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ABSTRACT 

While many solutions have been proposed for smart home security, the problem that no 

single solution fully protects the smart home environment still exists. In this research we 

propose a security framework to protect the smart home environment. The proposed 

framework includes three engines that complement each other to protect the smart home IoT 

devices. The first engine is an IDS/IPS module that monitors all traffic in the home network 

and then detects, alerts users, and/or blocks packets using anomaly-based detection. The 

second engine works as a device management module that scans and verifies IoT devices in 

the home network, allowing the user to flag any suspect device. The third engine works as a 

privacy monitoring module that monitors and detects information transmitted in plaintext and 

alerts the user if such information is detected. We call the proposed system IoT-Home 

Advanced Security System or IoT-HASS for short. IoT-HASS was developed using Python 3 

and can be implemented in two modes of operation. The in-line mode allows the IoT-HASS 

to be installed in-line with the traffic inside a Raspberry Pi or a Router. In the in-line mode 

IoT-HASS acts as an IPS that can detect and block threats as well as alert the user. The 

second mode is the passive mode where IoT-HASS in not installed in-line with the traffic and 

can act as an IDS that passively monitors the traffic, detecting threats and alerting the user, 

but not blocking the attack. IoT-HASS was evaluated via four testing scenarios. It 

demonstrated superior performance in all testing scenarios in detecting attacks such as DDoS 

attacks, Brute Force Attacks, and Cross Site Scripting (XSS) Attacks. In each of the four test 

scenarios, we also tested the device management functionality, which we found to 

successfully scan and display IoT devices for the homeowner. The extensive evaluating and 

testing of IoT-HASS showed that IoT-HASS can successfully run in a small device such as a 

Raspberry Pi, and thus, it will most likely run in an embedded device as an IoT device. Our 

future research will concentrate on strengthening the current features of IoT-HASS to include 

additional functionalities.  
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CHAPTER 1 

INTRODUCTION 

The Internet of Things (IoT) is probably the most revolutionary invention since the 

invention of the Internet. IoT brought about a tremendous amount of data that the world has 

never seen before. With the huge amount of data, one of the challenges with the Internet of 

Things is the ability to secure the data while it is at rest, in transit, and during processing. 

Many sectors, such as Healthcare, Manufacturing, and Retail, widely use IoT technology, 

taking advantage of its ease. However, our interest is in the Home IoT sector. It is expected 

that by the year 2021 the average number of IoT devices in a smart home will reach thirteen 

devices in North America, nine in Western Europe, four in Central and Eastern Europe, three 

in Latin America, three in Asia, and one in both the Middle East and Africa (Martin, 2017).  

1.1. Home IoT Overview 

IoT is a new world technology revolution similar to the invention of the Internet in the last 

century. More than 25 billion IoT devices are expected to be used by businesses and 

consumers by the year 2021 (Gartner, 2018). IoT architecture is now being used in almost all 

types of activities related to human life. For example, Industrial Internet of Things (IIoT) 

devices are used in manufacturing and operations to operate sensors and actuators as well as 

to automate key sensitive tasks. IoT devices are also used often by doctors and other medical 

professionals to monitor patients remotely. The IoT is also used in other sectors like 

transportation, such as in smart vehicles. Retailers have also begun to use the IoT; for 

example, the Amazon Go store allows consumers to shop in real time from a store shelf and 

deduct money automatically from their Amazon Wallet as they exit the store. Another 

important use of the IoT is the concept of the smart city, which would connect everything 

together under one huge umbrella. The smart city would allow humans, systems, and devices 

to interact seamlessly, offering a convenient and easy way for people to perform everyday 

tasks. Smart cities would also allow for automatic management of things like electricity 

(smart meters), transportation (smart cars), water, and waste, as well as other uncountable 
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services. The smart city is not yet fully implemented but is likely to happen soon given the 

pace of technological advancement, especially in terms of implementation of the IoT. 

The ‘smart home’ is a subset of the smart city. In fact, it is one of the smart city’s main 

components. The number of residential IoT devices outnumber the number of devices used in 

other sectors such manufacturing and healthcare. Like any other IoT, the aim of the home IoT 

is to make the lives of consumers easy and comfortable. Home IoT devices can be classified 

into the following: 

1. Communication devices, e.g., smartphones, smart watches, and tablets 

2. Lighting devices, e.g., smart light bulbs and smart plugs 

3. Entertainment devices, e.g., smart TV, X-Box, and PS4 

4. Security devices, e.g., surveillance cameras, smart locks, and motion detectors 

5. Smart appliances, e.g., smart fridge, smart washer and dryer, and smart oven 

6. Personal health devices, e.g., wearable fitness trackers 

The list above includes most of the widely used IoT devices among consumers. However, 

since this market is very volatile and new devices are being developed or released daily, this 

list is anticipated to grow dramatically. 

One critical issue that relates to IoT devices in general and home IoT devices specifically 

is security. Most home IoT device manufacturers ship their devices with little or no security 

implemented in them. This issue largely affects home IoT consumers. Healthcare and 

manufacturing IoT devices often have strict requirements and quality control or safety 

measures that manufacturers must implement when designing their devices. For instance, a 

security hole in an IoT device that operates a task in a power plant may cause a blackout of a 

large populated area or an even worse scenario; therefore, security is paramount in order to 

ensure the proper and secure functioning of the device. On the other hand, residential 

consumer products do not have many requirements or specifications for vendors of IoT 

devices because the dangers are relatively unknown or relatively less impactful. Home 

consumers hardly think about security as most of them lack the knowledge and technical 

skills related to the operation and risks of IoT devices. 

Despite the ease and comfort these devices provide, Home IoT devices represent a huge 

threat to homeowners. The risks of insufficient security might have a very serious impact on 
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homeowners. According to (OWASP, 2018) the top 10 IoT vulnerabilities or risks in 2018 

include the following: 

1. Weak, Guessable, or Hardcoded Passwords: As we expected, the number one security 

problem is using weak or default passwords that come with devices. Default passwords 

are publicly available on the Internet, and thus hackers can easily retrieve them and gain 

access to IoT devices, which in turn allows them to access users’ systems to steal their 

information. The most common attacks that take advantage of this vulnerability are the 

brute force attack and dictionary attack, which are software programs that try to guess or 

break the password. Figure 1 demonstrates how brute force and dictionary attacks occur. 

The user uses a software program to guess the password either by going through a huge 

list of passwords or via certain algorithms that use various combinations of words and 

letters to figure out the password. 

 
Figure 1. Brute Force and Dictionary Attacks 

2. Insecure Network Services: This concern relates to services running on the IoT 

devices that allow remote access. In short, any service that is not used should not be 

enabled as this affects information integrity and availability. To protect against this 

vulnerability, we must ensure that the device has no unnecessarily open ports such as port 

80 or 443 that can expose the device to the Internet as such exposure can facilitate attacks 

through port scanning and DoS. Similarly, we must ensure that the service is not 

vulnerable to buffer overflow and fuzzing attacks. The four figures below show how the 

attack scenarios of buffer overflow, fuzzing, DoS and DDoS occur. 
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Figure 2. Buffer Overflow Attack 

 

 
Figure 3. Fuzzing Attack 

 

 

 
Figure 4. DoS Attack in a Smart Home Network 
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Figure 5. DDoS Attack Scenario in the Smart Home Environment 

3. Insecure Ecosystem Interfaces: If the device has a web or cloud API, it should be 

secured; a good authentication and authorization mechanism should be implemented. 

Failure to protect the ecosystem interface means that the IoT device lacks an 

authentication and authorization mechanism. This can facilitate attacks like credential 

sniffing, session hijacking, and brute force access. Credential sniffing is another form of 

brute force attack where the attacker tries known passwords leaked in the past to see if 

they are still being used. The session hijacking attack occurs when the attacker succeeds in 

taking over the user authenticated session and can login as the user enabling them to 

access whatever the real user is authorized to access. Figure 6 below illustrates how the 

session hijacking attack occurs. 

 

 
Figure 6. Session Hijacking Attack 
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4. Lack of Secure Update Mechanism: This relates to the lack of insecurely updating 

device firmware as well as the lack of anti-rollback mechanisms. The consequences of the 

device failing to securely update its firmware is that the attacker can take advantage and 

trick the device to update from the attacker code rather than the vendor code. This allows 

the attacker to have full control of the device since now all necessary features are updated 

from the attacker code.  

5. Use of Insecure or Outdated Components: Deprecated or un-updated third-party 

libraries should be avoided. Third party libraries, especially when released by small 

companies or individuals, are not updated or maintained frequently. Thus, if they are used 

when developing the IoT device over time they become vulnerable to new attacks that 

might not have existed at the time of their creation. If a third library must be included, it 

should come from a reputable company that updates its software on a regular basis.  

6. Insufficient Privacy Protection: This happens when the user’s private information is 

not properly secured in the system. This in turn could lead to users’ private information 

being stolen. Many attacks can take advantage of this deficiency including the following: 

1) Botnet Attack: A botnet is a type of malware that is installed on the IoT device and 

communicates with a central bot via a command and control (C2C) mechanism 

that allows it to receive commands and send back information that it captures from 

the home IoT device. Figure 7 below depicts a botnet attack scenario: 

 
Figure 7. A Typical Botnet Attack Against Smart Home Environment 
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2) Man-In-the-Middle (MITM) attack: This enables the attacker to take a middle 

position between the client and server, intercepting all communication. In a home 

IoT device scenario, if the homeowner is trying to manage the device remotely 

from an app on her phone, the MITM attack can intercept all communication back 

and forth between the app and IoT device. If private information is entered, it can 

easily be captured and viewed unless it is encrypted. Figure 8 shows how an 

MITM attack can occur: 

 

 
Figure 8. Man-in-the-Middle Attack 

3) Data and Identity Theft attack: In this type of attack, the attacker gathers and 

collects data about the user from different sources including mobile devices such 

as phones and tablets, wearable devices such as smart watches and fitness trackers, 

smart meters, and smart appliances. The attacker then goes through the combined 

data and tries to match information that might eventually provide them with the 

detail that enables them to steal the user’s identity and thus perform illegal actions 

such as stealing money from the user’s bank account or credit cards, receiving 

government benefits that belong to someone else, applying for loans using 

someone else’s information, or even applying for employment under the user’s 

social security number. Figure 9 shows how identity theft attacks can occur. 
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Figure 9. Identity Theft Attack Demonstration 

7. Insecure Data Transfer and Storage: Data needs to be secured at rest, in transit, and 

during processing. If data is unsecured at any level, it is exposed to attacks. Unprotected 

data can lead to attacks that target privacy and identity theft. 

8. Lack of Device Management: There should be a good device management 

mechanism. If an IoT device lacks a good management mechanism, an adversary can 

install a fake device in the smart home environment that can act as a real device, but 

instead performs actions that the attacker controls. In this scenario, the fake IoT is like a 

bot that appears to be an IoT device with its own MAC and IP address. A management 

mechanism enables the homeowner to always ensure that all the devices connected to her 

home are genuine and valid devices. Figure 10 illustrates a simple form of a typical device 

identity and access management scenario in a smart home environment. 
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Figure 10. IoT Device Identity and Access Management 

9. Insecure Default Settings: Manufacturers should design IoT devices with good default 

settings and allow users to make appropriate changes as needed to secure the devices. If 

default settings for home IoT devices are rigid, inflexible, and un-editable or customizable 

by the homeowner, attackers can take advantage and invent ways to get around these 

settings, which eventually enables their attacks.  

10.  Lack of Physical Hardening: The device should be kept in a secure location to avoid 

physical tampering and stealing of information such as secure keys. Many tools can aid 

the attacker to physically attack the physical IoT device and steal information from it. 

Figures 11, 12, and 13 show some of the devices that can be used to connect and 

physically gather information from an IoT device. 
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Figure 11. JTAGulator - The On-Chip Debug (OCD) 

 
Figure 12. Bus Pirate - v3.6A a Tool to Communicate between the PC and the IoT Device 
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Figure 13. The Universal Asynchronous Receiver-Transmitter (UART) 

Large companies like Amazon and Apple release smart home solutions that facilitate the 

functions and protocols of different IoT architectures due to the heterogeneity of these IoT 

devices sourced from different vendors. These solutions typically include a management web-

based interface that allows users to manage and control the device remotely (Liu et al., 2017). 

Privacy represents a big concern for users of home IoT devices. As shown in the list 

above, privacy is among the top ten IoT vulnerabilities. The problem of poor implementation 

of security in the design of home IoT devices leads to privacy threats that can seriously 

impact consumers by revealing their sensitive information (Sivaraman et al., 2018). 

The security of the smart home has been the focus of many pieces of research in the last 

few years. However, this topic is still in its infancy as there is no universal standard solution 

yet that can be adopted by all homeowners. This is due to the large heterogeneity of home IoT 

devices coming from many manufacturers. Another reason for this diversity is the simplicity 

and ease of designing and creating home IoT devices, plus the absence of any regulations that 

govern this branch of industry. Thus, a small company or even an individual can easily design 

and produce an IoT device with the help of online materials and resources. 

1.2. Research Objective 

The objective of this study is to develop an efficient, accurate, and easy-to-implement-and-

operate solution for protecting the smart home environment. As indicated, the solution must 

be easily operated and understood by a normal non-technical user. The proposed solution, 

which we call IoT-Home Advanced Security System or IoT-HASS, addresses three main 

areas of the smart home. The first and main component of our solution is a network intrusion 
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detection and prevention engine that monitors traffic for different attacks and alerts the user 

and/or blocks the packets if malicious activities are detected. The Intrusion Detection System 

(IDS)/Intrusion Prevention System (IPS) engine of IoT-HASS is an anomaly-based Network 

Intrusion Detection System (NIDS) that uses machine learning techniques to monitor and 

detect different attacks on the network. The second area of the smart home is device 

management, which ensures that devices in the home network are all valid devices added by 

the user; our solution has a dedicated engine to manage the IoT devices within the home 

network environment. The third component of IoT-HASS is a privacy monitoring engine that 

monitor packet’s payload data and alerts the user if it finds data in an unencrypted plaintext 

format. 

1.3. Research Questions 

In this dissertation we aim to answer three main questions: 

1. How can we develop and implement an anomaly-based intrusion detection system 

in the smart home environment that is accurate and efficient as well as easy to 

operate by an average homeowner? 

This is the core of our solution. We aim to develop an anomaly-based intrusion 

detection and prevention system that monitors the smart home network and detects 

any suspicious activities that it finds. This IDS/IPS engine uses machine learning 

algorithms to identify attacks in the network. The IDS/IPS engine is described in 

Chapter 4. 

2. How do we establish a device management method in a smart home environment 

that can easily validate if an IoT device is a legitimate device added by the 

homeowner to the home network? 

To answer this question, we need to apply a device management method for the IoT 

devices connected to the home network. The device management engine will scan the 

network and get the new device information such as device IP, MAC address, and 

vendor. IoT-HASS has a GUI interface that shows a real-time listing of all currently 

connected devices, so the user can confirm whether all devices are valid or not. The 

user can also block or disconnect any suspicious device. If the user finds that all 

devices are valid, they don’t have to perform any action. 
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3. How do we protect a user’s privacy from being revealed by IoT devices that use 

plaintext format to exchange information? 

To answer this question, we design a privacy monitoring engine that scans network 

packets for any unencrypted text that might contain the user's private information and 

alerts the user if such information is detected. 

The privacy monitoring engine is described in Chapter 4. Figure 14 shows a picture of a 

typical smart home equipped with multiple IoT devices. 

 

Figure 14. An Overview of a Typical Smart Home Environment 

1.4. Home IoT Environment 

As Internet of Things technology advances, more people will begin to understand and 

realize the usefulness of IoT and home automation. The convenience that home automation 

brings to consumers is unquestionable. Using home automation does not focus on obtaining 

fancy equipment that is not necessarily needed; instead home automation goes beyond mere 

convenience to save significant money for the homeowner. For instance, using a smart hub 

that manages several or all other smart devices inside the home can save money since a user 

can automate things like turning on and off lights for the entire home. Lights can be set to turn 

off at a certain time removing the possibility of leaving a light on. Sensors can be scheduled 

to trigger the A/C thermostat to start cooling at a certain time, such as when the homeowner 
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leaves work heading to her home, instead of either leaving it off or letting it run the whole 

day. In other situations, home automation can save the consumer time and money too. For 

instance, smart appliances like washers and dryers can be scheduled to run at off-peak times, 

after 9:00 pm, or during weekends when electricity prices are lower. This saves money. While 

the consumer is away from home doing other activities, it also saves their time. Home 

automation can perform actions based on the homeowner’s voice recognition, as in the case of 

smart fridges, smart lighting, and Amazon Alexa. The benefits of home automation are 

uncountable, and inventions in this area emerge often. 

1.5. Home IoT Security 

 With the ease and convenience that home automation brings to consumers also comes the 

threat of compromised security. Since all IoT devices are software-based and -operated 

devices, hackers have started targeting them to gain access to home networks. Since most IoT 

devices are designed to operate remotely through an app that the user can manage from her 

home or other mobile device, hackers can penetrate the app or intercept the communications 

between the app and the actual device and perform a man-in-the-middle attack. As stated 

before, most home IoT devices lack the proper security protection for safe use by 

homeowners primarily because this industry is not really regulated by government or any 

other legal entity. Home IoT devices are mostly cheap in price, and most consumers are not 

aware or informed of the security threats those devices can introduce.  

1.6. Security and Challenges in the Home IoT Environment 

Many security challenges arise when it comes to protecting a smart home environment. A 

user’s physical assets and private and sensitive information are among the most important 

issues that need to be addressed. If an intruder succeeds in penetrating the home network via 

an unsecured IoT device, they can then find their way to perform many actions inside the 

network, such as getting the user’s passwords for banks and other important websites, plus 

acquiring any information the user might keep in their desktop, laptop, or mobile device.  

1.7. Dissertation Outline 

This dissertation aims to develop research in the field of smart home security to protect 

the home IoT environment. The contents of this dissertation are presented in seven chapters: 

Chapter 1 introduces home IoT, its security problems, and our proposed solution. Chapter 2 

provides a literature review where we discuss the most important research that offered or 
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discussed solutions for smart home security. Chapter 3 describes our research methodology 

and how our research satisfies the requirements for the selected research methodology. 

Chapter 4 details our solution design and how each module of the solution is used and 

integrated with the others. Chapter 5 concentrates on demonstrating the solution by describing 

the different algorithms and tools that we leveraged to build our solution. Chapter 6 illustrates 

the different methods we used to evaluate and test our solution as well as presents the results 

that demonstrate the strength of the solution. Chapter 7 concludes with a summary of our 

research, a discussion of its limitations, and plans and ideas for future research.  

1.8. Chapter Summary 

In this chapter we discussed the general overview of home IoT environments and their 

devices. The objectives of this research were also clearly identified. More specifically, we 

stated that our main objective is to create a security solution for the home IoT environment. 

The intended solution should be efficient, accurate, and easy to use by a normal non-technical 

homeowner. The motivations that drove our research are then clearly stated. Home IoT 

devices are mostly shipped with very little security on them, which makes them an easy target 

for attacks that could target users’ sensitive information. Finally, we discussed the challenges 

that exist within the smart home environment and gave a general overview of the dissertation 

outline. 
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CHAPTER 2 

LITERATURE REVIEW 

Smart home security has been the focus of many studies in the last few years. However, 

due to the great diversity of IoT devices released by big and small companies, the 

development of a standard security solution that works for all home IoT devices is a 

challenging task. We can compare this to a solution that needs to work on different operating 

systems. On desktop/laptop computers, the number of operating systems is very limited: 

mostly Windows, MAC OS, and Linux. This limited selection makes finding a common 

solution an easier task. This chapter will explore several solutions for smart home security. 

