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ABSTRACT

Artificial intelligence (Al) has emerged as the defining technology of the 21%
century and has far-reaching impacts on project management (PM). This study
assesses the applications of Al in managing project processes and targets through
a systematic analysis of publications from 2017 to 2021. The analysis has
revealed interesting insights, trends, gaps, and issues. This study informs the
researchers and practitioners of the status of Al applications in the management
of project processes and targets. It helps stimulate research efforts that can lead
to more advances in applying Al to augment PM practices.

Keywords: artificial intelligence, Al, project management, project processes,
project targets

INTRODUCTION

Artificial Intelligence (Al) is the intelligence demonstrated by software, computers,
and machines in contrast to the natural intelligence displayed by humans (Kok et
al., 2009). It has gained fresh momentum with remarkable breakthroughs in the past
decade (Davenport, 2018). The recent Al renaissance has been driven by
technological advances in information processing and data storage as well as the
increasing availability of big data (Pan, 2016). With the promise to maximize the
chance of achieving the goals by acting based on data collected from the
environment, Al can change how people interact with their gadgets and systems in
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their everyday life and how businesses manufacture goods and provide services
(Makridakis, 2017). Al can transform every industry and discipline (Canhoto &
Clear, 2020), including Project Management (PM) (Ong & Uddin, 2020).

This paper uses Al as an umbrella term for any computer program that can perform
tasks characteristic of human intelligence. From SIRI to self-driving cars, Al has
become increasingly sophisticated. Al technologies, such as machine learning
(ML), deep learning (DL), and natural language process (NLP), can now recognize
patterns more quickly and with less human coaching (and, eventually, perhaps no
coaching). They can make more accurate data-driven decisions and solve business
problems using new unstructured data sources, including images, sound, videos,
texts, and mapping data. Al applications have been developed and deployed rapidly.
They are now found in business functions like finance, marketing and sales, human
resources, customer services, and operations in various industries, including
banking, manufacturing, and retailing (Halper, 2017). They show great promise and
create incredible opportunities to improve efficiency and increase productivity
(Makridakis, 2017; Schoper et al., 2018).

Projects are temporary endeavors to create a unique product, service, or result
(Project Management Institute, 2017). They are the building blocks of
contemporary organizations. Most projects are complex and multi-faceted and
require careful management. PM is the application of knowledge, skills, tools, and
techniques to project activities to meet the project requirements (Project
Management Institute, 2017). PM involves various people (e.g., PM manager, team
members, and external stakeholders), different processes (e.g., initiating, planning,
and executing), numerous knowledge areas (e.g., integration, quality, and risk),
myriad techniques (e.g., Gantt chart, PERT (Program Evaluation and Review
Technique), and multiple constraints (e.g., cost, time, and scope) (Heagney, 2016).
PM is essential for project success (Munns & Bjeirmi, 1996). In today’s rapidly
changing business environment, PM enables organizations to succeed in projects
challenged with tighter budgets, shorter timelines, and limited resources.

Al can profoundly impact many aspects of PM (Auth et al., 2021; Dam et al., 2019;
Uchihira et al., 2020). For example, Al-based tools can take over functions like
meeting planning, reminders, day-to-day updates, and other administrative tasks.
More importantly, they can help project managers and team members with higher-
lever, complex data-driven decision-making, such as complexity and success
analyses and risk assessments, to keep projects on schedule and budget. Moreover,
Al applications can do more than estimate costs and schedules. They can also
analyze data from current and previous projects to provide insights, steering
projects through difficult decisions and unexpected obstacles. In short, Al
applications are emerging to evaluate, analyze, or forecast potential outcomes based
on possible variations of the project or environmental variables and their
relationships with other variables.
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Both PM academia and professionals recognize AI’s potential impacts, increasingly
interested in integrating Al into PM. A growing number of research has been paying
attention to using Al in PM. Most existing research has focused on either
developing an Al solution for a specific PM task (e.g., Dam et al., 2019) or
discussing the promises and challenges of Al for PM conceptually (Auth et al.,
2021). Although these studies have provided interesting insights, they have not
synthesized the literature on the actual Al applications in PM. As a result, a
comprehensive review of the Al applications in real-world PM settings has been
lacking. Subsequently, how different Al technologies are used for PM is unclear. A
thorough understanding of the real Al applications in PM is needed to comprehend
the current state and guide future research.

