This cyber threat detection framework uses Artificial Intelligence and classical 

technologies. Using mixed technologies in intrusion detection systems improves detection 

performance (Samrin & Vasumathi, 2017). Search engine and machine learning technologies 

were used in the development of the cyber threat detection framework. The developed threat 

detection framework incorporated two detection engines: the search engine-based and the 

ML.NET-based machine learning engine. The two detection engines each have their own 

benefits and drawbacks, but the proposed framework is able to take the best of each engine. 

For instance, the machine learning binary classification model has a faster detection speed and 

better detection accuracy than the search engine; however, it cannot predict the details of the 

attack. Another drawback of the machine learning model is the inability to train the model 

while it is running without destroying the previous model because the FastTree algorithm, 

which the binary classification is built on, is not a retrainable algorithm. The search engine 

based cyber threat detection model can predict details of the attack and update itself to 

improve its accuracy without destroying its model. 

 

3. This cyber threat detection framework is self-learning. Although the search 

engine model has slower detection speed and slightly lower detection accuracy at the 

beginning, it can predict the details of the attacks and can be retrained while it is running 

without destroying the model in use. The developed framework can run both the search 

engine and the machine learning models at the same time. When the two models run together, 

the machine learning model serves as a continuous trainer to the search engine model—with 

this, the search engine learns new incidents and improves its accuracy as it continues running. 

Eventually, the continuous training makes the search engine grow smarter as it is trained by 

the machine learning engine. 

 

4. Manhattan distance similarity has better performance than Euclidean distance 

and Cosine similarity in the Lucene search engine library for KNN-based classification. 

One of the search engine customization tasks was to implement classification and similarity 



97 

 

algorithms. The KNN algorithm was used in the search engine model to classify nearby traffic 

instances. By default, Lucene search engine uses Cosine similarity. In this research, Cosine 

similarity has been proven to be less accurate in measuring similarity between two traffic 

instances represented by vectors in the search engine model. Usually Euclidean distance 

similarity is used with KNN algorithm for classification.  In this research the square of the 

Euclidean distance similarity has the same classification accuracy as the Euclidean distance 

similarity. While the equivalency of the similarity algorithms was being proven, it was also 

discovered that the Manhattan distance similarity has the same classification accuracy as the 

Euclidean distance and the square of Euclidean distance similarities, but the Manhattan 

distance similarity has a slightly better performance in the Lucene search engine similarity 

scoring.  

 

5. Variable-dimension VSM has achieved better accuracy than n-dimensional 

VSM in the Lucene-based cyber threat classification model. The search engine-based 

threat detection model uses VSM. The dimension of the vector space is the same as the 

number of features extracted from the traffic instance. The VSM model in search engines has 

variable dimensions because the indexed documents do not have the same number of 

terms/words all the time. The feature extractor generates a fixed number of features from the 

traffic instance. Indexing each feature set makes the VSM model have a fixed dimensional 

model. For example, if the feature generator generates n features, the respective model will be 

n-dimensional VSM. Indexing non-zero value feature sets gives the VSM a variable 

dimension. This research showed that variable-dimensional VSM model yielded better 

accuracy and performance than n-dimensional VSM because it runs fewer similarity score 

computations.  

 

6. Every network traffic feature is not equally important for determining the 

status of the traffic. A feature extractor component can generate several features from the 

traffic instance to inspect the traffic behavior. However, not all the features are equally 

important for classification; some features have higher value in determining the status of the 

traffic. The Permutation Feature Importance (PFI) technique was used to filter out less-

important features. Feature reduction reduces noise and the training time of the model. 
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Particularly for the search engine-based model, feature reduction improves the detection time 

because it reduces the number of computations in the VSM.  

 

7. The use of different cutting-edge technologies in the cyber threat detection 

development leads to better results. The developed framework used the latest technologies 

in the artifact development. For example, ML.NET is the most recent machine learning 

framework used by Microsoft and was recently released as opensource. The alert service uses 

the popular logger component log4net used in several enterprise software (Apache Software 

Foundation, 2017) and in development for many years; the dashboard application engages in 

real-time communication using WebSocket protocol to display alerts as soon as a threat is 

detected. The entire framework was developed using the latest Microsoft .NET Core 

framework, which targets multiple platforms and operating systems. This makes the 

developed framework run on different operating systems such as Windows, macOS, and 

Linux. 