2.1. Smart Home IoT Security 

Security challenges abound in the smart home environment, mainly due to their limited 

capabilities. For instance, normal security solutions adopted in desktops or laptops cannot be 

implemented in home IoT devices due to their resource-constrained capabilities, such as 

limited RAM and CPU. The heterogeneity of their communication protocols poses another 

obstacle for applying end-to-end security between IoT devices and the Internet. To address 

the discrepancies between IoT devices, a gateway is normally needed to allow device-to-

device communications. Energy constraints and limited storage are two other factors that 

prevent these devices from implementing standard security solutions such as Public Key 

Cryptography algorithms. Since IoT devices are mostly left unattended, physical access is 

another threat. There is a risk of an attacker tampering with them and possibly extracting 

critical information from IoT devices (Lee et al., 2014). 

Recent research has studied privacy and security of home IoT devices. Sivaraman et al. 

(2015) conducted research that involved several IoT devices to assess their privacy and 

security. They indicated that as more home IoT devices emerge, the threat to user privacy will 

increase; thus, they proposed a network-level solution that monitors the network and captures 

suspicious activities. Their solution depends on the network-defined security mechanism. The 

solution can identify, and block threats based on things like device activity and other factors 
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such as time of day and whether people are available in the home or not. However, issues 

such as authentication, authorization, and privacy need to be addressed (Sivaraman et al., 

2015). Al-Shaboti et al. (2018) proposed an innovative solution for securing home IoT 

devices based on a Software Defined Network (SDN). Their solution enforces static and 

dynamic network access control and is designed in such a way that manufacturers, security 

providers, and IoT device users can use the framework in parallel to get the best security 

experience. Manufacturers can set up the best privilege security policy; security experts can 

enforce access policy as feedback; and users can adjust IoT access based on their social and 

contextual needs (Al-Shaboti et al., 2018). Marksteiner et al. (2018) analyzed and compared a 

set of protocols used in the smart home environment to discover which one was most suitable 

for the home IoT environment. The set of protocols analyzed included KNX-RF, EnOcean, 

Zigbee, Z-Wave, and Thread;  Z-Wave was found to have the strongest security according to 

(Marksteiner et al., 2018). Sivannathan et al. (2017) proposed a flow-based monitoring 

solution as opposed to a packet-based solution. Per the researchers, flow-based refers to using 

dynamic characteristics of the packet instead of performing deep packet inspection as in 

packet-based solutions. The researchers tested their solution against real IoT devices using 

different attacks. The outcome showed that their flow-based technique provided similar 

results to packet-based at a lower processing cost (Sivanathan et al., 2017).  

In a smart home environment, the many security challenges entail requirements to 

safeguard it from harm. Some of the key security requirements include the following: (a) 

authenticating users and devices to prevent unauthorized access to the home network; (b) 

monitoring the network for malicious attacks; (c) establishing data integrity to ensure the 

information is genuine and cannot be altered by an attacker; (d) providing data availability, 

which makes certain that authorized users can access the data at any time; and (e) maintaining 

confidentiality, which ensures users’ privacy and protects sensitive information from being 

stolen. A smart home missing any of these key elements is vulnerable to cyber-attacks (Ali et 

al., 2017).  

Rafferty et al. (2018) presented a new solution for protecting the smart home environment. 

Their approach uses a multi-agent collaboration using ‘Beliefs, Desires, and Intentions’ 

(BDIs) to make intelligent decisions. Here, each agent is an autonomous entity that can make 

decisions and perform actions based on a set of defined rules. The agent can interact with 
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other agents as well as the environment, which is shared among all agents. Agents collaborate 

with each other to make the best decisions to protect the smart home network (Rafferty et al., 

2018).  

Some well-known attacks in the smart home environment include the following: (a) 

eavesdropping attack: an attacker monitors traffic within the home network and collects 

information without being discovered by the user; (b) masquerading attack: an intruder gains 

access to the system as a legitimate user and thus performs several actions allowed under that 

user’s stolen permissions; (c) replay attack: an attacker intercepts messages between two 

parties, storing and retransmitting them in order to acquire information; (d) message 

modification attack: an attacker captures and modifies messages between two legitimate 

parties; (e) denial of service attack: an intruder prevents legitimate users from accessing a 

service or website by sending an overwhelming number of requests to that service and 

causing the service to be unresponsive to its users; and finally (f) malicious code attacks: an 

attacker uses a piece of code to exploit code in the smart home IoT devices and causes harm 

to them by performing actions like getting unauthorized access or altering and/or deleting 

some system information that causes it to crash (Ul Rehman & Manickam, 2016).  

Shen and Ma (2017) proposed an Enhanced Secure Device Authentication (ESDA) for the 

home area network. ESDA overcame the vulnerability of other protocols such as the Secure, 

Intuitive, and Low-cost Device Authentication (SILDA), which was found vulnerable to 

attacks such as the replay and unknown key sharing attacks. EDSA includes the Smart Meter 

(SM), the Gateway, and the Utility Server. The ESDA solution assumes both the Gateway and 

the SM have their own public and private keys. The SM and gateway each keep its private 

key while the utility server keeps the public key. When communicating for the first time, the 

SM and Gateway send authentication requests to the Utility Server encrypted in their private 

keys. Once the Utility Server receives both requests, it decrypts the messages with their public 

keys, creates the Pair-Wise Key (PWK), and sends it over to both the SM and the Gateway. 

The SM and Gateway can communicate directly from that point using the PWK via a secured 

channel (Shen & Ma, 2017). However, the solution seems to only work in the case of a SM 

but no other devices in the home environment with the following specifications: The Gateway 

and a Utility Server, which acts as a central gateway to authorize the communications 

between the SM and the Gateway. The solution also assumes that the SM and the Gateway 
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can generate their public and private key pairs. Finally, the solution only addresses 

authentication in the home network; it does not resolve other problems such as privacy 

protection or network monitoring, which complement authentication.  

Liu et al. (2016) introduced a framework for protecting smart meters against cyber-

attacks. Their work identified two main attacks. The first attack manipulates the electricity 

prices to form a peak energy load that eventually causes overloading in transmission lines. 

The second attack manipulates electricity prices to increase fluctuation of the frequency, 

which causes generators to trip as a protective feature, causing a blackout for the area. The 

proposed solution is an enhancement to the Partially Observable Markov Decision Processes 

(POMDP), which detects and eliminates cyber-attacks. The authors claimed that the solution 

detected 98% of cyber-attacks (Liu et al., 2016). Despite these efficacious results, this 

solution targets cyberattacks only against smart meters, which protects against only a subset 

of smart home potential attacks. Because the proposed solution does not provide protection 

for other home IoT devices, a more comprehensive solution is needed to protect all home IoT 

devices. Ling et al. (2017) conducted a special study on smart plugs by performed 

cyberattacks including device scanning attacks, brute force attacks, spoofing attacks, and 

firmware attacks. They were able to bypass authentication via these attacks. They suggested a 

set of recommendations to protect smart plugs that includes the following: (a) adopting a 

secure communication protocol such as HTTPS, DTLS, or TLS/SSL, (b) implementing 

mutual authentication between plugs and servers implemented via the use of a public/private 

key encryption method, (c) monitoring traffic against malicious activities using an Intrusion 

Detection System, (d) determining if a brute force attack using the machine is underway with 

anti-bot measures , and (e) using data integrity techniques to ensure the data is genuine and 

not tampered with (Ling et al., 2017). Although their paper offers thorough research about 

smart plug vulnerability, running various types of attacks to assess its authentication, along 

with a  list of recommendations, similar to other solutions, it does not address the entire smart 

home environment, where a more standard solution is desirable. 

Jonsdottir et al. (2018) developed a solution for home IoT security called IoT Network 

Monitor. It performs three main tasks to protect the home network: (a) it scans all IoT devices 

within the home network and changes any default passwords found to a randomly generated 

12-digit password and then reports the newly generated password to the user, (b) it performs 
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deep packet inspection for any malicious traffic and unencrypted user information and alerts 

the user if found, (c) it monitors botnet traffic and instructs the user to disconnect the suspect 

device if traffic is found coming from a specific IoT device (Jonsdottir et al., 2018). Although 

this solution covers the whole smart home environment and does not target one device as 

other solutions do, concerns arise because deep packet inspection adds an extra processing 

cost to the system performance. Zhang et al. (2018) proposed a security solution for smart 

homes based on attack graph generation. They studied the interaction between the smart home 

network and the software that accesses it and assessed its authentication vulnerabilities. The 

attack graph then shows weak points in the network that are targets for attacks (Zhang et al., 

2018). Although the idea seems new and interesting, the accuracy of detecting attacks seems 

dependent on how good the model is at generating an accurate graph. Thapliyal et al. (2018) 

proposed an IoT home security system that interfaces on one side to a central hub via 

Bluetooth Low Energy that monitors the home and on the other side to an Amazon Echo that 

takes user voice commands. The system consists of a Raspberry Pi 3 model B acting as the 

central hub, a 16 GB Micro SD Card, a Micro USB Power Supply, Amazon Echo, External 

USB Hard Drive, Speaker Alarm, and three sensors for doors, windows, and smoke. The 

central hub also works as a web server that hosts a webpage that the user can use to configure 

the IoT security system. It also provides notifications to the users through e-mails and SMS 

messages. Their system is also expandable since the user can add more sensors to it. The 

system performs physical security through a surveillance camera in addition to motion sensors 

(Thapliyal et al., 2018). However, per the authors, there are some limitations to the system 

concerning sensor range and cybersecurity in addition to other limitations regarding internet 

connectivity and power supply that affect the accuracy of the system. Further, while the 

authors claim that their system provides both physical and cybersecurity protection, they did 

not perform a real experiment and present results that shows the strength of the system. This 

makes it a more theoretical design rather than a real working system.  

Shin et al. (2019) proposed a home security method that uses route optimization for 

Distributed IP Mobility Management (DMM) together with handover phases. Their system is 

built to support multiple features such as mutual authentication, key exchange, perfect 

forward security, and privacy protection. The authors validated their system by using two 

known methods: BAN-logic and Automated Validation of Internet Security Protocols and 
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Applications (AVISPA). The researchers compared their system to other systems known as 

EAP-AKA, EAP-TLS, and EAP-IKEv2 and claimed the results showed their system is better 

than those approaches (Shin et al., 2019).  

Abunaser and Alkhatib (2019) proposed an IoT home security method that uses 

Blockchain technology. Blockchain is widely used in different branches of industries such as 

medicine, economic, software engineering, and Internet of Things, among others. Blockchain 

technology resembles a public ledger in which blocks of transactions are being added all the 

time. The main features of the Blockchain are decentralization, persistency, anonymity, and 

auditability. The power of Blockchain is to provide security to smart homes via a distributed 

technology. There is no single PC or device that occupies the whole chain. Blockchain is 

immutable to attacks such as the malicious attack and man-in-the-middle attack. Another 

advantage of Blockchain is that it preserves an immutable record of IoT device history. 

However, as the authors indicated, despite the benefits of Blockchains, they still have their 

shortcomings, such as scalability, storage, processing power and time, lack of skills (which 

refers to the limited number of people who know and understand Blockchain technology), and 

finally legal and compliance issues (Abunaser & Alkhatib, 2019).  

Sairam et al. (2019) discussed thoroughly the use of Network Function Virtualization 

(NFV) in securing IoT devices in a smart home environment. Their proposed solution, 

NETRA, enhances the NFV technology by using a lightweight docker-based design of NFV 

to provide a better solution for home IoT devices. The authors explained how their proposed 

methods outperform standard NFV methods, and thus they concluded that standard methods 

are not suitable for IoT security. Their system, they argued, has the advantages of storage, 

memory usage, latency, throughput, load average, and scalability. They claimed that their 

method could detect attacks with an accuracy of up to 95%. However, despite all successful 

results, the authors indicated that further research was required to detect zero-day-based 

attacks (Sairam et al., 2019).  

Khan et al. (2019) discussed consumer electronic IoT products, concentrating on five 

major elements that affect the consumer’s privacy: Borrow, Gift, Rent, Resale, and Retire. Per 

the authors, these five actions represent the typical scenarios where a used IoT device can be 

exchanged between people. An IoT device may either be borrowed by someone, rented for 

money to someone, resold as used to a new owner, gifted as used to a friend or family 
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member, or disposed at the end of its life span. According to the authors, these five actions 

represent huge threats to user sensitive information that might still be kept in the IoT device. 

The authors came up with a set of recommendations for IoT manufacturers, consumers, and 

Internet Service Providers (ISPs). For IoT device manufacturers, the recommendation is to 

implement security consider device End of Life (EOL). EOL features should be included that 

wipe or delete all user sensitive information such as a reset to factory button implemented on 

all devices. For ISPs the recommendation is to use their capabilities to find infected devices 

and alert the consumers to them. Finally, the recommendation for consumers is to stay aware 

and understands the risks associated with their private information when they use IoT devices 

(Khan et al., 2019).  

Sultana and Wahid (2019) proposed an IoT intelligent system called IoT-Guard that uses 

edge-fog computational layers to help detect crimes in real time or predict them in a smart 

home environment. The system uses Artificial Intelligence (AI) and can send crime data in 

real time to law enforcement authorities so that immediate action can be taken. While the 

system uses event-driven techniques, it can also conserve resources such as memory, 

bandwidth, and processing power. The authors tested their framework in a laboratory testbed, 

and the results showed that it outperformed other traditional surveillance systems (Sultana & 

Wahid, 2019). However, this system concentrated primarily on the physical security of the 

smart home and did not address cybersecurity concerns, which are a major issue in the smart 

home environment. Any physical security system should be complemented with a 

cybersecurity portion to provide a complete security framework.  

Singh et al. (2019) proposed a simple smart home security system based on an android 

smart phone connected to the smart home environment through Bluetooth connectivity. The 

system works by connecting to applications that scan the eye and face of individuals; it can 

also use body or hand gestures and voice recognition. The system was primarily developed for 

the security of the elderly and small children (Singh et al., 2019). The proposed system does 

not cover cybersecurity. This means the system itself could be a target for attacks that can 

eventually disable it. As mentioned previously, any home security system should have a 

cybersecurity piece to work along with physical security functions.  

Li et al. (2019) developed a system for detecting energy consumption that could work 

with smart meters in smart homes. The system, Smart Energy Theft System (SETS), is based 
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on machine learning techniques and has three parts. The first part is a prediction model that 

uses a set of machine learning algorithms that integrate and generate a model that predicts 

energy consumption. The second part of the system is a decision-making system that filters 

out the abnormal traffic using a simple moving average (SMA). The third part is responsible 

for making the final decision about the energy theft scenario. The authors indicated that 

simulations show the system can detect attacks with a 99.96% success rate when integrated 

into the security of a smart home environment (Li et al., 2019). Even though the system 

protects a very important component of a smart home, the energy consumption detected by 

smart meters, the ideal solution would be designed to protect the whole smart home 

environment.  

Singh et al. (2014) introduced an innovative architecture for IoT that uses a Semantic 

Fusion Model (SFM). The authors described Semantic Fusion as the requirement of an 

improved high-level data representation and an advanced intelligence that resembles humans. 

They use Semantic Fusion to better analyze the data collected by sensors. However, a security 

portion is not considered. The authors advised that security should be improved with the 

suggested architecture (Singh et al., 2014).  

Sadeeq et al. (2018) performed a survey on the most crucial studies that involve IoT 

security. Not only did the survey target the studies with the biggest significant contributions to 

IoT security, it also tried to cover most forms of security, such as software security, network 

security, vulnerability of used cryptographic method, social engineering security, and security 

against malwares attacks. Even though the paper only surveyed existing security research and 

proposed no solutions, it still provides valuable information for a researcher who needs to 

explore prior solutions and their effectiveness (Sadeeq et al., 2018).  

A few recent articles review the IoT security field well. Mosenia and Jha (2017) 

performed a survey on vulnerabilities that target IoT devices and countermeasures against 

them. The authors executed this study from the edge point of IoT which they classified into 

edge nodes, communications, and edge computing. The paper is a good resource to find out 

about different threats and vulnerabilities against IoT and various countermeasures to defeat 

them (Mosenia & Jha, 2017). Similarly, Billure et al. (2015) ran a study that introduced the 

challenges and recent contributions of IoT security. The authors studied and analyzed prior 

solutions, describing the various attacks and exploitations that target IoT environments well. 
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Their comprehensive research is a good starting point for researchers who need to get a quick 

overview of the current state of IoT security (Billure et al., 2015).  

Sarigiannidis et al. (2017) proposed an innovative idea of a framework that models 

security attacks in the IoT. The authors created the model based on G-Network and designed 

it to be generic for all types of IoT architectures. Positive arrivals represent the packets 

coming from various IoT nodes and sensors sources. Negative arrivals represent different 

attacks coming from different sources that result in data loss. The authors evaluated their 

system and results showed that the system has good accuracy in detecting various security 

attacks (Sarigiannidis et al., 2017). Zhou et al. (2019) proposed a new concept which they 

called “IoT Features.” They named eight of the most important IoT devices features that 

define the characteristics of IoT as follows: Interdependence, Diversity, Ubiquitous, Mobile, 

Unattended, Constrained, Myriad, and Intimacy. For each feature they provided descriptions, 

threats involved, challenges associated with those threats, prior solutions that tackled those 

challenges, and whether some of them have disadvantages. Finally, they presented new 

techniques for addressing current challenges (Zhou et al., 2019). 

2.2. IoT Device Authentication 

Authentication is a key part in securing smart home IoT devices, ensuring that all devices 

within the smart home network are valid devices. If authentication is weak or absent, an 

attacker can masquerade as a legitimate device identity to carry out attacks.  

Shah and Venkatesan (2018) proposed a mutual authentication method where a multi-key 

called a vault key between the IoT device and the IoT server is used. At the start of the 

communication, the key is shared between the IoT device and the server. Then the key keeps 

changing with subsequent communications. This authentication method uses the three-way 

authentication mechanism between the IoT device and the IoT server (Shah & Venkatesan, 

2018). Maia Neto et al. (2016) proposed a new authentication technique called Authentication 

of Things (AoT) that authenticates IoT devices throughout the life cycle of the IoT device. 

AoT provides both authentication and access control mechanism via attribute-based 

cryptography (Maia Neto et al., 2016). Fremantle et al. (2014) explored Federated Identity 

and Access Management (FIAM) and its application to the IoT environment. To better present 

their idea, the authors developed a prototype that uses OAuth 2.0, which enables access 

control of information distributed via MQTT protocol. The new prototype was evaluated and 
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an assessment for its advantages and disadvantages was conducted. Even though OAuth 2.0 is 

an authentication method that has been around for years, the authors indicated there are some 

difficulties when implementing FIAM in an IoT environment that uses OAuth 2.0 with 

MQTT (Fremantle et al., 2014).  

Barreto et al. (2015) proposed an authentication method for IoT devices that is based on 

the cloud. In their theoretical method, users are given the choice to access IoT devices either 

directly or through the cloud. The authors indicated that at the time of their paper’s writing 

there was no solid implementation for this method (Barreto et al., 2015).  

Omar and Basir (2018) proposed a semi-decentralized identity access and management 

method that uses Blockchain. The method provides identity creation and portability as well as 

transferal of ownership. The proposed solution takes advantage of Blockchain technology 

criteria such as cryptographic assets, immutability, and provenance. However, as the authors 

indicated, it also shows some of the drawbacks of Blockchain, such as latency of transaction 

processing and scalability (Omar & Basir, 2018). Pal (2019) proposed a fine-grained 

architecture for identity and access control for IoT. To develop this architecture, the author 

outlined all the IoT device limitations and then built the method by tackling those limitations. 

The aim of the research was to provide a lightweight identity and access system that could 

also limit the number of security policies (Pal, 2019).  

The above-proposed authentication methods are mostly theoretical since we know that IoT 

devices are resource constrained and thus do not support PKI algorithms. Thus, we need a 

solution that allows us to verify that IoT devices within the home network are legitimate 

devices. 