This study answers this call. Specifically, we conduct a systematic review of how
Al technologies are applied in the PM domain. Of the many aspects of PM, we look
into project processes and targets. We chose to study project processes because PM
is accomplished through applying and integrating project processes (Project
Management Institute, 2017). The PMBOK® Guide defines five PM processes
initiating, planning, executing, monitoring and controlling, and closing (Project
Management Institute, 2017). The initiating process involves starting up a new
project. Within the initiation phase, the business problem or opportunity is
identified, a solution is defined, a project is formed, and a project team is appointed
to build and deliver the solution. The planning process ensures that the project plans
are documented, the project deliverables and requirements are defined, and the
project schedule is created. It involves establishing the scope, refining the
objectives, and defining the course of action. The executing process is about
implementing all the activities set in the planning process to deliver the expected
results. The monitoring and controlling process involves actively reviewing the
project’s status as it proceeds, regulating the performance and progress, evaluating
potential obstacles, and implementing necessary changes. The closing process is
the final phase of the project lifecycle, where all deliverables are finalized and
formally transferred, and all documentation is signed off, approved, and archived.

Project targets refer to a set of fixed goals that determine how a given project is
expected to be done and what result or effect is supposed to be produced by the
project. They are critical to PM as they provide goals for the project team. Ideally,
a project should have definite starting and ending points time, a budget, a clearly
defined scope or magnitude of work to be done, and specific performance
requirements that must be met. Therefore, the four primary targets are time, scope,
cost, and performance (Heagney, 2016). The time target is related to the project’s
schedule for completion, including the deadlines for each phase of the project and
the date for the rollout of the final deliverable.

The scope target defines the project’s specific goals, deliverables, features, and
functions, in addition to the tasks required to complete the project. The cost target,
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often dubbed the project’s budget, comprises all the financial resources needed to
complete the project on time and in its predetermined scope. The performance
target concerns whether project deliverables satisfy the needs and expectations of
the project’s end-user. With a defined target, it is easier for the project manager and
team members to focus on reaching it.

Our review makes research and practical contributions to the PM field. It informs
PM researchers and practitioners of the status of documented real-world Al
applications in PM. Our findings can stimulate interest in adopting Al in PM
practices and invite more research efforts that can lead to more advances in applying
Al to PM. The remainder of the paper is organized as follows. The next session
describes the review method, detailing the sampling and coding processes.
Thereafter, the review results are presented. This is followed by discussions of
review findings, research agenda, practical significance, and limitations.

The last section concludes the paper.

METHODS

Search Strategy and Selection Process

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) model was followed in searching the literature and selecting papers (See
Figure 1). Initially developed for the health sciences, the PRISMA model is an
evidence-based minimum set of items for reporting in systematic reviews and meta-
analyses (Liberati et al., 2009). Over the years, the PRISMA model has been
expanded to many other disciplines, including business and technology

(e.g., Peixoto et al., 2021; Regona et al., 2022). It can help our review to synthesize
the state of knowledge in the Al application in PM and identify future research
priorities. It also provides transparency in the review process and supports
duplication of the review. Therefore, the PRISMA model is appropriate for our
systematic literature review.

First, four databases (i.e., ABl/Inform, ACM, IEEE Xplore, and Pubmed/Medline)
were queried with two keywords — artificial intelligence (Al) and project
management (PM), for research published in a 5-year time reference period (2017-
2021). The keyword search generated 617 papers. After duplicated papers were
removed, 613 unique pieces remained. Next, the abstract of the 613 papers was
checked. A reading of the abstract indicated that five hundred twenty-six papers
were unrelated to applying Al in the PM domain (e.g., Do etal., 2019) and thus was
removed for further analysis.