6.2 Limitations and Future Research 

This research was intended to develop a threat detection framework, not a complete 

cyber threat detection appliance. In order for the framework to grow into a complete cyber 

threat detection application, at least the following features need to be researched and 

incorporated:  

1. Native feature extraction component: Feature extraction is an important step in 

developing threat detection systems. Because developing feature extraction was not within the 

scope of this research, a third-party feature extractor tool was used to extract features from 

live traffic to validate the framework. To advance the developed framework to a complete 

cyber threat detection application, a feature extractor component needs to be developed 

natively as part of the framework.  

2. Host-based anomaly detection engine: This research focused on network traffic 

analysis. In addition to network-based detection, it is important to analyze the impact of the 

traffic on the destination host for end-to-end threat intelligence. Therefore, a host-based 

anomaly detection component needs to be developed and integrated as part of the framework 

to build an end-to-end threat intelligence system.  
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3. Heuristic-based analysis: The threat detection engines in the framework are based 

on machine learning, which sometimes produce false positives or false negatives. A separate 

analysis framework needs to be implemented to automatically discard false positives and false 

negatives by further analyzing the traffic activity, such as the reputation of the TCP 

connection properties, originating process behaviors, activities on the host device, etc. 

4. Robust reporting service: The developed framework incorporates an alert service 

component that can broadcast alerts in real-time communication to the connected clients such 

as dashboard applications. However, the dashboard application included in the framework has 

a limited reporting service. Adding a robust reporting service would increase the usability and 

functionality of the framework. 

6.3 Summary 

This research has introduced a new cyber threat detection approach by combining two 

complementary technologies: search engine and machine learning. The research also showed 

that search engines can function as threat detection systems with closer accuracy as a machine 

learning-based threat detection framework. The main advantages of combining search engine 

and machine learning for cyber threat detection are the following: a) the ability of the system 

to self-learn from its mistakes and grow smarter as it continues running; b) the capability of 

the system in predicting attack details since the search engine can store and analyze metadata 

of the training traffic data.  

Several components of the search engine such as analyzers, tokenizers, indexer, 

searcher, indexing, and scoring techniques have been customized to make the search engine 

function as a cyber threat detection engine. During the search engine customization process, 

this research also proved additional related findings, which are: a) Manhattan distance 

similarity has better performance than Euclidean distance and Cosine similarity in the Lucene 

search engine library for the KNN-based cyber threat classification model; b) variable-

dimension VSM has achieved better accuracy than n-dimensional VSM in the Lucene-based 

cyber threat classification model; c) every network traffic feature is not equally important to 

determine the status of the traffic. 
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With all these features, the new cyber threat detection framework improves existing 

cyber threat detection approaches and contributes to the mitigation of the ongoing cyber 

security problems we are facing.   
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APPENDIX B: LIST OF FEATURES 

This table shows a list of features with Permutation Feature Importance (PFI) metrics 

in descending order of their importance. 