2.3. Intrusion Detection Systems 

Intrusion Detection Systems (IDSs) are software programs that are used as complements 

to firewalls. Since firewall rules might not detect all attacks, IDSs monitor and analyze traffic 

coming into the home network and then detect, alert users, or even block suspicious activities. 

There are two types of IDSs: host-based IDS (HIDS), which monitors one host at a time, and 

network-based IDS (NIDS), which monitors the entire network for malicious activities. 

HIDSs are lighter and use less processing power while NIDSs are more accurate at the cost of 

extra usage of system resources. IDSs are also categorized by their detection methodology. A 

signature-based IDS uses a set of predefined rules to match a malware or other threat 
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signature by looking at a database of attack signatures. Signature-based IDSs are faster and 

more accurate, but they require frequent updates to their database as they only look at known 

attacks. On the other hand, anomaly-based IDSs use machine learning algorithms to match 

traffic behavior against a known network profile obtained from training a model. If a 

deviation is found from the stored profile, the packet is flagged as a threat. Anomaly-based 

IDSs can identify new threats. However, these systems sometimes have many false positives.  

Nobakht et al. (2016) proposed a host-based intrusion detection and prevention system for 

protecting smart homes. Their framework implements an anomaly-detection type that is based 

on machine learning algorithms. Their framework, IoT-IDM, is not only capable of detecting 

malicious attacks but also of blocking them. IoT-IDM uses Software Defined Technology 

(SDN) with OpenFlow protocol. The authors tested their solution using a smart lighting 

system, and their results showed no extra processing cost (Nobakht et al., 2016). Saeed et al. 

(2016) proposed a two-layer solution including an anomaly-based intrusion detection and 

prevention system. The system uses Random Neural Network (RNN) for detection. The first 

layer is the detection layer where the system, already trained on a dataset, can detect and 

prevent attacks based on comparison with normal behavior. The second layer of the solution 

is designed to detect attacks against Illegal Memory Access (IMA), such as out of bounds 

reads and writes, and stack overflow. It does that by storing the start and end addresses of the 

memory objects in tags. When at runtime any objects are accessed, a comparison is made 

between the address in instruction and the stored address for the given object to validate 

requests (Saeed et al., 2016).  

Oh et al. (2014) proposed a malicious pattern matching algorithm. Their solution is 

designed to be lightweight so that it suits embedded systems and IoT devices. Since 

lightweight systems typically affect performance, the authors implemented two methods, 

auxiliary shifting and early decision, to overcome the performance issues. Auxiliary shifting 

reduces the necessary pattern matching by skipping unnecessary matches, while early 

decision identifies character prefixes of the match that reduces the match operation (Oh et al., 

2014).  

Qazanfari et al. (2012) proposed an anomaly-based hybrid intrusion detection system that 

consists of two well-known machine learning algorithms: Support Vector Machine (SVM) 

and Multi-Layer Perceptron (MLP). This hybrid system was trained using supervised 
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techniques. To enhance the system precision, a feature selection technique was used. The 

KDD dataset was used for this experiment (Qazanfari et al., 2012). Yet the KDD dataset is an 

outdated dataset that does not reflect most current real-life attacks. Khater et al. (2019) 

introduced an intrusion detection system based on Multi-Layer Perceptron (MLP) that targets 

fog computing, which is a model that extends cloud computing and overcomes some of its 

shortcomings such as lack of mobility, latency, and location information. The solution was 

tested with the Australian Defense Force Academy Linux Dataset (ADFA-LD) and the 

Australian Defense Force Academy Windows Dataset (ADFA-WD). Their test results were 

more successful with ADFA-LD than with ADFA-WD in terms of accuracy, recall, and F1-

measure (Khater et al., 2019).  

Zaman and Karray (2009) proposed a novel lightweight intrusion detection system that is 

based on two different approaches. The first one utilizes the classification method and Fuzzy 

Enhanced Support Vector Decision Function (Fuzzy ESVDF), which improves system 

performance dramatically and at the same time cuts the training and testing time. The second 

approach divides the IDS into four different types according to the TCP/IP network layers. 

The layers of IDS in this architecture include Application layer, Transport layer, Network 

layer, and Link layer (Zaman & Karray, 2009). This system has not been implemented in the 

real world, and thus it is not known or proven how it will actually perform to secure IoT 

against real cyber-attacks.  

Farahnakian and Heikkonen (2018) proposed an intrusion detection system that uses a 

deep learning algorithm. Their system implements a deep auto-encoder and is designed to be 

composed of four layers, each of which is trained separately and then used as input for the 

next layer. The authors claimed their solution increased performance compared to other deep 

learning methods. They analyzed in detail the different features and capabilities of Snort and 

even compared it to other systems like TCPDUMP and NFR (Farahnakian & Heikkonen, 

2018). However, the authors evaluated their solution using the KDDCUP99 dataset, which is 

outdated dataset that does not reflect today’s cyber-attacks. 

Sharafaldin et al. (2017) conducted a study about the various intrusion detection system 

datasets. Some known datasets analyzed in the research are the KDD99, DARPA98, and 

ISC2012. The shortcomings of these datasets were presented. The authors suggested eleven 

criteria that should be considered when creating an intrusion detection dataset. They indicated 
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that future work will concentrate on developing an IDS dataset following the eleven criteria 

(Sharafaldin et al., 2017).  

Aung and Min (2018) proposed a hybrid intrusion detection system composed of K-

Means and Projective Adaptive Resonance Theory (PART), which is a rule-based algorithm 

considered by researchers to be more accurate and reliable than signature-based algorithms, 

PART analyzes features derived from various observations such as irregular protocol 

behavior, signatures, system events, and changes occurring to files or folders to determine 

attacks. The results indicated that this hybrid algorithm is more accurate in detecting attacks, 

and it takes less time to train the model as well (Aung & Min, 2018). One criticism we have 

against this method is that it uses KDD’99 for its evaluation. As mentioned earlier, KDD’99 is 

a very old dataset that does not include most of the current threats and thus any evaluation 

performed using this dataset does not reflect an accuracy for a real-life scenario.  

Teng et al. (2018) proposed another hybrid intrusion detection method that is both 

cooperative and adaptive. The method consists of combining Support Victor Machines 

(SVMs) and Decision Trees (DTs). Per the authors’ results, this hybrid algorithm 

outperformed a single method using only SVM (Teng et al., 2015). However, this method is 

assessed using the KDD CUP 99 dataset, which is an outdated dataset. An almost identical 

method to the previous one is proposed by Teng et al. (2018). This method implements SVMs 

together with DTs to compose a hybrid system that according to the authors gave more 

accurate results compared to a system built with SVM alone. The system was also assessed 

using the KDD 99 dataset (Teng et al., 2018). 

Ahmed et al. (2018) proposed a supervised learning machine to detect cyber-attacks to the 

smart grid system. The proposed system was developed specifically to target a new cyber 

assault against the power system that is part of the smart grid. This new cyber assault is 

known as the “covert cyber deception assault.” To evaluate the algorithm, the standard IEEE 

14-bus, 39-bus, 57-bus was used. The results showed that the new method effectively reduced 

the number of covert cyber assaults (Ahmed et al., 2018). Ozay et al. (2016) proposed a 

machine learning classification method for detecting attacks against smart grids. The 

proposed system uses supervised and semi-supervised learning with decision and feature-level 

fusion to determine the attack. IEEE test systems, 9-bus, 57-bus, and 118-bus were used to 
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assess the model. The authors’ evaluation results showed that the new machine learning 

system detects attacks with better accuracy than other traditional methods (Ozay et al., 2016).  

Ali et al. (2018) developed a supervised artificial neural network system (ANN) that can 

learn from previous attacks and thus determine what future attacks look like. The proposed 

ANN system was applied to the intrusion detection problem and showed good performance 

(Ali et al., 2018). However, similarly to some previously proposed systems, the authors used 

the KDD CUP 99 dataset for their system evaluation. Despite the good results the authors 

claimed, the results do not reflect an accuracy that represents current real-life attacks, as the 

dataset is mostly outdated.  

Alom and Taha (2017) proposed a method that uses an unsupervised deep learning Auto 

Encoder (AE) technique along with Restricted Boltzmann Machine (RBM) for feature 

extraction and dimensionality reduction. Experimental results showed improvement over K-

Means Clustering and the unsupervised extreme learning method (Alom & Taha, 2017). One 

shortcoming of the evaluation is the use of the outdated KDD 99 dataset.  

Yin et al. (2017) proposed a new Deep Learning intrusion detection system that uses a 

Recurrent Neural Network (RNN). The model performance was assessed by the researchers 

for both binary and multicast classification scenarios. The proposed model was also compared 

to other models based on ANN, Random Forest (RF), SVM, and other known machine 

learning algorithms. Per the authors, the comparison results demonstrated that the model was 

more efficient and accurate than machine learning-based algorithms (Yin et al., 2017). 

Roy and Cheung (2019) introduced a method for detecting attacks to IoT networks using a 

Bi-directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN). Their 

model was trained with the UNSWNB15 dataset. The researchers’ results showed an accuracy 

of 95% as well as good numbers for F-Score, Recall, and FAR. With the achieved results, the 

model is believed to work effectively with an intrusion detection scenario (Roy & Cheung, 

2019).  

Salah et al. (2011) introduced an innovative method that leverages Active Learning as a 

machine learning intrusion detection technique. Since machine learning techniques require 

training data to be updated at some point so that the model can detect new attacks, there are 

two options to resolve the challenges: preparing and labeling a new training dataset, which is 

a time-consuming task, or using active learning, which leverages the knowledge of the 
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domain expert to label new attacks and update the training dataset. The latter process is more 

efficient and less time consuming. It also allows a more limited data labeling process. This 

method is powerful and greatly aids in updating the machine learning model (Salah et al., 

2011). However, the proposed system was built on the old KDD 99 dataset for evaluation. A 

more recent intrusion detection dataset could be used. To enhance the performance and speed 

of the intrusion detection system, traffic filtering and traffic sampling are recommended. 

Traffic filtering is the process of filtering packets received by the IDS into a blacklist in which 

a packet is blocked if it contains an IP in the list. On the other hand, a packet that includes an 

IP in the whitelist goes directly to the network without passing through the IDS sensor. The 

second step, sampling, follows filtering. In sampling, the network traffic is categorized as 

either packet-based, where each packet is treated individually, or flow-based, where traffic is 

treated as a flow of packets. Packet-based generally gives more detailed information about the 

traffic being analyzed while flow-based is more efficient and robust (Meng, 2018).  

Benkhelifa et al. (2018) conducted an extensive study about the intrusion detection 

systems currently available and suitable for IoT networks. The authors tried to come up with 

some suggestions and recommendations for how future IDSs designed for IoT networks 

should look since the current IDSs are not suitable for IoT devices due to their resource 

constraints (Benkhelifa et al., 2018). Lin et al. (2018) proposed an IDS system suitable for 

edge computing. The researchers used a method called a Single-layer Dominant and Max-Min 

Fair (SDMMF) that enables multiple resource allocation (Lin et al., 2018). Kang and Kang 

(2016) proposed an innovative idea for designing an intrusion detection system that uses a 

deep neural network (DNN) to mitigate attacks in vehicles’ networks. The training data for 

the proposed model was extracted from packets transmitted within vehicular networks. The 

authors indicated that the new model showed a better accuracy compared to the traditional 

ANN technique (Kang & Kang, 2016).  

Goyal and Dutta (2018) investigated wormhole attacks in the context of IoT networks. A 

wormhole attack is an internal network attack where the adversary listens to the information 

without trying to alter it, making the discovery of this attack a very challenging task. The 

authors’ idea is to shed some light on this specific attack as there is not much research done 

regarding wormhole attacks in the IoT environment (Goyal & Dutta, 2018).  
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Pamukov and Poulkov (2017) proposed an algorithm capable of correctly detecting 

intrusions without the need for operator input. The algorithm tries to decrease detection errors 

by using a negative selection and co-stimulation approach (Pamukov & Poulkov, 2017). 

Sforzin et al. (2017) proposed an intrusion detection system for home IoT. For the design of 

this IDS, a Raspberry Pi with Snort installed was used to carry multiple experiments. 

Different Snort rules were used to carry different attack types. Per the researchers, the results 

were very promising and showed that the Raspberry Pi was able to handle a large application 

such as Snort without disturbing CPU usage or memory (Sforzin et al., 2017).  

Pamukov (2017) studied both Negative Selection algorithms (NS) and Danger Theory 

(DT) and illustrated that the first, as a lightweight system, is suitable to implement for 

resource-constrained IoT nodes. On the other hand, DT is suitable for complex networks and 

is therefore not appropriate to use with IoT devices. The best approach is to combine the two 

methods and come up with a hierarchical method in which NS is used to detect intrusions 

with local IoT devices while DT addresses intrusion detection in complex networks 

(Pamukov, 2017). Roux et al. (2017) proposed an intrusion detection system based on neural 

network algorithms to mitigate attacks in smart places such as smart homes and smart 

factories. The idea is to profile the valid behavior of the radio signal strength indicator (RSSI) 

transmitted from wireless IoT devices and monitor any deviations from the legitimate profile 

(Roux et al., 2017). Pamukov et al. (2018) proposed an intrusion detection system designed 

specifically for IoT environments. The system consists of two layers. The first layer uses an 

NS algorithm to create the training set based on self or normal behavior of the network. In the 

second layer, the dataset created in the first step is used for the training of the neural network. 

This technique allows for separating the computational complexity, which can be done 

remotely, from the actual classification that occurs at the resource-constrained IoT device 

(Pamukov et al., 2018).  

Mansour et al. (2019) proposed a biologically-inspired intrusion detection system that is 

based on Genetic Algorithm (GA). The proposed system is designed to work with Software 

Defined Networks (SDNs) by instructing the SDN to either block the attack or redirect it to a 

honeypot. Per the authors, the new system showed a promising detection rate of 80% 

(Mansour et al., 2019). Huang et al. (2017) proposed an online sequential machine learning 

hardware accelerator that can perform real-time network intrusion detection. The system is 
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built based on a neural network that uses a single hidden layer with the Least Square 

algorithm to perform the online learning (Huang et al., 2017).  

Nikam and Ambawade (2018) proposed an opinion metrics lightweight intrusion detection 

approach in IoT networks to detect new threats. Opinion Metrics are based on finding each 

node’s Believe, Disbelieve, and Uncertainty values with respect to other nodes in the network. 

Malicious nodes in the network are then detected by identifying nodes with a high degree of 

disbelieve values (Nikam & Ambawade, 2018). Roux et al. (2018) presented an approach for 

intrusion detection systems in IoT networks that uses radio communication signals to monitor 

whether detected signals match the legitimate ones from a saved profile. This approach is 

designed to be independent of large and heterogeneous networks. A case study was presented 

to show the feasibility of the system with the proposed intrusion detection system  

implemented in a smart home environment (Roux et al., 2018). Aldaej (2019) proposed an 

intrusion detection and prevention system for IoT devices that prevents DDoS attack types. 

DDoS attacks are known to flood the network with a huge number of requests originating 

from several computers with the aim of overwhelming the network and preventing legitimate 

users from accessing the network and using services (Aldaej, 2019).  

Choi and Choi (2019) studied vulnerabilities in the power system in a cloud-based 

environment and defined a set of security inference rules. Furthermore, a security framework 

that protects power systems hosted in a cloud environment was proposed. A smart meter was 

used to verify the feasibility of the proposed framework by creating attacks against it. The 

inference rules were found effective in detecting those attacks (Choi & Choi, 2019). Zhang et 

al. (2019) proposed an enhanced intrusion detection system that uses Genetic Algorithm (GA) 

and Deep Believe Networks (DBN). This structure was implemented with neural networks 

where a limited number of hidden layers were constructed adaptively. The genetic algorithm 

demonstrated good accuracy in detection when combined with a deep believe network. The 

KDD NSL dataset was used to assess the model performance (Zhang et al., 2019). Shafi et al. 

(2018) proposed a fog-assisted SDN intrusion detection and prevention system (IDPS). Fog 

cloud infrastructure brings computational services to edge devices such as IoT devices in this 

scenario for the purpose of different attack type detection. The proposed system was tested 

with UNSW-NB15 dataset and was able to detect and prevent different attack types (Shafi et 

al., 2018). Prabavathy et al. (2018) also proposed an intrusion detection system based on fog 
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computing. This system uses Online Sequential Extreme Learning Machine (OS ELM). The 

purpose of the local fogs, which are distributed from the central cloud computational layer, is 

to speed up the detection of different attacks while the online learning feature of the OS ELM 

enables the system to quickly learn the IoT device environment (Prabavathy et al., 2018).  

Xu et al. (2018) proposed an enhanced hardware design that detects buffer overflow 

attacks in IoT environments. The two major enhancements in the design are: (a) instruction 

monitoring and behavior during the program execution, and (b) secure tag validation to 

monitor different attributes of memory segments. Results showed that the proposed method 

was successful in detecting a variety of buffer overflow attacks. In many scenarios, cloud 

computing plays a vital role for managing and controlling the security of IoT networks and 

devices. Virtualization, on the other hand, represents a key element of building and using 

cloud computing (Xu et al., 2018). Modi and Acha (2017) discussed different types of 

vulnerabilities that exist in virtual environments related to cloud computing and proposed 

methods for intrusion detection and intrusion prevention to mitigate such attacks. They 

pointed out some of the key requirements for an IDS system suitable for cloud virtualization 

layer (Modi & Acha, 2017). Lee et al. (2018) proposed a testbed for evaluating whether the 

current industrial intrusion detection systems are suitable for next-generation power control 

systems and the communications and connections methods used. Using the suggested testbed 

new security methods could be implemented against power control systems to determine their 

effectiveness (Lee et al., 2018).  

Salah et al. (2011) conducted a study on intrusion detection and prevention systems for 

smartphones, an understudied area. The authors proposed a new Smartphone Intrusion 

Detection System (IDS) that can prevent many attack types intended for smartphones. The 

system is designed to cover deficiencies with prior smartphone IDSs (Salah et al., 2011). 

Santos et al. (2018) conducted extensive research on the current use of intrusion detection 

systems in the IoT environment in order to identify issues still not fully addressed and 

determine research directions for future IDS systems. The authors discussed characteristics of 

IDSs such as detection methods and placement strategy (Santos et al., 2018). Mittal and 

Vijayal (2018) analyzed the various attack types that occur in an IoT environment. The 

authors discussed different techniques to address such attacks focusing on the ontology-based 
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intrusion detection method. Ontology is defined as the concept of interpreting real world 

devices to provide information about various things (Mittal & Vijayal, 2018). 

2.4. IoT Privacy Protection 

Another key element of smart home security is ensuring that all users’ private information 

is stored securely in the system. Users’ sensitive data should be protected whether the data is 

at rest, in transit, or during the processing phase. Rutledge et al. (2017) conducted a study that 

analyzes the impact of the IoT devices on users’ privacy. The researchers specifically focused 

on users' private data as exposed by smart TVs. They concluded that smart TVs pose a 

privacy threat to their users, yet users are unaware of it. Moreover, some manufacturers 

purposely invade users’ privacy by allowing smart TVs to connect to their backend servers 

and report different users’ information (Rutledge et al., 2017).  

Xi and Ling (2017) performed research on IoT devices’ privacy issues and suggested a set 

of guidelines to protect IoT device users’ privacy, such as speeding up policies that enhance 

system security, advancing and improving the technology for IoT privacy protection, and 

improving users’ privacy awareness (Xi & Ling, 2017). Song et al. (2017) proposed a system 

that protects users’ privacy called the smart home system (SMS). The proposed system is 

based on symmetric key encryption that uses cryptographic key generation to protect the data 

flow in the smart home network. The authors confirmed that the new system was found 

efficient and increased security of smart home systems (Song et al., 2017). Daubert et al. 

(2015) proposed a system that creates a relationship between privacy information and trust. 