Then the full text of the remaining 87 papers was examined.
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The following categories of articles were excluded: (1) full text was not available
(e.g., William et al., 2021), (2) research was not empirical but conceptual such as
literature review (e.g., Ahmed & EI-Sayegh, 2020), (3) Al application was not
directly linked to PM (e.g., Fridgeirsson et al., 2021), and (4) Al application was
lacking in PM (e.g., Yang, 2021). Finally, 52 papers (indicated with * in the
reference section) with Al applications specific to PM were selected for further
analysis. Specifically, we analyzed their abstracts and coded them.

Database Keyword Search

(N=61T7)
Y Paper Excluded after
Abstract Screen after Reading Abstract
Duplicate Removed (N=526)
(N=613) - unrelated to Al and PM
Paper Excluded after
Reading Full Text
(N=35)
Full Text Assessed for Coding - No full text available
(N=87) ) - non-empirical
- no Al applications
- Al applications not in PM

Papers Included for Coding
(N=52)

Figure 1. PRISMA Flow Diagram
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Abstract Analysis

We conducted a word cloud analysis to have a quick and easy understanding of the
topical content of sampled papers. Word clouds are graphical representations of
word frequency that give greater prominence to words that appear more frequently
in a source text (Lee 2020). It can help identify the most salient themes and convey
crucial information in textual data. The more often a specific word appears in a
source of textual data (such as a speech or database), the more important it is, and
the bigger and bolder it appears in the word cloud. A variety of word cloud
generators are freely available on the internet. We used the word cloud generator
from WordClouds.com. We imported the abstract from the 52 sampled papers into
a text box, and the tool created a graphical representation of the words.

Coding Procedure

A coding sheet was first developed. Special attention was paid to Al research areas
and techniques, data sources and size, PM processes and targets, and publication
outlet and year. Al is a vibrant field with various technical areas across different
methods and applications. We adopted the Al framework proposed by Kroenke &
Boyle (2021) to guide our coding of Al. As shown in Figure 2, Al research areas
include NLP, computer vision, ML, robotics, knowledge representation, and Al
planning. NLP strives to give computers the ability to analyze, understand and
respond, ultimately making computers interface with human languages rather than
computer languages (Shen, 2020). Computer vision enables computers to derive
meaningful information from digital images, videos, and other visual inputs and
take actions or make recommendations based on that information (Szeliski, 2022).
ML focuses on the idea that computers can identify patterns and make decisions
from data with minimal human intervention (Louridas & Ebert, 2016). Robotics is
interested in designing, constructing, and using machines (robots) to perform tasks
traditionally done by humans (Murphy, 2019). Knowledge representation
represents information computers can understand and utilize to solve complex real-
world problems (Bench-Capon, 2014). Al planning concerns how computers
execute strategies or action sequences with autonomous techniques for complex
problems (Hendler et al., 1990). These Al areas are not mutually exclusive but
somewhat intertwined. For example, ML has been widely used in other Al areas,
such as NLP and Al planning. Al techniques include but are not limited to, random
forests regression, support vector machine, genetic algorithm, linear regression,
naive Bayes, and convolution neural network.
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Artificial
Intelligence
L
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i Computer Machine Knowledge
Language Ty 7 Robotics Z Planning
Processing Ll Learning Representation
L3  Transiation - Object - Neural - e - Automated - Classical
Identification Networks 9 Reasoning Planning
Pattern : ; % Markov Decision
=y Text-to-Speech Recognition =t Deep Learning Locomotion Semantic web § Je- Processes (MDP)
L] G Image Processing] | _| Predictive - i 3 u ; n Partially
Speech-to-Text —| and Analysis Analytics Manipulation Ontologies Observable MDP

Figure 2. Major Al Research Areas (adopted from Kroenke & Boyle, 2021)

Al applications rely on enormous amounts of data from which to observe trends
and behavior patterns and quickly adapt to improve the accuracy of the conclusions
derived from the analysis of those data (Aerts & Bogdan-Martin, 2021).