Feature Wght Δ-AUC Δ-Accuracy Δ-F1Score Δ-Precision Δ-TPR Δ-FPR 

Init Win bytes 

forward 

1 0.04999 0.07875 0.09242 0.03301 0.1343 0.02321 

Init Win bytes 

backward 

0.88 0.03566 0.06658 0.07038 0.07063 0.06984 0.06333 

Destination Port 0.57 0.03256 0.0526 0.058 0.03891 0.0726 0.0326 

Min seg size 

forward 

0.39 0.01505 0.006006 0.007327 0.005831 0.0178 0.005784 

RST Flag Count 0.29 0.01023 0.01293 0.01537 0.005775 0.0319 0.006041 

Bwd Packet 

Length Std 

0.34 0.007186 0.01722 0.01448 0.05425 0.0209 0.05534 

Total Length of 

Bwd Packets 

0.69 0.006158 0.01003 0.01176 0.003128 0.02354 0.003482 

Fwd Header 

Length 

0.48 0.005696 0.01152 0.01241 0.009226 0.01494 0.008107 

Bwd Header 

Length 

0.11 0.004672 0.007109 0.008432 0.003787 0.01816 0.003946 

Fwd Packet 

Length Max 

0.1 0.003927 0.005658 0.005235 0.01465 0.00265 0.01396 

Fwd IAT Min 0.25 0.003677 0.007736 0.008168 0.007976 0.008288 0.007185 

ECE Flag 

Count 

0.06 0.002934 0.007737 0.009223 0.004564 0.02017 0.004695 

Flow IAT Min 0.3 0.002397 0.004355 0.005122 0.002041 0.01088 0.002176 

Fwd Packet 

Length Mean 

0.09 0.002 0.00332 0.002338 0.0178 0.01074 0.01739 

Bwd Packet 

Length Max 

0.15 0.001483 0.00147 0.001601 0.0008714 0.002191 0.0007488 

Bwd Packets/s 0.25 0.001301 0.002939 0.002837 0.00635 7.50E-05 0.005953 

Bwd IAT Max 0.09 0.001216 0.003019 0.003676 0.003097 0.009138 0.003099 

Min Packet 

Length 

0.1 0.001211 0.002028 0.002568 0.003413 0.007402 0.003346 

Total Length of 

Fwd Packets 

0.11 0.001159 0.003792 0.004531 0.002716 0.01037 0.00278 

Packet Length 

Mean 

0.13 0.001117 0.001468 0.001614 0.0006655 0.002384 0.0005517 

Average Packet 

Size 

0.09 0.001038 0.002037 0.002595 0.003631 0.007625 0.003551 

Fwd Packet 
Length Min 

0.16 0.001001 0.00315 0.003832 0.00318 0.009483 0.003183 

Flow IAT Max 0.11 0.0009405 0.002664 0.003015 0.0001611 0.005327 5.17E-07 

Bwd Packet 

Length Mean 

0.19 0.0009155 0.001395 0.00165 0.0008625 0.003692 0.0009018 

Bwd IAT Min 0.08 0.0008875 0.001396 0.001487 0.001254 0.001672 0.00112 
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Fwd IAT Max 0.1 0.0008791 0.001574 0.001775 0.0001418 0.003103 4.50E-05 