The idea behind their method is to establish levels of trust for personally identifiable 

information (PII); they illustrate with new mapping between privacy and trust so that privacy 

can be expressed in terms of factors like location and identity. The suggested system works as 

a mediator between the user privacy and a service provider that needs a PII to provide a 

service. The system measures the level of trust for the service provider and provides the user 

with the trustworthiness level of the service. The user can decide based on the information the 

system provides whether to use the service or not (Daubert et al., 2015). 

Liu et al. (2017) proposed another privacy protection system for smart home applications 

used by places like hotels. Here, public key cryptography is used with secret keys generated to 

protect the flow of the data. A Certificate Authority server is assigned to issue a digital 

certificate to each user, in this case the hotel guest. According to the authors, system tests 
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showed promising results that can better protect the smart home application systems (Liu et 

al., 2017). Dorri et al. (2017) proposed a privacy security method based on Blockchain 

technology. Evaluation and results showed that the proposed system provided effective 

security for home IoT in terms of confidentiality, integrity, and availability. The known 

drawbacks of implementing Blockchain such as latency of transaction processing and 

increased power consumption are found to be negligible compared to the advantages of 

security (Dorri et al., 2017).  

Zavalyshyn et al. (2018) introduced a system called HomePad to protect users’ privacy. 

The system works by using graphs of elements that follow prolog rules. The user defines their 

own privacy policy. Using those graphs, HomePad can determine when IoT applications 

violate user policies. The authors indicated that HomePad has low overhead and is very 

flexible to use (Zavalyshyn et al., 2018). Hussain and Qi (2018) conducted a comprehensive 

study about smart home security, network communication protocols used, type of typical 

attacks, and privacy issues. The aim of the study was to protect privacy against some of the 

known attack types such as man-in-the-middle, which mostly targets user sensitive 

information. This study can be very useful for researchers just getting started with smart home 

security and privacy topics (Hussain & Qi, 2018). Miettinen and Sadeghi (2018) introduced 

an approach based on context-based pairing that identifies IoT devices based on their 

communication behaviors. For instance, devices that are in the same place (e.g., room) tends 

to have similar behavior. This helps automatic device identification. In this fashion, devices 

that violate or leak user sensitive information can be accurately identified and excluded. Their 

approach uses machine learning for device-type identification (Miettinen & Sadeghi, 2018).  

Ukil et al. (2015) proposed a framework called Dynamic Privacy Analyzer that can 

analyze and detect private information in smart energy management systems such as a smart 

meter. The proposed solution can detect leaked information before it gets to a third party. The 

system also protects against Non-Intrusive Load Monitoring (NILM) attacks. Furthermore, 

the proposed solution is generic enough to work with other IoT devices such as sensors and 

can protect user privacy with data generated by those devices as well (Ukil et al., 2015). Lee 

et al. (2017) proposed a smart home privacy protection system that can be implemented in 

community public housing. The system consists of three main components: the home 

controller, the community broker, and the cloud platform. The home controller is responsible 
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for collecting, hiding, and aggregating private data collected from within the smart home 

environment. The data collected by the home controller is sent to the community broker, 

which acts as a privacy protection mechanism for the whole community that includes tens or 

hundreds of homes. The community broker further de-identifies the information and separates 

the sensitive information that pertains to the community and delivers aggregate information to 

the cloud platform. The cloud platform acts on and analyzes public information that applies to 

multiple communities. The authors provided a hierarchy for preserving private information 

(Lee et al., 2017).  

Zhou et al. (2019) suggested a privacy preserving online Energy Offer (EO) 

recommendation system that studies and analyzes the interactions between the user and 

energy-saving appliances. The proposed system achieved good results and can protect 

privacy, enhance performance, and increase energy savings for users (Zhou et al., 2019). 

Despite the usefulness of this system, the solution targets only one area where private 

information is leaked from smart energy-saving appliances. However, the smart home could 

have IoT devices other than smart appliances that can leak private information. Shin et al. 

(2017) proposed a solution that enhances existing solutions that uses PMIPv6 with Route 

Optimization (RO) in the smart home environment. The proposed solution relies on the 

relation between mobile nodes and the smart home and uses mutual authentication and key 

exchange to provide better RO security and privacy. The authors claimed that their solution 

was validated via BAN-logic and Automated Validation of Internet Security Protocols and 

Application (Shin et al., 2017). However, it is not proven yet that IoT home devices can 

support cryptographic key exchange protocols for security given their resource-constrained 

nature. In Meng et al. (2018), current security and privacy challenges were fully surveyed, 

and a novel system to protect against voice attacks in the home environment was proposed. 

The system detects signals generated from various IoT devices within the home environment 

and detects and analyzes users’ voice commands. The system is capable of authenticating 

users’ voices and protecting against voice attacks. (Meng et al., 2018). Even though the idea 

of authenticating users’ voice signals is innovative, attacks that target smart home 

environments can come via many sources other than voice commands. A more comprehensive 

solution that covers a wide range of attack types is needed to fully protect the smart home 

environment.  
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Geneiatakis et al. (2017) proposed a smart home architecture model that can be used to 

assess the security and privacy issues that arise from the various interactions between IoT 

devices and users. The proposed architecture can be used to analyze attacks such as 

exploitation attacks, DoS attacks, and eavesdropping attacks (Geneiatakis et al., 2017). 

Tomanek and Kencl (2016) performed an extensive study about AllJoyn, a framework used to 

connect all IoT devices and smart appliances to the global network. The study concentrated on 

analyzing the security and privacy issues that are expected to arise from implementing 

AllJoyn in smart homes and buildings. The authors’ effort was to introduce and encourage 

researchers to study this unforeseen issue and be proactive in proposing solutions to help 

make this transition easier (Tomanek & Kencl, 2016). Sivaraman et al. (2018) conducted a 

study where they analyzed the security and privacy concerns of several IoT devices. The 

authors gathered information from various IoT devices, consumers, suppliers, and even 

regulators to understand the concerns that each category has regarding IoT vulnerabilities. 

They proposed a solution that addresses these concerns (Sivaraman et al., 2018).  

Shayegh and Ghanavati (2017) proposed a solution that enhances the user’s understanding 

of consumers’ IoT privacy notices and policies. The researchers studied the privacy notices 

associated with 25 IoT devices and found that the language used was mostly unclear for the 

normal user to understand what risks these devices bring to their private information. The 

proposed solution allows the user to better understand these privacy notices and policies and 

thus make an informed decision about whether to use the IoT device or not (Shayegh & 

Ghanavati, 2017). Psychoula et al. (2018) conducted an online survey about users’ 

understanding of privacy concerns associated with IoT devices. The survey covered a wide 

range of consumers—males and females of different ages, education, and ethnic and cultural 

backgrounds. Upon gathering users’ responses, a solution was proposed to address users’ 

privacy concerns (Psychoula et al., 2018).  

2.5. Chapter Summary 

This chapter presented the major research conducted in the fields of home IoT security 

and intrusion detection systems (IDS) to protect the smart home environment. We also 

discussed methods used by prior researchers to protect the smart home environment. We 

concentrated on anomaly-based IDSs that leverage machine learning methods since this is the 

approach adopted in our solution. There is relatively little work conducted in the field of 
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security for home IoT environment since this field is fairly new. Most of the topics, especially 

security-related topics, are still open for research. Our solution for securing the smart home 

environment is an effort to enhance what prior solutions lack. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

This research follows Peffers’s research methodology that suggests seven steps for 

carrying out design science research (Peffers et al., 2008). These seven steps include Problem 

Identification and Motivation, Objectives of the Solution, Design and Development, 

Demonstration, Evaluation, Communication, and Contribution. In the rest of this chapter we 

demonstrate how our research follows each of these steps. 

3.1. Problem Identification and Motivation 

The identified problem is that there is insufficient security in the smart home environment. 

The heterogeneity of IoT devices from different manufacturers in the smart home 

environment makes finding a standard solution to secure the smart home a very challenging 

task. The Internet of Things is still a very new research topic compared to other branches of 

knowledge and even compared to other information technology areas. Security of IoT 

environments is a subset research branch of IoT. Despite many studies having been conducted 

on the security of IoT environments and the security of smart home environments specifically, 

there are still many gaps that need to be addressed. This is due to many reasons: (a) a huge 

number of IoT devices from different manufacturers with more coming to market daily makes 

it very difficult to address or come up with a standard security that works for all of them; (b) 

the large number of IoT devices released with little or no security implemented on them make 

them targets for hackers who can take advantage of these devices’ vulnerabilities and perform 

all kinds of illegal activities; (c) home IoT devices are more vulnerable than IoT devices 

related to other environments such as Industrial IoT, Healthcare IoT, or Corporate IoT. 

Corporate, industrial, and healthcare providers can pressure or force their IoT devices’ 

manufacturers to implement some security in their devices when designing them. However, 

homeowners cannot pressure and enforce such policies. Thus, most home IoT devices have 

very little (or zero) security implemented on them. This problem is the major factor that 
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motivates us to carry out this research. We would like to present an innovative solution to 

secure the smart home environment.    

3.2. Objectives of the Solution 

This research aims to develop a solution that overcomes the limitations of previous 

solutions. The objectives of the solution are as follows:  

1. The solution must protect all IoT devices in the smart home and not target only part 

of the home IoT devices. To further explain this point, we have seen some of the 

solutions in the literature review that target part of the smart home environment. For 

instance, some solutions tried to mitigate attacks that target smart meters to manipulate 

energy consumption. Although solutions targeting part of the smart home environment 

are useful, we are looking for a generic and standard solution that protects the entire 

smart home environment. Our proposed solution should act as a funnel that protects 

the smart home against all exterior attacks. It should also better secure the smart home 

environment when compared to other solutions.  

2. The solution must be easy to implement and operate by a normal non-technical 

homeowner. To further explain this criterion, we believe that to assess whether a 

solution is successful or not, it is crucial that a solution is simple to implement and 

use. This is especially important if the solution is intended for a normal non-technical 

homeowner. It is not enough for a solution to effectively mitigate attacks successfully; 

if a user finds it difficult to implement or use the solution, they will simply ignore it. 

At that point, whether the solution is effective or not does not matter. A solution 

should be as simple as possible so that a homeowner with basic knowledge can 

implement and use it. 

3. The solution must be efficient and should not hinder the performance of the smart 

home network. Efficiency is a very important factor when designing a solution for a 

smart home environment. If a solution is both powerful in detecting threats and simple 

to use but consumes a lot of resources that hinders performance and causes slowness 

in the smart home network, it is not desirable. Implementing a heavy solution has 

many disadvantages such as slowing the operations and/or performance of IoT devices 

and other non IoT devices connected to the home network. An ideal solution is 

lightweight and efficient, using a limited amount of memory and space. 
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3.3. Design and Development 

In this research, we designed and developed an artifact, an instantiation in this case, which 

is a framework for protecting the smart home environment. The solution is intended to resolve 

the problems identified in 3.1 above. To follow Peffers’ guidelines for designing our artifact, 

we must describe in detail each part of the artifact design. To that end, we used diagrams to 

represent different parts and features of our solution. Diagrams are used to explain the 

working of the solution and how each part integrates with other parts to form a complete 

picture. After solution design, comes the actual development of the solution, which focuses on 

converting the design into an actual working product. In our case, this is where we converted 

our design into programming code that formed a working application. This step is crucial 

when implementing Peffers’ design methodology as it clearly identifies what the artifact looks 

like and what each part of the design means. The design and development of the artifact will 

be described further in Chapter 4.  

3.4. Demonstration 

This step describes how our artifact works to accomplish its intended purpose. The 

difference between the design and development step and the demonstration step is that design 

and development describe the details of the artifact for each part while the demonstration step 

concentrates on describing how the artifact works. The artifact solution is fully demonstrated 

in Chapter 5. We give an overview of the whole solution and then describe each of the inner 

components and how they work in detail, illustrated by diagrams. 

3.5. Evaluation 

Every solution must be evaluated; otherwise, there is no evidence that the solution 

performs as designed. An evaluation plan should be clearly defined to assess the solution, and 

results should clearly show whether the solution performed acceptably or not. Still, a solution 

can be evaluated in many ways. For instance, tests can be prepared to run against the solution 

with a known threshold that a solution must pass to be acceptable or successful. Another 

method of evaluation is to compare the solution against other similar solutions and show that 

the new solution performed better as determined by the results of the test. Chapter 6 shows 

our solution’s evaluation; we used four different methods to evaluate our solution ranging 

from comparing it to other solutions to running simulation tests in various environments. 

These four evaluation methods provide clear measures of our artifact’s performance. 
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3.6. Communication 

Communication is an essential part of Peffers’s research methodology. Developing a good 

solution that resolves a problem with a good design and development that also evaluates 

successfully is not much good if no one knows about it. When a solution is evaluated to 

successfully solve an existing problem in a beneficial way, it should be communicated to the 

research community so that everyone can benefit from it. Other researchers can build upon the 

solution, which may result in a better version of the solution. The solution may be 

communicated via conferences or publication in scientific magazines and journals. In our 

scenario, upon approval of this dissertation, we will communicate our research outcomes to 

the cybersecurity research community through the writing and publication of our dissertation 

document.  

3.7. Contribution 

We want to contribute real knowledge to the research community in our field—in this 

case the smart home security branch of knowledge. Our solution must contribute valuable 

knowledge that either solves a problem or advances the research toward solving a problem. In 

this case, the artifact itself, the IoT-HASS framework, is our contribution since the evaluation 

and proof we demonstrate in subsequent chapters adds to and advances the knowledge in the 

field of smart home security.  

3.8. Chapter Summary 

This chapter described the methodology that we followed when conducting this research. 

We illustrated that we followed Peffers’s design science research methodology. This type of 

methodology is perfect for our research since we are developing an artifact solution. Peffers’s 

methodology is suitable for the Information Technology field especially when the research 

involves creating an artifact. In this chapter we described how our research satisfies all seven 

pillars of Peffers’s design research science methodology. 
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CHAPTER 4 

IOT-HOME ADVANCED SECURITY SYSTEM (IOT-HASS) 

This chapter introduces our artifact solution for securing the smart home environment; we 

call it the IoT-Home Advanced Security System (IoT-HASS). IoT-HASS is a comprehensive 

solution to secure home IoT devices that aims to overcome the shortcomings of other home 

IoT security solutions. The IoT-HASS is composed of three main engines. The first and main 

one is an anomaly-based network intrusion detection and prevention engine that monitors the 

smart home network for malicious traffic and flags any suspicious transactions that it detects. 

The second engine is a device management engine that ensures all devices within the smart 

home network are legitimate ones. The third engine is a privacy monitoring engine that scans 

traffic for information transmitted in plaintext format. The rest of this chapter explains an 

overview of the design of the IoT-HASS framework followed by the design of each engine. 

4.1. IoT-HASS Architecture Overview 

IoT-HASS can be installed in a Raspberry Pi 4, which can then either act in an in-line 

mode that is connected directly to the modem in-line with the traffic, or it can act in a passive 

mode connected to the router. In the first setup, IoT-HASS sits in-line with the traffic, 

monitoring Internet traffic that passes to/from the Internet Service Provider (ISP) and allows, 

alerts, or blocks packets as it assesses them. In the second setup, IoT-HASS acts as an IDS 

that only monitors and alerts the users. IoT-HASS cannot block threats in this setup since it is 

not in-line with the traffic. The first scenario is preferable since the Raspberry Pi acts as a real 

router sitting in-line with the traffic and intercepting all traffic from and to the internet. 

Figures 15 and 16 explain the two scenarios where IoT-HASS can operate in in-line or 

passive mode. 
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Figure 15. IoT-HASS In-Line Mode Installed in a Raspberry Pi 4 and Acting as an IPS that 

Can Detect and Block Threats 

 

 

 
Figure 16. IoT-HASS Passive Mode Installed in a Raspberry Pi 4 Acting as an IDS Passively 

Monitoring the Traffic 

Figure 17 shows the architecture of the IoT-HASS and how the incoming and outgoing 

traffic flows when in an in-line mode. The incoming and outgoing traffic are primarily 

monitored and analyzed by the intrusion detection and prevention engine. If a packet is found 

suspect, the user is alerted, and the packet is blocked. The privacy monitoring engine inspects 

outgoing packets for plaintext. If found, the user is alerted and provided with the IP and MAC 

addresses of the device that leaked the unencrypted information. The user is further advised to 
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disconnect the device. The device management engine validates any IoT device that attempts 

to connect to the home network, identifying valid devices added by the homeowner.  

 
Figure 17. The Architecture of the IoT-HASS and the Traffic Flow 

4.2. The Device Management Engine 

The Device Management (DM) engine is responsible for validating IoT devices within the 

smart home environment. It is intended to ensure each device is legitimate and added by the 

user and not a hacker-controlled device intended to act as a man-in-the-middle. IoT device 

authentication is not an easy task since these devices are resource constrained by the nature of 

their design; they do not have the needed resources for implementing cryptographic 

authentication algorithms such as Public Key Infrastructure. There are many challenges when 

addressing device management problems in a smart home environment, as described below. 

4.2.1. Challenges to Device Management 

The main challenges we are trying to resolve via this research include the following: 

1. Identifying each device as an authentic, real device connected by the homeowner. 

2. Flagging any unidentified device that might be a fake or virtual device created by an 

attacker in the home network. 



46 

4.2.2. IoT-HASS Device Management (IoT-HASS-DM) 

4.2.2.1 Device Identification 

Device identification is the most important task in the device management mechanism. 

We need to ensure that all IoT devices are authentic and added by the homeowner rather than 

created by an intruder. Our approach relies on performing a periodic network scan to 

identify/re-identify devices within the smart home network. Whenever the user starts their 

computer, IoT-HASS starts running to scan all wireless devices in the smart home network 

automatically. The scan gathers specific device information from the home network such as 

the device IP, MAC address, and vendor if possible. This information is saved in a database 

table called ‘Home_IoT_Devices’ for comparison with the next scan result. There are two 

modes for IoT-HASS, the in-line mode and the passive mode, and the device management 

differs according to the mode of operation. The initial scan for the home network provides a 

list of IoT devices. However, for the in-line mode, the initial scan automatically 

disables/blocks all IoT devices until the user unblocks them from the GUI. In the case of 

passive mode, since it is not possible to block the device, the user must verify each device via 

the GUI. The user is alerted to physically disconnect a suspicious device in this mode.  

4.2.2.2 Flagging Unidentified Devices 

The process of identifying the IoT device is left entirely to the homeowner. This is 

because the homeowner is the one who purchased all the devices and knows which one 

belongs to their home. IoT-HASS can detect if an IoT device is infected or not but cannot 

determine if a device is valid or not. A fake device might look very legitimate with all 

characteristics of an authentic device such as IP and MAC addresses. The user can review all 

device information. Alerts via the user interface must be acted on appropriately when finding 

any suspect device.  

4.3. The Intrusion Detection and Prevention Engine 

The intrusion detection/prevention engine is the core engine of our artifact solution. There 

are many challenges when establishing such a system in a smart home environment.  

4.3.1. Challenges to Intrusion Detection and Prevention System 

The challenge here is to establish an Intrusion Detection and Prevention System to detect 

all malicious activities within the smart home environment. The system must have a corporate 

level of efficacy and performance but at the same time have the ease and flexibility to 
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conform with a typical homeowner’s technical ability. Since threats need to be detected from 

both incoming and outgoing traffic, the IDS/IPS system can be installed either in-line with the 

traffic (in-line mode) or not in-line with the traffic (passive mode). 

Our IDS/IPS for the smart home environment has the following criteria: 

1. The system should run 24/7 monitoring the home environment without the need for 

the homeowner to interfere or operate anything. 

2. The system should detect old and new threats. 

3. The system should have a simple and easy-to-use user interface that a normal non-

technical homeowner is comfortable using.  

4. The system should be efficient without noticeable effect on the network performance. 

5. The system should integrate seamlessly with other engines and components of the 

IoT-HASS framework to produce the best experience for protecting the smart home 

environment. 