Such applications do not just require more information than humans to understand
concepts or recognize features; instead, they require hundreds of thousands of times
more. In addition to quantity, data quality is essential to Al applications (Bertossi
& Geerts, 2020). The outcomes of Al applications are only as good as the data that
humans feed them to learn. Quality data in large volumes are needed for AL to
make accurate predictions. Considering the criticality of data to Al applications, we
also collected information on the data used in the Al application, including data
source and data size.

Next, the PM processes, initiating (defining or initiating a project or phase),
planning (establishing the scope, refining the objectives, and defining the course of
action), executing (completing the work described in the project plan), monitoring
& controlling (tracking, reviewing and regulating the performance and progress)
and closing (processes to formally complete and close), were coded. The PM targets
(time, cost, scope, and performance) were also coded for each Al application.
Time refers to the schedule for the project to reach completion. Cost is the financial
constraint of a project, also known as the project budget. Scope is the “size” of the
project in terms of the details and magnitude of the project’s deliverables.
Performance is concerned with the overall measurement of whether a project has
met the objectives and requirements.
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Finally, the industry to which Al was applied was noted. We also checked the
publication outlet and year for the sampled research. Each paper was read and
analyzed using the coding sheet. Table 1 shows an example of the coding of a paper.
The summary of the coding of 52 papers is listed in Appendix.

Table 1. Example of Coding Sheet

Paper: Suherman and colleagues, 2020

Al research area ML
Al technique random forests regression
Data source COCOMO NASAA93 that available publicly on the internet
Data Size not reported
PM process Planning
PM Target Effort estimation — scope
Industry Software
Publication outlet Conference
Publication year 2020
RESULTS

Abstract Summary

The word cloud generated from the abstracts of all 52 selected studies is shown in
Figure 3. It reveals that the development of Al algorithms and models is dominant,
and software, construction, and energy projects are frequent in the sampled papers.
It also shows that the important words for PM include prediction accuracy, project
defect prediction, software effort estimation, project resources conflict, software
requirement specifications, risk value, and risk factor. The most often cited Al-
related terms encompass ML, neural networks, genetic algorithms, random forests
regression, decision trees, and supervised learners.
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supervised learners

Softwa re project machine learning techniques open source project

resources conflict risk software development process

support vector reSrESSion a |go rlth m bug tracking System construction project management
software engineering project maﬂager oroject data risk value

decision tree m O d e | public r&d project proposed methods
. .
machine learning s nsesssien

software cost estimation prediction accuracy deen neural network
heuristic algorithm P software development

neural Network energy project ~sofwere devlopmentffors o

SVr semeswes  random forest software effort estimation
deep Iearning construction project support vector machine
artificial intelligence
artificial neural network

data point

project defects prediction

genetic algorithm  critical class b|g data
success of software machine learning model

) project resources conflict
risk factors risk evaluation index

software requirements specifications

Figure 3. Word Cloud based on Abstracts
Al Research Areas and Techniques

Although Al has evolved in various research areas over the years, Al applications
of computer vision, robotics, knowledge representation, and Al planning were not
found in the selected studies. Most sampled papers involved mostly ML (78.85%,
n=41), while the remaining were NLP (21.15%, n=11). We also observed that ML
was utilized in all the papers focused on NLP. All 52 sampled studies employed
supervised ML. ML functions on supervised and unsupervised algorithms.

The key difference between the two algorithms lies in the data fed into the
algorithm. Supervised ML uses input data already tagged with the correct answer
and produces output data from previous experiences. Unsupervised ML allows
acting upon input data, which are neither classified nor labeled, to unknown patterns
in data without human supervision.