Packet Length 
Std 

0.11 0.0008547 0.001794 0.002026 0.0001415 0.003556 3.21E-05 

Fwd Packets/s 0.12 0.0008529 0.001372 0.001699 0.001848 0.00458 0.001836 

Flow Bytes/s 0.19 0.0008471 0.002014 0.002456 0.002177 0.006209 0.002181 

Fwd Packet 

Length Std 

0.07 0.0008109 0.001569 0.001832 0.0006511 0.003849 0.0007105 

Fwd IAT Total 0.11 0.0006778 0.001282 0.001434 0.0002697 0.00238 0.0001841 

Flow Duration 0.09 0.0006725 0.0005556 0.0003552 0.003588 0.002315 0.003426 

Bwd Packet 

Length Min 

0.13 0.000654 0.001259 0.001516 0.001144 0.00368 0.001162 

Flow IAT Std 0.08 0.0006259 0.000952 0.0009441 0.001766 0.0002648 0.001639 

Bwd IAT Std 0.07 0.0006047 0.0005874 0.0006614 6.17E-05 0.00115 2.53E-05 

Bwd IAT Mean 0.05 0.0004883 0.0002079 4.33E-05 0.003658 0.003101 0.003517 

Fwd IAT Std 0.09 0.0004167 0.001047 0.0009723 0.002794 0.0005316 0.002625 

Fwd PSH Flags 0.1 0.0003863 0.0004812 0.0004331 0.001472 0.0004225 0.001385 

PSH Flag Count 0.06 0.0003835 2.43E-05 0.0002883 0.003432 0.003361 0.003312 

Flow IAT Mean 0.06 0.0003634 0.0007583 0.0009749 0.001505 0.002994 0.001477 

Idle Std 0.07 0.0003266 0.0008638 0.0008698 0.001433 0.0004039 0.001324 

Max Packet 

Length 

0.09 0.0003095 0.0004628 0.0003398 0.00242 0.001375 0.002301 

Fwd IAT Mean 0.07 0.0002825 0.0006422 0.0005944 0.00175 0.0003578 0.001642 

Bwd IAT Total 0.07 0.000251 0.000379 0.0004215 0.0001076 0.0006769 8.12E-05 

Active Std 0.07 0.0002138 0.0004005 0.0003939 0.0007891 6.77E-05 0.0007332 

Idle Mean 0.04 0.0002068 0.001414 0.001769 0.002135 0.004937 0.00211 

Total Backward 
Packets 

0.05 0.0001904 0.0003131 0.000219 0.001784 0.00107 0.001696 

Flow Packets/s 0.05 0.0001876 0.0002143 0.0002295 0.0001765 0.000272 0.0001567 

Total Fwd 

Packets 

0.13 0.0001851 0.0003478 0.000413 0.0002473 0.000952 0.0002565 

Act data pkt 

fwd 

0.13 0.0001441 0.0003284 0.0003296 0.0005605 0.0001386 0.0005181 

Active Min 0.08 0.0001357 0.0003397 0.0004051 0.0002624 0.0009499 0.0002704 

Active Max 0.03 8.60E-05 0.0003188 0.0002923 0.0009074 0.0002141 0.0008517 

Idle Max 0.06 8.21E-05 0.001972 0.002467 0.002933 0.006836 0.002892 

ACK Flag 

Count 

0.05 5.86E-05 7.65E-05 6.11E-05 0.0003381 0.0001665 0.0003196 

Down/Up Ratio 0.11 3.67E-05 0.0001753 0.0002022 4.62E-05 0.0004049 5.43E-05 

URG Flag 

Count 

0.03 3.22E-05 9.18E-05 6.51E-05 0.0005132 0.000303 0.0004866 

Idle Min 0.06 2.50E-05 0.0001407 0.0002137 0.000717 0.0009747 0.0006934 

FIN Flag Count 0.01 1.34E-05 1.81E-06 2.45E-06 5.29E-06 8.79E-06 5.17E-06 

Active Mean 0.04 3.31E-06 0.0003074 0.0004256 0.001015 0.001602 0.0009871 

Fwd URG Flags 0.04 1.75E-06 2.59E-07 7.41E-07 5.92E-06 6.21E-06 5.69E-06 

Protocol 0 0 0 0 0 0 0 

Bwd PSH Flags 0 0 0 0 0 0 0 
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Bwd URG 

Flags 

0 0 0 0 0 0 0 

Packet Length 

Variance 

0 0 0 0 0 0 0 

SYN Flag 

Count 

0 0 0 0 0 0 0 

CWE Flag 

Count 

0 0 0 0 0 0 0 

Avg Fwd 

Segment Size 

0 0 0 0 0 0 0 

Avg Bwd 
Segment Size 

0 0 0 0 0 0 0 

Fwd Avg 

Bytes/Bulk 

0 0 0 0 0 0 0 

Fwd Avg 

Packets/Bulk 

0 0 0 0 0 0 0 

Fwd Avg Bulk 

Rate 

0 0 0 0 0 0 0 

Bwd Avg 

Bytes/Bulk 

0 0 0 0 0 0 0 

Bwd Avg 

Packets/Bulk 

0 0 0 0 0 0 0 

Bwd Avg Bulk 

Rate 

0 0 0 0 0 0 0 

Subflow Fwd 

Packets 

0 0 0 0 0 0 0 

Subflow Fwd 

Bytes 

0 0 0 0 0 0 0 

Subflow Bwd 

Packets 

0 0 0 0 0 0 0 

Subflow Bwd 

Bytes 

0 0 0 0 0 0 0 
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