4.3.2. IoT-HASS Intrusion Detection/Prevention (IoT-HASS-IDS/IPS) 

Below is a detailed description of our proposed solution to overcome each of the 

challenges listed above: 

1. To overcome the challenge of a system running 24/7, we created and enabled a 

SYSTEMCTL service to run the system as a service that starts when the user starts the 

machine. Since our Proof of Concept (POC) is implemented on a Raspberry Pi 4, it runs 

24/7 similar to a modem or a router running all the time. There are two setups for IoT-

HASS here: 

• IoT-HASS In-line Mode: IoT-HASS is installed on a Raspberry Pi 4 that is 

configured as a router connected to a modem. In this scenario, the IDS/IPS engine 

is installed on the Raspberry Pi 4 capturing traffic before it gets to the smart home 

network and thus can allow/block packets as it analyzes them. 

• IoT-HASS Passive Mode: IoT-HASS is installed on a Raspberry Pi 4 connected to 

the home routers through an ethernet port. In this setup, IoT-HASS does not sit in-

line with the traffic, and thus it can only passively detect threats. It alerts the user 

but cannot block threats. 

2. To overcome the challenge of detecting both old and new threats, we created our 

system as an anomaly-based Network Intrusion Detection and Prevention System that 
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monitors traffic for all IoT devices in the home network. In contrast to a signature-based 

NIDS, an anomaly-based system does not need an update to detect newer threats; instead, 

it matches packets to a saved profile to predict whether it is a normal or an attack packet. 

Of course, the system should be trained on newer attacks to keep it up to date. Updating 

should occur every few months or whenever a new training dataset equipped with new 

attacks is ready. If a NIDS system is not trained with newer attacks, it will still flag any 

packets that do not match the normal ones as an attack. The consequence of this is a 

greater number of false positives, meaning normal packets are identified as attacks, which 

is still better than a signature-based system that does not have a signature for a new attack. 

A signature-based system allows an attack if there is no signature assigned for it.  

3. To overcome the challenge of the user interface, we designed and developed a simple 

yet effective user-friendly interface that allows the user to monitor threats in a smart home 

environment. 

4. To overcome the system efficiency challenge, we used simple algorithms when 

developing the solution and avoided (as much as possible) tasks that involve heavy 

processing like deep packet inspection. Deep packet inspection, even though it does more 

analyses for the packet since it analyzes both features and data within the packet to 

determine if the packet is a good or malicious one, affects network performance 

dramatically. Since our system is intended for home IoT devices, which are resource-

constrained devices, the solution should be both efficient and lightweight in order to 

seamlessly operate on the smart home network.  

5. To overcome the last challenge, we designed the IDS/IPS engine to integrate with the 

Device Management engine and the Privacy Monitoring engine in such a way that it easily 

shares information with them to better protect the home network. This means the flow of 

traffic to and from one engine must either come and/or go to the other engine. No engine 

in the three engines works as a separate entity by themselves.  

As discussed above, the intrusion detection and prevention engine is an anomaly-based 

NIDS that is developed based on machine learning such as Decision Trees (DTs) and Support 

Vector Machines (SVM). In the design and development of this engine, we tried several 

machine learning methods and compared their accuracy and performance so that we could 

eventually implement the one providing the best results. Although different methods were 
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tried during the research, the idea is the same: we developed a model in each case that we 

trained using an experimental training dataset, which is, in our case, the Canadian Institute of 

Cybersecurity 2017 Intrusion Detection Dataset (CICIDS2017). The training dataset's 

columns include features of a typical network packet. Those features represent the 

independent variables with the last column being the dependent variable. Its value is marked 

as either ‘Attack’ or ‘Normal’ indicating whether the observation is an attack packet or a 

normal packet. Upon completing the training, the model is tested using a subset of the 

experimental dataset. The experimental dataset is typically divided into 70% training dataset 

and 30% test dataset; however, these percentages can vary slightly sometimes. 

The intrusion detection and prevention engine is further composed of four main modules: 

the traffic filtering module, the features selection module, the analysis and detection module, 

and the alert and prevention module. These four modules work together to complete the 

operation of the intrusion detection and prevention engine. In the next sections we will 

describe the working of each of these four modules in details. Figure 18 shows the design and 

working of the intrusion detection and prevention engine.  

4.3.2.1. The Traffic Filtering Module 

This module filters network traffic based on packet elements such as the following: 

1. Protocol Type, e.g., TCP or UDP. 

2. Class of Service, e.g., HTTP or Telnet. 

3. Source or Destination IP. 

4. Source or Destination Port Number. 

For now, the default filtering is by HTTP and TCP protocol as we are primarily interested 

in web packets. In the future we might include more protocols to analyze. This filtering helps 

in limiting the number of packets to analyze as well as in providing information like the 

source IP for the attack or the IP of the infected device. 

4.3.2.2. The Features Selection Module 

After packets are filtered, they are forwarded to the feature selection module, which 

selects important features from the packet that are used in predicting if the packet is an 

‘attack’ or not. Examples of packet features are protocol type, class of service, source and 

destination IPs, source and destination ports, and other important features. Machine learning 

algorithms such as DTs use those features as independent variables to predict the dependent 
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variable, which determines whether this packet is an attack or not. Features normally have a 

different level of importance when it comes to predicting the dependent variable. The 

machine learning algorithm decides the level of importance or impact of each feature. 

4.3.2.3. The Analysis and Detection Module 

After features are selected from a packet, they are forwarded to the analysis and detection 

engine as a one-dataset observation. The analysis and detection module predicts if this packet 

is an attack or not by comparing it to a saved profile, obtained during the training phase, for 

both attack and normal packets. If the packet is found to be an attack, this triggers a call to the 

alert and prevention module, which blocks the suspect packet and informs the user that a 

threat was found and blocked.  

4.3.2.4. The Alert and Prevention Module 

If the packet is found malicious by the analysis and detection module, this module is 

called. This module blocks the packet from getting into the home network. One task for this 

module is to send an informational alert to the user informing her that a threat was detected 

and blocked or removed from the system. If the alert includes any IP or MAC address, the 

user is advised to disconnect that device from the network. 

 
Figure 18. The Working of the Intrusion Detection and Prevention Engine 
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4.4. The Privacy Monitoring Engine 

In a smart home environment, the homeowner's private information is at risk. Despite the 

ease and convenience that home IoT devices provide to the user, they collect all kinds of data 

that might include sensitive information about the homeowner. The following are a few 

examples of such scenarios: 

1. Wearable fitness tracker devices monitor users’ steps, distance, calories burned, 

and heart rate. The information can be delivered to the device manufacturer 

who can sell the information to third parties that use them for goods and 

services targeting the consumer. 

2. The Amazon Alexa device eavesdrops on the user’s conversations in the home 

environment and records everything. This allows the device to recognize the 

voices of household members and their different habits without their awareness. 

3. Smart refrigerators record the user habits for ordering food and the frequency of 

ordering a specific type of food or drinks. 

4. Smart TVs record the users’ habits for watching different channels and programs and 

send the information to vendors. 

5. Smartphones have a GPS sensor that always detects the phone’s location.  

There are many other examples where the user's private information is being collected and 

sent without the user’s awareness. The user is often unaware of the Terms of Use when 

connecting the device for the first time, which authorizes the manufacturer to lawfully collect 

and use, share, or sell this information.  

4.4.1. Privacy Monitoring Engine Description 

The IoT-HASS framework monitors and alerts the user about private information leaked 

in a plaintext format and notifies the user if such information is detected. To identify the 

information transmitted in plaintext, we propose a method with the following steps: 

1. Monitor outgoing traffic 24/7 from all IoT devices. 

2. Capture any unencrypted data from the packet payload found in Step 1 by applying an 

algorithm to determine unencrypted text based on an entropy value such as the 

Shannon Entropy Test, which is a method to estimate the average minimum number of 

bits needed to encode a string of symbols based on the frequency of the symbols. This 

test can be used to determine which packets are unencrypted. To find if a text is 



52 

encrypted, let X be a random variable that takes on possible values P1, P2…, Pn. P(x) 

is the probability that X = pi. Shannon Entropy equation states that: 

 
Formula 1. Shannon Entropy Test 

3.  If any unencrypted data is found as a result of step 2, then the device that responsible 

of the leak must be identified. Identification can be accomplished by finding the 

device IP and MAC addresses in the packet. 

4. Alert the user to disconnect the device and/or contact manufacturer to find whether an 

updated firmware that supports encryption is available. 

The privacy monitoring engine inspects packet payload for plaintext, which might include 

PII. PII is information that relates to the user's privacy and needs to be protected, such as 

information about the user's social security numbers, bank accounts, home address combined 

with name, and date of birth. PII can also be information that relates to the user's medical 

conditions or history.  

Figure 19 shows the flow of incoming traffic to the smart home via the IoT-HASS. Figure 

20 shows the flow of the outgoing traffic from the smart home passing through the IoT-HASS 

framework. 
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Figure 19. An Overview of the Incoming Traffic to the Smart Home via IoT-HASS 

Framework 

 
Figure 20. An Overview of The Outgoing Traffic from The Smart Home via IoT-HASS 

Framework 
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4.5. Chapter Summary 

This chapter discussed the details of our artifact solution. The IoT Home Advanced 

Security System or IoT-HASS is an efficient, powerful yet easy-to-use system designed to 

secure the smart home environment. IoT-HASS protects the whole home network rather than 

targeting specific devices or sets of devices. IoT-HASS includes three engines. First engine is 

the intrusion detection and prevention engine, which represents the core engine of the 

framework. This engine can either work in an in-line mode or passive mode depending on the 

setup. The IDS/IPS engine is further composed of four modules that include the traffic 

filtering module, the feature selection module, the analysis and detection module, and the alert 

and prevention module. Engine two is the device management engine, which scans various 

devices connected to the home network and displays them to the user via a GUI interface for 

further verification by the homeowner. The homeowner can block a suspicious device or 

disconnect it physically from the home network depending on the setup of IoT-HASS. The 

privacy monitoring engine is the third engine and monitors whether a device is transmitting 

information in plaintext format, while IoT-HASS is running, and if it does it reports to the 

user its IP and MAC addresses. Future research includes more enhancements for this engine 

to promote it to a full privacy protection engine. 
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CHAPTER 5 

IOT-HASS DEMONSTRATION 

In the previous chapter, we described the different engines and modules that make up our 

solution (IoT-HASS). This chapter concentrates on demonstrating the different components 

that we selected when developing our artifact solution. The topics discussed in the chapter 

include how we chose or developed the best machine learning algorithm to use for building 

our model and which dataset we chose to train that model and why. 

5.1. Intrusion Detection Evaluation Dataset 

An intrusion detection dataset is a dataset that is intended to test the strength of an 

intrusion detection system. Such dataset is normally filled with various cyberattacks that 

target networks. Attacks such as DoS, DDoS, Port Scanning, and Brute Force are among 

those found in an intrusion detection dataset. These datasets are normally created by 

researchers in laboratories under a specific set of requirements and conditions. Several 

intrusion detection system datasets are available today. However, some are very old and 

include outdated attacks that do not reflect today’s real-world attacks. When choosing an 

intrusion detection dataset, a researcher should select one that has the most current attacks 

resembling or identical to real-world ones.  

5.1.1. Choosing the Right Dataset 

 There are two ways to choose the dataset: 

1. Creating a dataset from scratch satisfies the purpose of the experiment, which is to 

train our model to recognize different attack types. Yet preparing a good intrusion 

detection dataset for an IoT is not an easy task. The researcher should have the time 

and capabilities to run, capture, and label different types of attacks. The process of 

developing an accurate dataset can take days. This method is preferred if the 

researcher has the right tools to do it. 

2. The other method is to use one of the existing intrusion detection datasets. If choosing 

this route, the researcher must ensure that the dataset has a variety of attacks that 
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mimic real-world scenarios. The researcher should also make sure that the chosen 

dataset works for intrusion detection in IoT. 

In this research we chose to go with the second method since there are a few datasets that 

are suitable for our experiment and also, we did not have the tools or capabilities to choose 

the first method of creating a dataset from scratch. The dataset we selected to use is the 

Canadian Institute of Cybersecurity Intrusion Detection Dataset (CICIDS2017) that was 

released in 2017 and is updated frequently. This dataset includes a variety of attack types that 

are enough to train our model. 

5.1.2. The CICIDS2017 Dataset 

The CICIDS2017 dataset was created to overcome problems that accompanied the eleven 

datasets created prior to its creation. Prior datasets such as DARPA98, KDD99, ISC2012, and 

ADFA13 are mostly out of date and suffer from a lack of diversity and volume of attacks. The 

CICIDS2017, on the other hand, includes benign data and a variety of most attack types that 

are available in the real world today. The dataset includes more than eighty features created 

with a network flow generator tool called CICFlowMeter. CICFlowMeter generates a 

bidirectional flow of data, meaning the forward packet indicates a flow from source to 

destination and a backward packet indicates a flow from destination to source. CICFlowMeter 

generates a total of 83 features. The CICIDS2017 dataset was created July 3-7, 2017 and 

includes Brute Force attacks, DoS attacks, Heartbleed attacks, Web Attacks, Infiltration 

attacks, Botnet attacks, and DDoS attacks (Sharafaldin et al., 2018). Sharafaldin et al. (2018) 

conducted extensive research about prior intrusion detection datasets and came up with a set 

of criteria for building a reliable benchmark dataset. Upon establishing these criteria, they 

created the CICIDS2017 dataset (Sharafaldin et al., 2018). Sherafaldin et al.'s (2018) criteria 

include the following: 

1. A complete network configuration that includes typical network devices such as 

modems, switches, and routers together with acknowledgement of different operating 

systems such as Windows, Linux, and MAC OS. 

2. Complete traffic consisting of a user agent with multiple machines, twelve at least 

representing the victim network, and another network to launch the attacks from. 

3. Complete capture of traffic, meaning that all traffic should be captured and recorded in 

some sort of computer storage or hard desk. 



57 

4. Benign and attack packets should be clearly labeled. 

5. Complete interaction when capturing different attacks and benign data covering within 

and between an internal LAN network. 

6. The dataset should include the common available protocols such as HTTP, HTTPS, 

FTP, SSH, and e-mail protocols. 

7. A diversity of attacks such as Web attacks, Brute Force, DoS, DDoS, Infiltration, 

Heart-bleed, Bot, and Port Scan. 

8. There should be heterogeneity when capturing attacks from victim machines. For 

instance, attacks should be captured from multiple sources such as at the main switch, 

in memory dump, and in system calls. 

9. The dataset should have a rich feature set. More features help and expedite the 

prediction of the independent variable.  

10.  The dataset should have a good metadata that clearly describe the flows, attacks, and 

time when the attacks are captured (p. 114). 

The CICIDS2017 is very suitable for our research purpose for the following reasons: 

1. It is an intrusion detection dataset. 

2. It has the most recent attacks that mimic today’s real-world attacks. 

3. It is updated frequently with new attacks. 

4. It is being used by other researchers for intrusion detection in IoT environments. 

The CICIDS2017 dataset has over 80 features generated by the CICFlowMeter. Table 1 

below shows the bi-directional features generated by CICFlowMeter and from which features 

for CICIDS2017 are selected (Lashkari et al., 2017). 

Table 1. Bi-Directional Flow Features Generated by CICFlowMeter (Lashkari et al., 2017)  

Feature Name Description 
Feduration Duration of the flow in Microsecond 
Flow Feduration Duration of the flow in Microsecond 
total FWwd Packet  Total packets in the forward direction 
total Bwd packets  Total packets in the backward direction 
total Length of Fwd Packet Total size of packet in forward direction 
total Length of Bwd Packet  Total size of packet in backward direction 
Fwd Packet Length Min  Minimum size of packet in forward direction 
Fwd Packet Length Max  Maximum size of packet in forward direction 
Fwd Packet Length Mean  Mean size of packet in forward direction 
Fwd Packet Length Std Standard deviation size of packet in forward 
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direction 
Bwd Packet Length Min  Minimum size of packet in backward direction 

Bwd Packet Length Max  Maximum size of packet in backward 
direction 

Bwd Packet Length Mean  Mean size of packet in backward direction 

Bwd Packet Length Std  Standard deviation size of packet in backward 
direction 

Flow Byte/s  Number of flow packets per second 
Flow Packets/s  Number of flow bytes per second 

Flow IAT Mean  Mean time between two packets sent in the 
flow 

Flow IAT Std  Standard deviation time between two packets 
sent in the flow 

Flow IAT Max  Maximum time between two packets sent in 
the flow 

Flow IAT Min  Minimum time between two packets sent in 
the flow 

Fwd IAT Min Minimum time between two packets sent in 
the forward direction 

Fwd IAT Max Maximum time between two packets sent in 
the forward direction 

Fwd IAT Mean  Mean time between two packets sent in the 
forward direction 

Fwd IAT Std  Standard deviation time between two packets 
sent in the forward direction 

Fwd IAT Total  Total time between two packets sent in the 
forward direction 

Bwd IAT Min  Minimum time between two packets sent in 
the backward direction 

Bwd IAT Max  Maximum time between two packets sent in 
the backward direction 

Bwd IAT Mean Mean time between two packets sent in the 
backward direction 

Bwd IAT Std Standard deviation time between two packets 
sent in the backward direction 

Bwd IAT Total  Total time between two packets sent in the 
backward direction 

Fwd PSH flag 
Number of times the PSH flag was set in 
packets travelling in the forward direction (0 
for UDP) 

Bwd PSH Flag 
Number of times the PSH flag was set in 
packets travelling in the backward direction (0 
for UDP) 

Fwd URG Flag  Number of times the URG flag was set in 
packets travelling in the forward direction (0 
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for UDP) 

Bwd URG Flag  
Number of times the URG flag was set in 
packets travelling in the backward direction (0 
for UDP) 

Fwd Header Length  Total bytes used for headers in the forward 
direction 

Bwd Header Length Total bytes used for headers in the backward 
direction 

FWD Packets/s Number of forward packets per second 
Bwd Packets/s Number of backward packets per second 
Min Packet Length  Minimum length of a packet 
Max Packet Length Maximum length of a packet 
Packet Length Mean Mean length of a packet 
Packet Length Std Standard deviation length of a packet 
Packet Length Variance  Variance length of a packet 
FIN Flag Count  Number of packets with FIN 
SYN Flag Count Number of packets with SYN 
RST Flag Count  Number of packets with RST 
PSH Flag Count  Number of packets with PUSH 
ACK Flag Count  Number of packets with ACK 
URG Flag Count  Number of packets with URG 
CWR Flag Count  Number of packets with CWE 
ECE Flag Count  Number of packets with ECE 
down/Up Ratio Download and upload ratio 
Average Packet Size  Average size of packet 
Avg Fwd Segment Size  Average size observed in the forward direction 

AVG Bwd Segment Size  Average number of bytes bulk rate in the 
forward direction 

Fwd Header Length  Length of header for forward packet 

Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the 
forward direction 

Fwd AVG Packet/Bulk Average number of packets bulk rate in the 
forward direction 

Fwd AVG Bulk Rate  Average number of bulk rate in the forward 
direction 

Bwd Avg Bytes/Bulk  Average number of bytes bulk rate in the 
backward direction 

Bwd AVG Packet/Bulk  Average number of packets bulk rate in the 
backward direction 

Bwd AVG Bulk Rate  Average number of bulk rate in the backward 
direction 

Subflow Fwd Packets  The average number of packets in a sub flow 
in the forward direction 

Subflow Fwd Bytes The average number of bytes in a sub flow in 
the forward direction 
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Subflow Bwd Packets  The average number of packets in a sub flow 
in the backward direction 

Subflow Bwd Bytes The average number of bytes in a sub flow in 
the backward direction 

Init_Win_bytes_forward The total number of bytes sent in initial 
window in the forward direction 

Init_Win_bytes_backward  The total number of bytes sent in initial 
window in the backward direction 