Table 2. Al Techniques

Al Techniques N %
Neural Network 22 | 42.31%
Artificial Neural Networks 7 13.46%
Deep Neural Networks 7 13.46%
Recurrent Neural Networks 6 11.54%
Convolution Neural Networks 1 1.92%
Extreme Learning Machine 1 1.92%
Ensemble 18 | 34.62%
Random Forests 10 19.23%
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Decision Trees
XGBoost
Gradient Boosting
M5P Regressor

Optimization

Genetic Algorithm

Gradient Descent Optimization
Bilevel Optimization

Particle Swam Optimization
MaxLogit Algorithm

Support Vector Machines

Support Vector Classification
Support Vector Regression

Linear Model

Logistic Regression
Linear Regression
Ridge Regression

Others

Naive Bayes
k-Nearest Neighbor
Statistical Learning
Fuzzy Logic

Random Space Classical Analogy

Simulated Annealing
Classical Analogy
Case-based Reasoning
Discriminant Analysis

P R w

=
o

RPN NINNOON PR WS

1

w

R R R R RPrRr RN

5.77%
5.77%
1.92%
1.92%
19.23%
7.69%
5.77%
1.92%
1.92%
1.92%
13.46%
9.62%
3.85%
13.46%
7.69%
3.85%
1.92%
9.62%
7.69%
3.85%
1.92%
1.92%
1.92%
1.92%
1.92%
1.92%
1.92%

The most popular techniques used in the sampled research include neural networks,
ensemble methods, support vector machines, and linear models, as shown in Table
2. Some papers utilized multiple Al techniques (e.g., Ali et al., 2021; Oliveiraetal.,
2021; Shrikanth et al., 2021; Choi et al., 2021). Findings on each of the popular Al

techniques are presented below.
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Neural Network

In Al, a neural network is a method that teaches computers to process data in a way
that mimics the human brain through a set of algorithms. It has gained traction in
research and real-world projects across various domains to achieve high predictive
power. Twenty-two of the selected articles (42.31%) used some form of the neural
network, like an artificial neural network (e.g., Bai et al., 2021; Desai & Mohanty,
2018; Rankovi¢ et al., 2021), deep neural network (e.g., Khan et al., 2021; Tamura
& Yamada, 2017), recurrent neural network (e.g., Chatterjee et al., 2020; Predescu
etal., 2019), convolution neural network (Zhong et al., 2021) and extreme learning
machine (De Carvalho et al., 2021).

Ensemble

The ensemble method combines several base models to create better predictive
models than could be obtained from any constituent models alone. Eighteen
sampled papers (34.62%) utilized the ensemble method, including random forests
(e.g., Osman & Zaharin, 2018; Owolabi et al., 2020), decision trees (e.g., Ali et al.,
2021; Shrikanth et al., 2021), XGBoost (e.g., Eken et al., 2019; Elmousalami,
2021), gradient boosting (Choi et al., 2021) and M5P Regressor (Dritsas et al.,
2021).

Support Vector Machine

A support vector machine (SVM) uses classification algorithms for two-group
classification problems. An SVM model can categorize new text when given a set
of labeled training data per category. SVM models perform well with a limited
amount of data to analyze. They are suitable for predicting either discrete labels or
continuous values. Seven of the selected articles (13.46%) employed the SVM
technique for classification tasks (e.g., Hammad & Algaddoumi, 2018; Pohl et al.,
2020) and regression tasks (Lin et al., 2019; Lopez-Martin et al., 2017).

Linear Model

Linear models predict continuous numerical values using a linear function of the
input features. They make predictions of a dependent variable value from a given
independent variable based on supervised learning. Seven papers (13.46%)
employed linear models, such as linear regression (Arage & Dharwadkar, 2017;
Hanslo & Tanner, 2020), logistic regression (e.g., Assavakamhaenghan et al., 2020;
Oliveira et al., 2021), and ridge regression (Ali et al., 2021).
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Optimization

Optimization is the process where the model is trained iteratively to create an
accurate model with less error rate. In the optimization process, the
hyperparameters are tuned until the optimum result is reached. Ten papers (19.23%)
used optimization models such as genetic algorithms (Kareem Kamoona &
Budayan, 2019; Ma & Deng, 2021), gradient descent optimization (e.g., Oliveira et
al., 2021; Zhang & Wang, 2021), bilevel optimization (K. Li et al., 2020), particle
swam optimization (Lin et al., 2019), the maxlogit algorithm (Assavakamhaenghan
etal., 2020).