Act_data_pkt_forward  Count of packets with at least 1 byte of TCP 
data payload in the forward direction 

min_seg_size_forward Minimum segment size observed in the 
forward direction 

Active Min  Minimum time a flow was active before 
becoming idle 

Active Mean  Mean time a flow was active before becoming 
idle 

Active Max Maximum time a flow was active before 
becoming idle 

Active Std Standard deviation time a flow was active 
before becoming idle 

Idle Min Minimum time a flow was idle before 
becoming active 

Idle Mean Mean time a flow was idle before becoming 
active 

Idle Max Maximum time a flow was idle before 
becoming active 

Idle Std Standard deviation time a flow was idle before 
becoming active 

total_fpackets Total packets in the forward direction 
total_bpackets Total packets in the backward direction 
total_fpktl Total size of packet in forward direction 
total_bpktl Total size of packet in backward direction 
min_fpktl Minimum size of packet in forward direction 
min_bpktl Minimum size of packet in backward direction 
max_fpktl Maximum size of packet in forward direction 

max_bpktl Maximum size of packet in backward 
direction 

mean_fpktl Mean size of packet in forward direction 
mean_bpktl Mean size of packet in backward direction 

std_fpktl Standard deviation size of packet in forward 
direction 

std_bpktl Standard deviation size of packet in backward 
direction 

total_fiat Total time between two packets sent in the 
forward direction 
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total_biat Total time between two packets sent in the 
backward direction 

min_fiat Minimum time between two packets sent in 
the forward direction 

min_biat Minimum time between two packets sent in 
the backward direction 

max_fiat Maximum time between two packets sent in 
the forward direction 

max_biat Maximum time between two packets sent in 
the backward direction 

mean_fiat Mean time between two packets sent in the 
forward direction 

mean_biat Mean time between two packets sent in the 
backward direction 

std_fiat Standard deviation time between two packets 
sent in the forward direction 

std_biat Standard deviation time between two packets 
sent in the backward direction 

fpsh_cnt 
Number of times the PSH flag was set in 
packets travelling in the forward direction (0 
for UDP) 

bpsh_cnt 
Number of times the PSH flag was set in 
packets travelling in the backward direction (0 
for UDP) 

furg_cnt 
Number of times the URG flag was set in 
packets travelling in the forward direction (0 
for UDP) 

burg_cnt 
Number of times the URG flag was set in 
packets travelling in the backward direction (0 
for UDP) 

total_fhlen Total bytes used for headers in the forward 
direction 

total_bhlen Total bytes used for headers in the backward 
direction 

fPktsPerSecond Number of forward packets per second 
bPktsPerSecond Number of backward packets per second 
flowPktsPerSecond Number of flow packets per second 
flowBytesPerSecond Number of flow bytes per second 
min_flowpktl Minimum length of a flow 
max_flowpktl Maximum length of a flow 
mean_flowpktl Mean length of a flow 
std_flowpktl Standard deviation length of a flow 
min_flowiat Minimum inter-arrival time of packet 
max_flowiat Maximum inter-arrival time of packet 
mean_flowiat Mean inter-arrival time of packet 
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std_flowiat Standard deviation inter-arrival time of packet 
flow_fin Number of packets with FIN 
flow_syn Number of packets with SYN 
flow_rst Number of packets with RST 
flow_psh Number of packets with PUSH 
flow_ack Number of packets with ACK 
flow_urg Number of packets with URG 
flow_cwr Number of packets with CWE 
flow_ece Number of packets with ECE 
downUpRatio Download and upload ratio 
avgPacketSize Average size of packet 
fAvgSegmentSize Average size observed in the forward direction 

fAvgBytesPerBulk Average number of bytes bulk rate in the 
forward direction 

fAvgPacketsPerBulk Average number of packets bulk rate in the 
forward direction 

fAvgBulkRate Average number of bulk rate in the forward 
direction 

bAvgSegmentSize Average size observed in the backward 
direction 

bAvgBytesPerBulk Average number of bytes bulk rate in the 
backward direction 

bAvgPacketsPerBulk Average number of packets bulk rate in the 
backward direction 

bAvgBulkRate Average number of bulk rate in the backward 
direction 

sflow_fpacket The average number of packets in a sub flow 
in the forward direction 

sflow_fbytes The average number of bytes in a sub flow in 
the forward direction 

sflow_bpacket The average number of packets in a sub flow 
in the backward direction 

sflow_bbytes The average number of bytes in a sub flow in 
the backward direction 

min_active Minimum time a flow was active before 
becoming idle 

mean_active Mean time a flow was active before becoming 
idle 

max_active Maximum time a flow was active before 
becoming idle 

std_active Standard deviation time a flow was active 
before becoming idle 

min_idle Minimum time a flow was idle before 
becoming active 

mean_idle Mean time a flow was idle before becoming 
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active 

max_idle Maximum time a flow was idle before 
becoming active 

std_idle Standard deviation time a flow was idle before 
becoming active 

Init_Win_bytes_forward The total number of bytes sent in initial 
window in the forward direction 

Init_Win_bytes_backward The total number of bytes sent in initial 
window in the backward direction 

Act_data_pkt_forward Count of packets with at least 1 byte of TCP 
data payload in the forward direction 

min_seg_size_forward Minimum segment size observed in the 
forward direction 

5.1.3. Using a Sample of CICIDS2017 Dataset 

 Since the CICIDS2017 dataset is a huge dataset with 2,830,744 rows, it is unrealistic to 

use it for model training and thus we extracted a sample dataset from the original 

CICIDS2017 dataset. We call the new sample dataset CICIDS2017_Sample, and we created it 

in such a manner that it has all the diversity of attacks that exist in the original CICIDS2017. 

The CICIDS2017_Sample has 151,534 rows, which represents about 5.35% of the original 

CICIDS2017 observations. Among the 151,534 observations, the sample includes 145,053 

benign and 6,481 attacks. Table 2 below illustrates all attack types with their number that 

exists in the CICIDS2017_Sample dataset. 

Table 2. Attack Types and Their Count in the CICIDS2017_Sample Dataset 

Attack Type Count 
DDoS 1116 
Bot 84 
Port Scan 294 
Infiltration 18 
Web attack (e.g., Brute Force, SQL Injection, XSS) 311 
FTP-Patator and SSH-Patator attacks 2115 
DoS GoldenEye, DoS Hulk, DoS Slowhttptest, 
DoS Slowloris and Heartbleed attacks 

2543 

5.2. Machine Learning Algorithm Selection 

To come up with the best machine learning algorithm to be used in our intrusion detection 

system, we compared seven of the most popular machine learning methods. The algorithms 

we used in our comparison include the following: 
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• Logistic Regression 

• Support Vector Machine (SVM) 

• Kernel SVM 

• Naïve Bayes 

• K-Nearest Neighbors 

• Decision Trees 

• Random Forest 

We next discuss each of these methods and explain briefly the mathematical background 

behind it. 

5.2.1. Logistic Regression Classification 

Logistic Regression is a special kind of regression that we can apply to data distributed in 

a certain way. For instance, Figure 21 represents a typical linear regression line. 

 
Figure 21. Linear Regression 

The typical regression formula for the above figure is the following: 

 
Formula 2. Linear Regression Formula 

Imagine that we have the following distribution where we send an offer by mail to 

customers of different ages. The x-axis represents the age, and the y-axis represents the 

dependent variable of whether the offer is accepted or not. 
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Figure 22. A Typical Logistic Regression 

Figure 22 above represents a distribution of data for an offer we send to customers. The x-

axis represents the ages of the customers while the y-axis represents whether the offer is 

accepted (denoted by 1) or rejected (denoted by 0). It is obvious that a linear regression is not 

suitable for this distribution. However, if we applied the sigmoid function to the regression 

formula above, we get: 

 
And then if we solved for y in the previous formula, we get the formula for logistic 

regression below. 

 
Formula 3. Logistic Regression Formula 

It is obvious that the logistic regression in Figure 22 fits the data much better than if we 

used linear regression. 

5.2.2. Support Vector Machines (SVM) Classification 

 Support vector machines were primarily invented in the 1960s. During the 1990s, they 

become more and more popular in machine learning as they proved to be very powerful. The 

idea behind support vector machines when used in a classification problem in machine 

learning is that it draws a line to classify two sets of points. The algorithm works by first 

finding the best line to separate the two sets of points. It finds the line that has the maximum 

margin between border line points in each group. These two extreme points are called the 
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support vectors, upon which the whole algorithm depends. Thus, the support vector machine 

looks for a line with the maximum margin (Maximum Margin Hyperplane) that falls 

equidistant between the two support vector points. Figure 23 below shows how the SVM 

algorithm works. 

 
Figure 23. Support Vector Machine (SVM) Classification Algorithm 

5.2.3. Kernel SVM Classification 

 The intuition behind Kernel SVM is to resolve the problem of classifying a non-linear 

separable dataset. There are two ways to resolve this problem. The first, Mapping to a Higher 

Dimension, means to come up with a mapping function to increase the dimension. For 

instance, imagine Figure 24 where we have non-separable data points in one dimension. If we 

try to separate the data with the blue dot at 5 with the following formula, we still cannot 

separate all the green points from the red points. 

 
 

 
Formula 4. Linearly Separating Green and Red Dots 
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Figure 24. Non-Linear Separable Dataset 

However, if we square Formula #4, we get Formula #5, which results in Figure 25. 

Now, it is clear that with Figure 25 the green and red points are now linearly separable. This 

method is called increasing the dimensionality.  

 
Formula 5. Squaring Formula 3 

 
Figure 25. The Result of the Mapping Formula Is a Linearly Separable Dataset 
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The example presented above is a simple mapping function. This method could be more 

complicated in some scenarios, but that is out of the scope of this research. Although this 

method appears to work well, it is also a very resource-intensive method, especially when the 

dataset is large.  

5.2.4. The Kernel Trick 

 A better method for separating a non-linearly separable dataset is to apply a kernel 

function in which we find the distance between a landmark point, normally chosen to be at the 

middle of the dataset, and other points in the dataset, square that distance and divide it by 

, and then calculate the negative exponent of the result as in Formula 6. The result in 

getting small values when taking an exponent of negative big numbers and large numbers 

when taking a negative exponent of small numbers gives a shape of normal distribution when 

plotted in a two-dimensional plane, allowing us to linearly separate the data.  

There are two types of kernel functions: 

1. The Gaussian RBF Function that we just described above. Figure 26 and Formula 6 

show the shape and mathematical formula for the function. 

 
 

Formula 6. Gaussian RBF Kernel Function 

 

 
 

Figure 26. Gaussian RBF Kernel Function 
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2. The Sigmoid Function is a second method used to separate a non-linearly separable 

 dataset, and it separates the data into two sections as illustrated in Figure 27. 

 
 

Formula 7. The Sigmoid Function 

 

 
Figure 27. The Sigmoid Function Separates the Data into Two Sections  

5.2.5. Naïve Bayes Classification 

The Naïve Bayes classifier is a supervised machine learning algorithm that is based on the 

Bayes Theorem shown in Formula 8 below. 

 
Formula 8. Bayes Theorem 

where 

 P(A): The Prior Probability 

 P(B): The Margin Likelihood 

 P(B|A): The Likelihood 

 P(A|B): The Posterior Probability 

In its simplest form, the Naïve Bayes works by classifying whether a new point x belongs 

to a group based on applying the Bayes Theorem for that point with respect to each group and 
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then comparing the two calculations. For instance, if we need to classify whether the black 

point below, called x, belongs to the red or green group of points, we can apply the Bayes 

Theorem for each scenario and then compare the two as follows. In each case, given the 

feature of point x, what is the likelihood that it belongs to the red or green group of points? 

Thus, we perform the Bayes Theorem in each case: 

For the red scenario: 

 
For the green scenario: 

 
Comparing the two results, we can see that 0.75 > 0.25, and thus, the black point x is 

classified as red according to the Naïve Bayes classifier. Figure 28 illustrates the Naïve Bayes 

classifier. 

 
Figure 28. The Naïve Bayes Classifier  

5.2.6. K-Nearest Neighbors Classification 

The idea behind the K-Nearest Neighbors classification algorithm is simple. If we have 

two groups of data points, a red group and a green group, and we introduce a new point that 
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we need to either classify as green or red, the K-Nearest Neighbors performs this 

classification by following the steps below: 

1. Choose the number of K neighbors. This is basically a default number, but a common 

value used is 5 neighbors. 

2. Take the K nearest neighbors of the new data point, according to Euclidean distance. 

Other distance calculation methods can be used, but Euclidean method is most 

commonly used. 

3. Among these data points, count the number of points that falls in each category. For 

instance, in our example in Figure 29 we have three red and two green. 

4. Assign the new data point to the category with more neighbors. In this case, the new 

point is classified as red since we have more red neighbors. 

 

 
Figure 29. The K-Nearest Neighbors Classification Algorithm 

In Figure 29, five neighbors to the new black point are identified according to their 

Euclidean distance from the new point. Since the red category outnumber the green category, 

the new point is classified as red. 

Euclidean Distance between Points P1 and P2 =  

Formula 9. Euclidean Distance between Two Points 
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5.2.7. Decision Trees Classification 

The mathematical ideas behind Decision Trees classification can get very complicated to 

explain. In simple terms Decision Trees classify data by performing multiple splits until they 

reach to terminal leaves where data is entirely classified. Decision Trees can perform the 

classification with multiple groups of data. In the example below, we select two groups, a 

green group and a red group. Figure 30 shows how the data gets split while Figure 31 shows 

the building of the tree while splitting the data. 

 
Figure 30. Decision Trees Splitting 

 
Figure 31. Building the Decision Tree 
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5.2.8. Random Forest Classification 

The idea behind Random Forest is Ensemble Learning, which is a concept in machine 

learning where several machine learning methods are combined to perform a more powerful 

task. Random Forest leverages multiple Decision Trees as one big machine learning 

algorithm. The following steps explains how Random Forest works: 

1. Pick at random K data points from the training set. 

2. Build a Decision Tree associated with these K data points. 

3. Choose the number of N-tree of trees to build and repeat steps 1 and 2. 

4. For a new data point, make each N-tree of trees predict the category to which the data 

points belong, and assign the data point to the category that wins the majority vote.  

5.3. Selecting the Best Machine Learning Algorithm 

 In this section we describe how we carried out our experiment for model selection. To 

perform this task, we had to build a machine learning model from each one of the seven 

algorithms described above and train and test each model using the CICIDS2017_Sample 

dataset. To train each model, we had to split the CICIDS2017_Sample dataset into an 80% 

training dataset and a 20% testing dataset. Next, we trained each model on the training 

dataset, and then tested it with the testing dataset. We built the Confusion Matrix for each 

model from the model’s corresponding dataset, which provided us with valuable information 

from which we could compare the models in terms of statistical measures such as Accuracy, 

Precision, Recall, and F-Measure. Table 3 below shows the Confusion Matrices for all seven 

models obtained from the testing dataset of each model using the CICIDS2017_Sample 

dataset. 

Table 3. Confusion Matrices Comparison for Different Machine Learning Algorithms Used  

 SVM Kernel  
SVM 

K-
NN 

Logistic 
Regression 

Naïve 
Bayes 

Random 
Forest (10 
Trees) 

Random 
Forest 
(300 
Trees) 

Decision 
Trees 

TP 28680 28888 29016 28814 17146 29031 29032 29024 
TN 993 1025 1256 946 1260 1259 1263 1269 
FP 352 144 16 218 11886 1 0 8 
FN 282 250 19 329 15 16 12 6 
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Table 4 shows the statistical comparison between the models derived from the Confusion 

Matrices. 

Table 4. Comparing Models Statistics Derived from Confusion Matrices to Select the Best 

Model 

Model Accuracy Precision Recall F-Measure 

Support Victor Machines (SVM) 0.9791 0.9879 0.9903 0.9891 
Kernel SVM 0.9870 0.9950 0.9914 0.9932 
K-Nearest Neighbors (K-NN) 0.9988 0.9994 0.9993 0.9994 
Logistic Regression 0.9820 0.9925 0.9887 0.9906 
Naïve Bayes 0.6073 0.5906 0.9991 0.7424 
Random Forest (10 trees) 0.9994 1.0000 0.9994 0.9997 
Random Forest (300 trees) 0.9996 1.0000 0.9996 0.9998 
Decision Trees 0.9995 0.9997 0.9998 0.9998 

Although the results in Table 4 showed that Random Forest is the best model, we chose 

the Decision Trees algorithm. Random Forest showed optimum results (1.0000 in Precision) 

to the degree that we suspect that the model might have an overfitting issue, which is a 

situation that occurs when the model is attached too much to the training data to a degree that 

causes it to perform badly when exposed to a new dataset. DTs showed very satisfying results 

in precision, but not a perfect result as Random Forest did, so overfitting did not seem likely, 

which encouraged us to use it in our research. 

5.4. Enhancing IoT-HASS Through Dimensionality Reduction and Features Selection 

Dimensionality Reduction in machine learning is the process of reducing the number of 

variables to enhance the model performance. Dimensionality Reduction can be performed 

either through Feature Extraction, which uses a method called Principal Component Analysis, 

which we are not using here, or Feature Selection, which is the process of selecting the 

variables that are relevant and leaving out irrelevant variables. There are many methods for 

performing features selection. Since we developed the IoT-HASS framework using the 

Python 3 programming language, we decided to use the Best N method to select the features 

where N can be any number such as 10 for the best 10 features. For IoT-HASS we chose N = 

5 and thus we selected the best five features. Features Selection not only increases 

performance but also makes the model very lightweight, which is an important criterion we 

need for our IoT devices. A lightweight IDS system can be installed and run in a small device, 
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since it doesn’t require many resources to run. IoT-HASS features selection varies according 

to the dataset used. So, for instance when using CICIDS2017_Sample dataset, the set of 

selected features is different from the CICIDS2017_DDoS dataset, which is used to run the 

comparison between IoT-HASS and other models as we will see in upcoming sections. The 

best five features selected from the CICIDS2017_Sample dataset represents the generic best 

features that IoT-HASS uses to predict if a packet is a normal or an attack when running in 

real life. Table 5 shows the best generic features for IoT-HASS while Table 6 shows the best 

features selected for IoT-HASS when using the CICIDS2017_DDoS dataset.  

Table 5. The Best Generic Features for IoT-HASS 

           Feature Name 

           Packet Length Variance 

           Bwd IAT Std 

           Bwd IAT Mean 

           Idle Std 

           Active Std 

 

Table 6. IoT-HASS Selected Features from CICIDS2017_DDoS Dataset 

Feature Name 

Destination Port 

Bwd Packet Length Max 

Bwd Packet Length Mean 

Bwd Packet Length Std 

Avg Bwd Segment Size 

5.5. Chapter Summary 

This chapter discussed the important components that we used when developing our 

artifact solution. We started by discussing the CICIDS2017 dataset, explaining that we 

decided to use it to train our model since it is one of the most recent datasets for intrusion 

detection systems. The CICIDS2017 includes many varieties of attacks and is also used by 

other researchers for testing IoT environments including home IoT environments. We then 

presented the criteria used to select the best machine-learning algorithm. Seven different 
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algorithms were trained and tested using the CICIDS2017_Sample dataset. The evaluation 

showed that Decision Trees was the most suitable in terms of both accuracy and speed. 

Finally, we demonstrated how we enhanced IoT-HASS through dimensionality reduction and 

feature selection. Although dimensionality reduction and feature selection decrease the model 

accuracy, they increase its efficiency and speed dramatically. 
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CHAPTER 6 

TESTING, EVALUATION, AND RESULTS 

This chapter focuses on the evaluation of our artifact solution. Every solution must prove 

it can accomplish a certain degree of success that justifies its usage by consumers. In this 

research our consumers are the smart homes users. In this chapter, we discuss four methods 

that we used to evaluate the IoT-HASS. These four methods are as follows: 

1. Evaluation by comparison to similar solutions. 

2. Evaluation by performing simulation attacks while in in-line mode inside a virtual 

environment. 

3. Evaluation by performing simulation attacks while in passive mode inside a virtual 

environment. 

4. Evaluation by performing simulation attacks as passive mode inside the Raspberry Pi 

4.  

6.1. Evaluation by Comparison to Similar Solutions 

Evaluating a solution against other similar solutions is a quality approach that assesses 

whether the solution is strong and can outperform prior solutions. In this research we chose to 

compare our solution to four similar solutions that were also developed to protect the smart 

home environment based on the same dataset, the CICIDS2017 dataset.  

The models that we chose for comparison against the IoT-HASS were the following: 

1. The GA-SVM model (Tao et al., 2018) 

2. The A-IDS model (Aljawarneh et al., 2018) 

3. The WFS-IDS model (Li et al., 2009) 

4. The Beget model (Jan et al., 2019) 

6.1.1. The GA-SVM Model 

As the name implies, the GA-SVM model is based on Support Vector Machines (SVM) 

machine learning algorithm performing the classification for the intrusion detection system. 
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This model directly performs features selection from the CICIDS2017 dataset (Tao et al., 

2018). Table 7 shows the best features that the GA-SVM model uses to perform its prediction. 

Table 7. Best Features Selected by GA-SVM Model from CICIDS2017 Dataset 

Feature Name 

Destination Port 

Flow Duration 

Total Backward Packets 

Total Length of Fwd Packets 

Total Length of Bwd Packets 

Fwd Packet Length Mean 

Bwd Packet Length Max 

Bwd Packet Length Mean 

Flow Bytes s 

Flow Packets s 

Flow IAT Mean 

Fwd IAT Mean 

Fwd Packets s 

Subflow Fwd Bytes 

6.1.2. The A-IDS Model   

The A-IDS model is an anomaly-based intrusion detection system that consists of two 

parts. The first part is a vote algorithm that includes Information Gain for selecting the best 

features from the dataset (in our case the CICIDS2017) that dramatically boosts the 

performance of the algorithm. The second part consists of a hybrid machine learning classifier 

that includes J48, Meta Pagging, Random Tree, REP Tree, AdaBoostM1, Decision Stump, 

and Naïve Bayes (Aljawarneh et al., 2018). Table 8 shows the best features selected from the 

CICIDS2017 dataset. 

Table 8. Best Features Selected by A-IDS Model from CICIDS2017 Dataset 

Feature Name 
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Flow Duration 

Total Length of Fwd Packets 

Flow Bytes s 

Flow Packets s 

Flow IAT Mean 

Fwd IAT Mean 

Fwd Packets s 

Subflow Fwd Bytes 

6.1.3. The WFS-IDS Model 

 The WFS-IDS is another feature selection algorithm. It uses a method called Random 

Mutation Hill Climbing (RMHC) for its search strategy and is based on Support Vector 

Machines (SVM) for its feature selection method (Li et al., 2009). Table 9 shows the features 

selected from the CICIDS2017 by the WFS-IDS model. 

Table 9. Best Features Selected by WFS-IDS Model from CICIDS2017 Dataset 

Feature Name 

Flow Duration 

Total Backward Packets 

Total Length of Fwd Packets 

Bwd Packet Length Max 

Flow Bytes s 

Flow Packets s 

Flow IAT Mean 

Flow IAT Std 

Fwd IAT Mean 

Fwd Packets s 

Avg Bwd Segment Size 

Subflow Fwd Bytes 
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6.1.4. The Beget Model 

The Beget model is based indirectly to the CICIDS2017 dataset. The only feature used in 

this model is the packet arrival rate. The mean and median of the packet arrival rate are then 

used as the only two features to predict the intrusion (Jan et al., 2019). Thus, for this model 

we had to first calculate the packet arrival rate and then calculate the running mean and 

median. Packet arrival rate can be calculated from the CICIDS2017 dataset as follows: 

Packet Arrival Rate = (Number of Packets in Fwd Direction) / (Flow Duration in ms) 

Formula 10. Calculating the Packet Arrival Rate 

The Beget dataset that is used to train the Beget model consists of only two features, 

namely the packet arrival rate mean, and the packet arrival rate median as shown in Table 10 

below. 

Table 10. Beget Model’s Two Features 

Feature Name 
Packet Arrival Rate Mean 
Packet Arrival Rate Median 

6.1.5. Testing Environment 

The comparison of IoT-HASS with the other four models was performed using Spyder, 

which is part of the Anaconda 3 application. Spyder uses Python 3. The tests were run in an 

Acer Laptop running Windows 10 Professional, Intel Core i5 Processor, 1TB HD, 12GB 

RAM, and 1.6 GHz with Turbo Boost up to 2.6GHz. When testing IoT-HASS and each of the 

four models, the confusion matrix was printed and recorded. The CICIDS2017_DDoS dataset 

was used for the comparison between IoT-HASS and the other four models and thus IoT-

HASS used the best five DDoS features, illustrated earlier in Table 6, for detecting attacks in 

this experiment. 

The confusion matrix is a way to summarize the prediction results of a classification 

method. In the confusion matrix the number of correct and incorrect predictions are 

summarized with count values and broken down by each class of the classification. It also 

provides information about how the classification model is confused when it makes 

predictions, thus the name ‘confusion matrix.’ A confusion matrix not only provides errors 

that are made by the classifier but also gives insight into the type of errors. There are type I 
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errors and type II errors. The importance of the confusion matrix is that it provides a 

breakdown that overcomes the limitations of using accuracy alone as a measure. The results 

of the testing are shown in Table 11. 

Table 11. Confusion Matrices Comparison between IoT-HASS and Other Solutions 

 IoT-HASS GA-SVM A-IDS WFS-IDS Beget 
TP 37,552 37,942 17,186 38,138 2,453 
TN 51,146 49,550 51,111 49,102 51,206 
FP 1,572 1,044 21,944 1,038 36,438 
FN 28 1,762 57 2,020 201 

6.1.6. Explanation of Table 11 Results 

To explain the results of the models’ confusion matrices comparison in Table 10, we start 

by defining some of the acronyms in the table: 

TP: True Positive: This is the number of normal samples correctly identified as normal by 

the model. 

TN: True Negative: This is the number of attack samples correctly identified as attacks by 

the model. 

FP: False Positive: This is the number of normal samples falsely identified as attacks. 

FN: False Negative: This is the number of attack samples falsely identified as normal.  

When looking closely at Table 11, we can clearly see that the IoT-HASS model falls 

behind WFS-IDS and GA-SVM when identifying True Positives and behind the Beget model 

when identifying True Negatives. IoT-HASS achieved third place behind GA-SVM and 

WFS-IDS for identifying False Positives but achieved first place for identifying False 

Negatives. However, when combining True Positives with True Negatives and False Positives 

with False Negatives we can clearly see that IoT-HASS outperformed all models since it 

identified more combinations of TP + TN and fewer FP + FN. This clearly shows that IoT-

HASS is superior to other four models. 

 From Table 11 above, we can compute different statistics to further compare the models. 

Table 12 compares accuracy, precision, recall, and F-measure between IoT-HASS and the 

other four models. Definitions for the statistical measures obtained from the confusion 

matrices in Table 11 are as follows: 
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Accuracy: The ratio of correctly predicted samples. In other words, how often is our 

classifier correct? 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Formula 11. Calculating the Accuracy 

Precision: Also known as Positive Predictive Value. The ratio of correct positive 

predictions to the total predicted positives, in other words, when the classifier predicts a 

true value, how often is it correct?  

Precision = TP / (TP + FP) 

Formula 12. Calculating the Precision 

Recall: Also known as Sensitivity. The ratio of correct positive predictions to the total 

positive samples. 

Recall = TP / (TP + FN) 

Formula 13. Calculating the Recall 

F-Measure: Also called F-Score or F1. Considers both Precision and Recall and has the 

best value if there is a balance between the precision and the recall in the model. On the 

other hand, F-Measure is low if one of the two measures improved at the expense of the 

other. 

F-Measure = 2 * (Recall * Precision) / (Recall + Precision) 

Formula 14. Calculating the F-Measure 

As shown in Table 12, we can clearly see that IoT-HASS outperformed other models since it 

achieved the best Accuracy, Precision, Recall, and F-Measure. 

Table 12. Statistical Comparison between IoT-HASS and the Other Four Models 

Model Accuracy Precision Recall F-Measure 
IoT-HASS 0.9823 0.9993 0.9598 0.9791 
GA-SVM 0.9689 0.9556 0.9732 0.9643 
WFS-IDS 0.9661 0.9497 0.9735 0.9615 
A-IDS 0.7564 0.9967 0.4392 0.6097 
Beget 0.5942 0.9243 0.0631 0.1181 

In Table 13, we compare the CPU time taken by each model during the execution of each 

of the training and testing phases. The CPU time comparison provides a measure for how 

lightweight the model is. When measuring the CPU time for each model, we calculated both 

the time taken by the model for training and for testing, and we recorded those values 
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separately. To be more precise, we calculated the CPU time 10 times for the training and 

testing phases for each model, and then the average is calculated for each set of training and 

testing values per model. Table 12 shows that IoT-HASS outperformed the other four models 

when comparing CPU time for both training and testing. The CPU time is measured in 

seconds. 

Table 13. CPU Time Comparison between IoT-HASS and Other Four Models  

Model CPU Total Time CPU Training Time CPU Testing Time  
IoT-HASS 17.027 11.936 5.091 
GA_SVM 203.361 163.831 39.530 
WFS_IDS 256.401 213.181 43.220 
A_IDS 1124.955 918.456 206.499 
Beget 1342.725 1260.239 82.486 

6.2. IoT-HASS In-Line Mode 

In this mode IoT-HASS is installed inside a routing device. In this mode IoT-HASS acts 

as an Intrusion Prevention System (IPS) that can detect and prevent attacks. In the following 

sections, we demonstrate how we evaluated the device management engine and IPS engine by 

performing simulation tests with IoT-HASS while running in in-line mode inside a virtual 

environment. 

6.2.1. Device Management 

 To determine whether the Device Management engine is working or not, we ran IoT-

HASS, which triggered the device management engine to start scanning the devices in the 

home network and saves the devices into a database table. We ran the GUI interface, which 

gather the device’s information that the device management engine saved to the database 

table. The information from the scan includes the device’s IP, MAC address, and vendor, if 

found. Figure 32 is part of the GUI interface that shows the list of devices scanned by the 

Device Management engine indicating that the system worked successfully as intended. In the 

in-line mode, the initial scan disables/blocks all devices; however, the user can unblock a 

trusted device or block a suspicious device via the GUI by entering the device IP and pressing 

a button. 
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Figure 32. User Interface Showing List of Devices Scanned by the Device Management 

Engine 

6.2.2. Evaluation Via Simulation Attacks  

This section evaluates IoT-HASS attack detection by performing a series of simulation 

attacks and assessing how IoT-HASS reacts to each attack. In this sense IoT-HASS is 

evaluated in its two modes of operation, namely the in-line mode and the passive mode. IoT-

HASS used its best five generic features, illustrated earlier in Table 5, when predicting attacks 

during the simulation attacks. 

6.2.3. Simulation Attacks with IoT-HASS In-Line Mode Inside a Virtual Environment 

When executing simulation attacks while IoT-HASS is running as in-line mode inside a 

virtual environment, we execute simulation attacks from a source machine against a victim 

machine and have IoT-HASS installed in a router machine that routes traffic between the 

attacker and the victim machines. In that scenario IoT-HASS sits in-line with the traffic and 

can capture packets sent from attacker to victim and classify them as attacks. IoT-HASS in 

this scenario acts as an intrusion prevention system (IPS) that blocks suspicious packets. We 

chose to run this experiment in a virtual environment for two reasons. First, the virtual 

environment is a more controlled environment. We can exclude any other traffic coming from 

the Internet or other internal source and only allow simulation attacks coming from attacker 
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tools. In this way, we know for sure that all the packets are attacks and can find out how many 

or what percentage of them are classified as attack versus normal. Second, within a virtual 

environment, we can set up two networks: an external network from which the attacker sends 

the attacks and an internal network where both the IoT-HASS and the victim machine exists. 

The virtual environment to run the experiment was a virtual lab consisting of three virtual 

machines: 

1. An Ubuntu 18.04 installed in a VM, which acts as a router that routes traffic between 

the attacker machine and the victim machine. IoT-HASS was installed on this router 

VM. 

2. An Ubuntu 18.04 installed in a VM that acts as a victim. An Apache2 server was 

installed, and we set up a user and password for the Apache2 web server. 

3. A Kali Linux acted as the attacker machine where we used tools to run attacks. 

Figure 33 shows the network configuration of our virtual lab to run attacks. 

 
Figure 33. IoT-HASS Running in In-Line Mode as an IPS Inside Virtual Environment 

Since we cannot simulate every single attack, we decided to simulate three of the major 

known attacks that target smart home environments. These three attacks include DDoS 

attacks, Brute Force attacks, and Cross Site Scripting (XSS) attacks. 

6.2.3.1. Simulating DDoS Attacks with IoT-HASS In-line Mode in a Virtual 

Environment 

A DDoS attack is an advanced version of the known DoS attack. DDoS stands for 

Distributed Denial of Service, which is the same as DoS, except DDoS leverages many 

machines—even tens or hundreds—to carry out the attack. The DDoS attack’s purpose is to 

hammer the network with too many requests, causing it to become unresponsive to its 

legitimate users. In our simulation experiment we selected Low Orbit Ion Cannon (LOIC), 

which is one of the best and most reliable DDoS attack simulation tools. We installed LOIC 

on the Kali attacker VM, and then we ran several DDoS attacks from the Kali attacker VM 
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toward the victim VM. While LOIC sent tens of thousands of DDoS attacks toward the victim 

VM, IoT-HASS was running, detecting, blocking, and capturing these attacks into a log file. 

We analyzed each log file to find how many packets were identified as attack versus normal, 

and we calculated the percentage. Figure 34 shows the LOIC in action sending hundred of 

thousands of attacks from 90 threads simulating 90 machines, which is what a typical DDoS 

attack does. IoT-HASS was able to capture attacks in a log file and block the source IP for 10 

hours. 

 
Figure 34. LOIC Attacks Simulator in Action 

Table 14 shows the result of running five rounds of DDoS attack simulation from the 

LOIC attack simulator against the victim machine. Each of the five attack rounds were 

captured in a log file. We counted how many packets were identified as an attack versus 

normal in each log file, and we found the percentage of attack packets in each log file. The 

data in Table 14 shows the total number of packets and how many of them were identified as 

attacks by IoT-HASS. The results clearly prove the strength of IoT-HASS. IoT-HASS was 

able to identify attacks with an average detection accuracy of 97.623% from the five tests. 

Table 14. IoT-HASS In-Line Mode Capturing DDoS Attacks with High Accuracy 

Attack 
Rounds 

Total DDoS 
Packets Sent 

Number of Packets 
Identified as Attack 

Percentage of Packets 
Identifed as Attack  

Round 1 67,674 61,425 90.766% 
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Round 2 17,033 17,020 99.924% 
Round 3 42,028 41,905 99.707% 
Round 4 7,514 7,374 98.137% 

Round 5 350,500 349,030 99.581% 

6.2.3.2. Simulating Brute Force Attacks with IoT-HASS In-Line Mode in a Virtual 

Environment 

Brute Force attacks try to crack the password of an application or webpage. They 

normally work by going through a password list that contains hundreds of thousands of 

passwords. The process could take up to a few days. Our main goal here was to make sure 

IoT-HASS can successfully identify a Brute Force attack. We decided to use Medusa, which 

is one of the best tools for simulating Brute Force attacks, that comes installed in Kali Linux. 

Figure 35 shows a screen print of Medusa in action. The command highlighted in yellow 

executes attacks from our attacker machine to our victim machine. 

 
Figure 35. Medusa Executing Brute Force Attacks with IoT-HASS In-Line Mode 

Similar to the DDoS simulation, we executed five rounds of attacks and captured the 

packets in a log file for each round. We counted how many packets were identified as an 

attack versus normal in each log file, and we found the percentage of attack packets in each 

log file. Table 15 shows the results of the five Brute Force attack rounds. It is clear from the 
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results that IoT-HASS performed very well with an average detection accuracy of 98.484% 

from the five tests. 

Table 15. IoT-HASS In-Line Mode Capturing Brute Force Attacks with High Accuracy 

Attack 
Rounds 

Total Brute 
Force Packets 
Sent 

Number of Packets 
Identified as an 
Attack 

Percentage of 
Packets Identifed as 
an Attack  

Round 1 5,579 5,565 99.75% 

Round 2 7,669 7,626 99.44% 

Round 3 10,597 10,585 99.887% 

Round 4 6,765 6,328 93.540% 

Round 5 6,683 6,670 99.805% 

6.2.3.3. Simulating Cross Site Scripting (XSS) Attacks with IoT-HASS In-Line Mode in 

a Virtual Environment 

Cross Site Scripting (XSS) is an attack that works by injecting malicious code into a 

website. XSS is a very common attack, especially since most websites require their users to 

leave JavaScript turned on. Since most IoT devices have their own web interface, this makes 

them a good target for XSS attacks. To simulate XSS attacks, we chose XSSER simulation 

tool that comes installed by default in Kali Linux. This attack is different from the prior ones 

(DDoS and Brute Force) because it does not send thousands of attack packets from the 

attacker machine to the victim machine. Instead, the XSS attack sends a few attacks toward 

the victim computer, and it takes a few minutes after which the XSSER tool provides the 

result of the attack. Thus, we do not need to capture and calculate how many packets are 

identified as attack by IoT-HASS since the tool provides the result for us. Figure 36 shows the 

command to execute XSS attacks by XSSER against the victim machine. Figure 37 shows the 

result of the XSS attack indicating that a vulnerability could not be found by the XSSER tool. 
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Figure 36. XSSER Executing XSS Attacks 

 
Figure 37. XSSER Showing the Result of the XSS Attack 

6.3. IoT-HASS Passive Mode 

In this mode, IoT-HASS is not installed in-line with the traffic, meaning that it can detect 

a threat but might not be able to block it. In this scenario IoT-HASS acts as an Intrusion 

Detection System (IDS) that passively detects threats and alerts the user but does not block 

the threat. In the following sections we evaluate both the Device Management engine and IDS 

engine while IoT-HASS runs in a passive mode.  

6.3.1. Device Management 

The steps of performing a device management evaluation in the passive mode are the 

same as in the in-line mode. We started IoT-HASS to scan the home network for all 

connected devices while running the device management engine. Next, we opened the GUI 

interface and checked whether the list of connected devices is displayed or not. However, the 

major difference between the passive mode and the in-line mode is that in the passive mode 
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IoT-HASS cannot block the threat and thus the user must check the list of devices via the GUI 

and physically disconnect any suspect device. Figure 38 shows the list of devices in the GUI 

interface indicating that the device management engine worked successfully as intended. 

 
Figure 38. GUI Interface Shows the List of IoT Devices Indicating the Device Management 

Runs Successfully    

6.3.2. Evaluation Via Simulation Attacks with IoT-HASS Passive Mode in a Virtual 

Environment 

The second scenario we test here is when IoT-HASS is installed as an IDS. In this 

scenario, IoT-HASS can passively monitor the traffic and alert the user if any threats are 

detected. Since IoT-HASS in the passive mode is not in-line with the traffic, it cannot block 

attacks. We executed the same three test types as we executed in the in-line mode. We used 

the same set of virtual machines that we previously used in the in-line mode. However, we 

changed the network setup so that all three virtual machines were in the same network, now 

representing an IDS scenario. Figure 39 shows the setup for the passive mode of IoT-HASS 

running as an IDS inside a virtual environment.  

 
Figure 39. IoT-HASS Running in Passive Mode as an IDS Inside a VM Environment 
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6.3.2.1. Simulating DDoS Attacks with IoT-HASS Passive Mode in a Virtual 

Environment 

We used LOIC DDoS attack simulator to simulate attacks from a Kali machine. We ran 

five rounds of attacks and captured each round in a log file. Next, we counted how many 

packets were identified as an attack versus normal in each log file, and we found the 

percentage of attack packets in each log file. The result of five tests showed that IoT-HASS 

captured DDoS attacks with a very good percentage. As shown in Table 16, the average 

detection accuracy among the five tests was 98.832%, indicating that IoT-HASS detects 

DDoS attacks with a very high accuracy.  

Table 16. Simulating DDoS Attacks with IoT-HASS Running in Passive Mode as an IDS 

Attack 
Rounds 

Total DDoS 
Packets Sent 

Number of 
Packets 
Identified as 
Attack 

Percentage of 
Packets Identified 
as Attack  

Round 1 29,983 29,646 98.876% 
Round 2 4,777 4,753 99.498% 

Round 3 8,184 8,001 97.764% 
Round 4 20,020 19,900 99.401% 
Round 5 18,592 18,336 98.623% 

6.3.2.2. Simulating Brute Force Attacks with IoT-HASS Passive Mode in a Virtual 

Environment 

We used Medusa to simulate Brute Force attacks from Kali toward the home victim 

machine. We executed five rounds of simulation attacks and captured each round in a log file. 

Next, we counted how many packets were identified as an attack versus normal in each log 

file, and we found the percentage of attack packets in each log file. Table 17 shows the results 

of the five rounds. IoT-HASS showed high accuracy with an average detection accuracy of 

96.045%. 

Table 17. Simulating Brute Force Attacks with IoT-HASS Running in Passive Mode as an 

IDS 

Attack 
Rounds 

Total Brute 
Force Packets 
Sent 

Number of Packets 
Identified as an 
Attack 

Percentage of 
Packets Identified 
as an Attack 
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Round 1 2,323 2,145 92.337% 
Round 2 4,843 4,753 98.141% 
Round 3 7,241 7,140 98.605% 
Round 4 1,213 1,128 92.993% 
Round 5 1,404 1,378 98.148% 

6.3.2.3. Simulating XSS Attacks with IoT-HASS Passive Mode in a Virtual Environment 

We used XSSER from the Kali attacker machine to simulate XSS attacks against the 

home victim where IoT-HASS is installed as an IDS running in a passive mode. Figure 40 

shows the command for simulating XSS attacks from the attacker against the home victim 

machine.  

 
Figure 40. Simulating XSS Attacks with IoT-HASS Running as IDS in a Passive Mode 

Figure 41 shows the results of the XSS attacks. The attack was not successful, indicating 

that IoT-HASS successfully prevented the XSS attack. 

 
Figure 41. Results of XSS Attacks Showing the Attack Is Unsuccessful 
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6.4. IoT-HASS Passive Mode on Raspberry Pi 

We installed IoT-HASS on a Raspberry Pi 4 in a passive mode, similar to what we did in 

the virtual environment. We evaluated the device management engine first, and then we 

evaluated the IDS engine by executing the same set of simulation attacks that we ran inside 

the virtual environment. 

6.4.1. Device Management 

The evaluation of the device management inside the Raspberry Pi is similar to the 

evaluation run in the virtual environment. We ran IoT-HASS. As it started running, it scanned 

the home network for all connected devices and saved them in a database table. Next, we ran 

the GUI interface to check if the device management engine correctly scanned the devices. 

Note that since this scenario is in passive mode, the user must verify the devices via the GUI 

and physically disconnect any suspicious device. The devices should be listed in the GUI for 

the user to verify them. Figure 42 shows a screen print of the GUI with a list of home devices 

when IoT-HASS was run inside a Raspberry Pi 4. This shows that the device management 

engine performed its job successfully. 

 
Figure 42. IoT Devices Listed in the GUI Interface Proving that the Device Management Ran 

Successfully 

6.4.2. Simulating DDoS Attacks with IoT-HASS Passive Mode on Raspberry Pi 

Since IoT-HASS is in a passive mode in this setup, it acts as an IDS that monitors the 

traffic and only alerts the user without blocking the threat. In this setup, we used two 

Raspberry Pi’s. The first one is a Raspberry Pi 4, which is the latest version of Raspberry Pi 
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with 4GB RAM and better functionalities. We installed IoT-HASS in this Raspberry Pi 4 and 

connected it to the home router. Then we installed Kali Linux on a Raspberry Pi 3 B + and 

connected it to the home Wi-Fi network. We ran DDoS attacks from Low Orbit Ion Cannon 

(LOIC) inside Kali toward a Canon wireless printer. All three devices were in the same 

network. Figure 43 shows the three devices connected in the home network with their actual 

IP addresses while Figure 44 below shows LOIC sending DDoS attacks toward the Canon 

wireless printer. 

 
Figure 43. Simulating DDoS Attacks Against Wireless Printer While IoT-HASS Running in 

Passive Mode 

 
Figure 44. LOIC While Sending DDoS Attacks Toward the Canon Wireless Printer 

We ran five rounds of DDoS attacks toward the wireless printer, and IoT-HASS showed a 

very good performance in detecting the DDoS attacks, as shown in Table 18. The average 

detection accuracy from the five test rounds is 98.619%. 

Table 18. Simulation Results of Five Test Rounds of DDoS Attacks with IoT-HASS in 

Passive Mode on Raspberry Pi 4 
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Attack 
Rounds 

Total DDoS 
Packets Sent 

Number of Packets 
Identified as Attack 

Percentage of Packets 
Identifed as Attack  

Round1 4,390 4,278 97.449% 
Round2 3,407 3,403 99.883% 
Round3 8,274 8,127 98.223% 
Round4 28,567 27864 97.539% 
Round5 7,378 7378 100.000% 

6.4.3. Simulating Brute Force Attacks with IoT-HASS Passive Mode in Raspberry Pi 

We simulated five rounds of Brute Force attacks using Hydra, which is one of the best 

Brute Force attacks tool that comes installed in Kali Linux. Figure 45 shows Hydra sending 

Brute Force attacks toward the home router. The results showed that IoT-HASS has a high 

detection accuracy for Brute Force attacks. This time the Brute Force attacks were executed 

against the home router. Table 19 shows the five rounds of Brute Force attacks. The average 

detection accuracy from the five test rounds is 97.337%. 

 
Figure 45. Executing Brute Force Attacks with Hydra Toward the Home Router 

Table 19. Simulation Results of Five Test Rounds of Brute Force Attacks with IoT-HASS in 

Passive Mode on Raspberry Pi 4 

Attack 
Rounds 

Total Brute Force 
Packets Sent 

Number of Packets 
Identified as an Attack 

Percentage of 
Packets Identifed 
as an Attack  

Round1 8,076 7,875 97.511% 
Round2 17,756 16,290 91.744% 
Round3 12,491 12,246 98.039% 
Round4 33,549 33,345 99.392% 

Round5 3,240 3,240 100.000% 
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6.4.4. Simulating XSS Attacks with IoT-HASS Passive Mode in Raspberry Pi 

We ran five rounds of Cross Site Scripting (XSS) simulation attacks using the XSSER 

attacking tool installed in Kali against the home router. The results of the tests showed that 

IoT-HASS detected XSS attacks with high accuracy. Figure 46 shows a screen print of 

XSSER sending an XSS attacks. Figure 47 shows that the XSS attack was not successful. 

 
Figure 46. XSSER Sending XSS Attacks Toward the Home Router While IoT-HASS 

Running in Passive Mode on Raspberry Pi 

 
Figure 47. Showing XSS Attack Is Not Successful Against the Home Router 
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6.5. Comparison: IoT-HASS In-Line Versus Passive 

As discussed in the previous sections, IoT-HASS operates in two different modes of 

operation, the in-line mode and the passive mode. In this section, we compare the two modes 

of IoT-HASS and provide the pros and cons of each one. The IoT-HASS In-line mode acts as 

an intrusion prevention system (IPS) that sits in-line with the traffic, meaning it can be 

installed either inside a router or other device such as a Raspberry Pi located in the path of the 

traffic. In that setup IoT-HASS can detect and block malicious traffic, and thus it is 

proactively protecting the smart home environment. IoT-HASS Passive mode, on the other 

hand, is installed inside a computer or a device such as a Raspberry Pi that is not in-line with 

the traffic; it acts as an intrusion detection system (IDS) that can detect the threat and notify 

the user. IoT-HASS in this mode cannot block the malicious traffic since it is not in-line with 

the traffic. The Device Management engine operation differs slightly in each of the two 

modes of IoT-HASS. For instance, in in-line mode, the setup could block the attacker’s IP 

address. This is not possible in the case of the passive mode. Table 20 illustrates a comparison 

between IoT-HASS In-line and Passive modes. 

Table 20. Comparison between IoT-HASS In-Line and Passive Modes 

 IoT-HASS In-Line IoT-HASS Passive 
Functionality • Installed in-line with the 

traffic inside a router or 
device such as a 
Raspberry Pi. 

• Works as an IPS, which 
can detect and block 
threats and then alert the 
user. 

• Installed in a device 
such as a Raspberry Pi 
that is not in-line with 
the traffic. 

• Works as an IDS that 
can only detect threats 
and alert the user about 
them. 

Pros • Automatically alerts 
users of suspicious 
activity. 

• Blocks detected 
malicious activity from 
accessing home 
networks. 

• Rules can be configured 
to allow or deny specific 
traffic from accessing 
the network. 

• Instant alerts if 
malicious activity is 
detected. 

• Virus tracking (if 
detected) to evaluate 
how it is spreading 
through systems. 
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Cons • An IPS needs high 
network and bandwidth 
resources to detect and 
block attacks. If the 
smart home does not 
have enough network or 
bandwidth capacity, an 
IPS could possibly slow 
down systems and 
equipment. 

• Homeowner must be 
proactive and quickly 
respond to these alerts. 
This might require 
time, effort, and 
knowledge from the 
user. 

Since IoT-HASS can run successfully inside a Raspberry Pi, which is a resource-

constrained system, it is likely that the system will run inside any embedded system such as 

the one in home IoT devices. Since IoT-HASS is a lightweight IDS/IPS, it is very suitable to 

protect the smart home environment. 

6.6. Chapter Summary 

 This chapter discussed different methods used to validate the strength of IoT-HASS. We 

started with evaluating IoT-HASS by comparing it to other similar solutions. We chose four 

other solutions to perform the comparison. The solutions selected for the comparison include: 

the GA-SVM model, the WFS-IDS model, the A-IDS model, and the Beget model. The 

comparison was performed using the CICIDS2017 DDoS dataset. The IoT-HASS 

outperformed all the other models, as illustrated in the results. IoT-HASS was then evaluated 

by running a series of simulation attacks inside a virtual environment. The attacks included 

DDoS attacks, Brute Force attacks, and XSS attacks. Those three attacks represent some of 

the major attacks that target the Home IoT environment. When running those attacks, IoT-

HASS was evaluated in two modes: the in-line mode and the passive mode. Finally, IoT-

HASS was evaluated on the Raspberry Pi when running in passive mode. Simulation attacks 

were executed. The results showed that IoT-HASS detected different attacks successfully. In 

all the evaluation scenarios above, IoT-HASS showed a high prediction accuracy, and thus it 

can be a valuable tool for protecting the smart home environment. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

This research aimed to close some of the gaps that exist in the security of smart home 

environments. Unlike Industrial IoT, Corporate IoT, Retail IoT, or Healthcare IoT 

environments where tighter security measures are enforced on IoT devices, a lack of security 

mechanisms exist in the Home IoT enviroment. Home IoT devices have fewer security 

measures and guidelines when compared to other IoT sectors. Some home IoT devices have 

very little to no security, putting their users and their users’ information at great risk.  

7.1. Summary 

In this research we developed an artifact solution that can protect the smart home 

environment. Since we target the whole home environment, the solution is designed to protect 

the entire smart home and not specific devices. In this regard, we answered our three main 

research questions when we completed the artifact development. The IoT-HASS framework is 

intended to be a powerful security system that is easy to use by a regular non-technical 

homeowner. IoT-HASS is designed to include three main engines. The first part of the IoT-

HASS is a Device Management engine that scans the home network and lists all the devices 

to the user via a GUI interface. The user has the opportunity to review and disconnect any 

device that they do not recognize as a legitimate device. The core engine is an anomaly-based 

intrusion detection and prevention system. The IDS/IPS engine uses Decision Tree machine 

learning classification algorithm to detect attacks. The third engine is a Privacy Monitoring 

engine that monitors any packet payload that is transmitted in plantext and notifies the user 

via a GUI interface by displaying the IP and MAC addresses of the device responsible for 

transmitting the unencrypted text. The user can choose to disconnect the device at that time.  

IoT-HASS was evaluated through four testing scenarios. In the first scenario, we 

compared it to similar systems. As shown in the evaluation and testing chapter, IoT-HASS 

outperformed the GA-SVM, WFS-IDS, A-IDS, and Beget models. IoT-HASS was also 

evaluated by executing simulation attacks and checking its performance. Simulation attacks 
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were executed in a controlled virtual environment. Inside the virtual environment, simulation 

attacks were executed with IoT-HASS installed and running in both in-line mode and passive 

mode. Three major attacks were simulated, including DDoS Attacks, Brute Force Attacks, 

and Cross Site Scripting Attacks. DDoS attacks were simulated using the Low Orbit Ian 

Cannon (LOIC) attack simulator tool, and the results showed that IoT-HASS captured attacks 

with a very high accuracy detection. Similarly, Brute Force attacks were simulated using the 

Medusa simulation tool from Kali, and results showed that IoT-HASS attained an outstanding 

detection accuracy. Finally, Cross Site Scripting (XSS) attacks were simulated with the 

XSSER attack simulator tool that exists in Kali Linux, and the results showed that IoT-HASS 

captured and prevented attacks successfully. In the fourth testing scenario, IoT-HASS was 

also evaluated when running in passive mode on a Raspberry Pi 4. The same set of simulation 

tests above were executed for the Raspberry Pi setup, and the results were very successful for 

all three types of attacks mentioned above. The Device Management engine was evaluated in 

both in-line and passive modes and in both the virtual environment and the Raspberry Pi. In 

each scenario when IoT-HASS was run, it triggered the Device Management engine to run 

and scan the devices. We checked the GUI interface and saw the list of gathered devices 

indicating that the test for the device management was successful. Since IoT-HASS is able to 

run on a small and resource-constrained device such as a Raspberry Pi, it is likely that it will 

run inside an embedded device such as a router or a home IoT device.  

7.2. Limitations 

There are a few limitations to this research. The first limitation is that the evaluation and 

testing were conducted in a virtual environment. This is because the experiment was 

conducted in a regular home network where only one network was available. To execute the 

experiment, we needed two different networks, one external network for the attacker and one 

internal network for the victim device, and a router with IoT-HASS installed. The only 

available environment to design this setting was the virtual environment as a home network 

has only one network. The second limitation is that the Raspberry Pi has limited resources and 

capabilities compared to a regular router, and thus affects the performance of IoT-HASS. We 

used the latest version of Raspberry Pi 4 with enhanced functionality and 4GB of RAM, yet it 

is still less efficient compared to a typical average router. IoT-HASS would perform better if 

installed in a more powerful device. The third limitation in this research is that IoT-HASS still 
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needs to be trained on an updated dataset to be able to predict new attacks. Otherwise, it will 

likely result in more false positives as the system becomes older. Frequent training of the 

system with an updated training dataset will lessen the number of false positives, which 

results in a more accurate system. Of course, frequent training of the system with updated 

training datasets cannot be performed by non-technical smart home users, which is further 

limitation. 

Finally, there are limitations in both the Privacy Monitoring and Device Management 

engines. The Privacy Monitoring engine included in this version of IoT-HASS is used to 

monitor outgoing traffic and alerts the users if any data transmitted in plaintext is detected. 

The user must take action based on the alert received. Otherwise, the system performs no 

action. Another limitation is with the Device Management engine, which as of now scans the 

home network and lists devices for the homeowner. The homeowner has to further verify and 

block or disconnect any device that is not legitimate.   

7.3. Research Contributions 

Our contributions to the research community are derived from the development of our 

artifact solution, the IoT-HASS framework. We believe this artifact adds to the knowledge of 

the smart home security field. We developed a solution that is accurate, efficient, and 

lightweight. It does not consume large network resources such as memory or space. Most 

important, it is easy to use for regular non-technical homeowners without the need for 

additional support. The area of IoT security, and specifically the IoT home environment, is 

still new and open for more research. We believe the artifact demonstrated in this dissertation 

is a good effort in securing the smart home environment. As we suggest in the next section of 

future research, we plan to further enhance and complement this solution to better protect the 

smart home environment.  

7.4. Future Research 

Future research will concentrate on enhancing the functionality of IoT-HASS, specifically 

the need of a self-trained system. IoT-Hass should be able to learn and teach itself from new 

data to predict new attacks. A few algorithms could be used with other Deep Learning 

methods such as Artificial Neural Network (ANN). This would prevent the need for manually 

updating the training dataset and manually training the system. The goal of future research is 

to design a fully automated system that is capable of learning and training itself. 
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Another avenue of research, as stated in the limitation section, is to have the Privacy 

Monitoring Engine promoted to a Privacy Protection Engine. The proposed version of the 

privacy engine passively monitors the traffic. Future research will concentrate on building a 

real Privacy Protection Engine that will perform a deep packet inspection and detect not only 

plaintext but further analyze the text and predict if it contains PII. The plan is to have the 

engine look for terms that are similar to people’s names, addresses, medical terms, date of 

births, bank accounts, and social security numbers. If any of these examples are encountered 

while inspecting the packet payload, an alert is sent to the user while at the same time another 

alert is sent to the intrusion prevention engine to block the suspected packet.  

Finally, we plan to promote the Device Management Engine (DM) to an Identity and 

Access Management Engine (IAM). Similar to Privacy Monitoring, the Device Management 

engine in this version of IoT-HASS performs a passive job. It only performs network scans 

and notifies the user of devices. The user has to decide whether to disconnect the device from 

the network or not. Future research will concentrate on making the device management 

engine work more proactively. The engine should verify by itself (without user interference) 

whether the device is a legitimate device or not. The major challenge with device identity and 

access management is to correctly authenticate the device. An effective and trustworthy 

mechanism for device authentication will be investigated in our future research. 
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APPENDICES 

APPENDIX A: IOT-HASS README FILE 

Program Description 

This application is used to protect the smart home IoT environment. It consists basically 

of three engines. The system works in two different modes of operations. The In-line mode 

where the system is installed in-line with the traffic in a device such as a Router. In this mode, 

the system works as an intrusion prevention system (IPS) where it detects, and blocks threats 

and alerts the user at the same time. The other mode is a Passive mode where the system is 

not installed in-line with the traffic and thus can work as an intrusion detection system (IDS) 

and can only detects attacks and alerts the user. The user can receive alerts via a GUI 

interface. The GUI also allows the user to view, verify, and delete/block suspect devices. 

Technical Specification 

• Linux OS 

• Python 3 

• No other dependencies or third-party library needed 

System Features 

This version includes the following features: 

• The system’s ability to work both as IPS or IDS depending on the type of installation 

whether in-line with the traffic or not. 

• Detection and/or prevention of threats regardless of IoT device securing the entire 

smart home network. 

• Privacy monitoring and detection of unencrypted text and alerting the user at the same 

time. 

• Device management via regular device scanning and providing a list of devices for the 

user to verify and remove/block suspect devices. 
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Usage 

This program can be configured to run automatically as a systemctl service when the 

machine boots. However, it can also be run from a Linux terminal. Below is a sample 

command from a Raspberry Pi 4 terminal; just type the following and press enter. 

root@raspberrypi:/home/pi/Software/IoT-HASS# python3 iot_hass_service.py 

To run the GUI interface, the user can simply double click on the file to open the GUI 

window. However, alternatively, the GUI can be run from the terminal as follows: 

root@raspberrypi:/home/pi/Software/IoT-HASS# python3 iot_hass_gui.py 

Note: All IoT-HASS files must be included under the IoT-HASS folder in the above example. 

The IoT-HASS complete code is available at: https://github.com/tmudawi/IoT-HASS 
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