Others

As expected, the list above is not exhaustive. Several other categories of ML
algorithms were applied in the sampled literature. They were k-nearest neighbors
(Korenaga et al., 2019), naive Bayes (Eken et al., 2019), fuzzy logic (Pefia et al.,
2019), simulated annealing (Lu et al., 2017), classical analogy (Hosni & Idri, 2017),
statistical learning (Zhang & Wang, 2021), random space classical analogy (Hosni
& Idri, 2017), case-based reasoning (Asif & Ahmed, 2020), and discriminant
analysis (Masuda et al., 2017).

DATA SOURCE AND SIZE

Data were acquired from various sources. These different data sources can be
grouped into publicly available and institutional proprietary, as shown in Table 3.
Examples of publicly available data sources include Desharnais Software Cost
Estimation (n=5) (e.g., Alietal., 2021; De Carvalho et al., 2021), Constructive Cost
Model (COCOMO) (n = 4) (e.g., Hosni & Idri, 2017; Khan et al., 2021), and the
NASA dataset (n =4) (e.g., BaniMustafa, 2018; Suherman et al., 2020).
Institutional/proprietary data were from software requirements specification (SRS)
documents (e.g., Anish et al., 2019; Chatterjee et al., 2020) and construction
projects (e.g., Lin et al., 2019; Yaseen et al., 2020). Some papers did not report their
data source (e.g., Lu etal., 2017; Ma & Deng, 2021). Proprietary data were utilized
more frequently than publicly available data. Data size also ranged from 4 SRS
documents (Osman & Zaharin, 2018) to 80,000 JIRA issues (Assavakamhaenghan
et al., 2020). Given the difference in the unit of analysis for each, the data sizes
were not categorized but have been listed in the Appendix.
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Table 3. Data source

Data Source N %
Instuitional Proprietary | 34 30.77%
Publicly available 16 65.38%
Not Reported 2 3.85%

PM Process

Table 4 provides an overview of the PM processes covered by the selected papers.
No study applied Al to the closing process. Next, we detail the findings on the
initiating, planning, executing and monitoring, and controlling processes.

Table 4. PM Process

PM Process N %
Initiating 14 26.92%
Cost prediction 7 13.46%
Risk prediction 4 7.69%
Schedule management 3 5.77%
Planning 21 40.38%
Effort estimation 13 25.00%
Human resource management | 3 5.77%
Requirements management 3 5.77%
Team formation 1 1.92%
Scrum adoption prediction 1 1.92%
Executing 7 13.46%
Effort estimation 3 5.77%
Communication management | 1 1.92%
Technical Debt prediction 1 1.92%
Execution control 1 1.92%
Risk prediction 1 1.92%
Monitoring & Controlling 10 19.23
Defect prediction 7 13.46%
Performance evaluation 1 1.92%
Scrum adoption prediction 1 1.92%
Maturity prediction 1 1.92%
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Initiating

Fourteen (26.92%) papers dealt with the initiating process. Seven studies developed
Al applications to answer the question “What is the estimated cost of the project?”
(Arage & Dharwadkar, 2017; Desai & Mohanty, 2018; EImousalami, 2021; Garcia
Rodriguez et al., 2019; Kareem Kamoona & Budayan, 2019; Lin et al., 2019; Choi
et al., 2021). Four articles explored risk prediction to generate a broad perspective
of the opportunities and threats to the project (Ajayi et al., 2020; Asif & Ahmed,
2020; Owolabi et al., 2020; Zhong et al., 2021). Further, three articles dealt with
schedule information management aimed at approximating the completion time for
the project (Lu et al., 2017; Ma & Deng, 2021; Zhang & Wang, 2021).

Planning

Twenty-one papers (40.38%) were related to the planning process. They were all
about software-based project planning. A large majority (n=13) experimented with
software effort estimation (Ali et al., 2021; BaniMustafa, 2018; Choetkiertikul et
al., 2019; De Carvalho et al., 2021; Hammad & Algaddoumi, 2018; Hosni & Idri,
2017; lonescu, 2017; Khan et al., 2021; Korenaga et al., 2019; Predescu et al., 2019;
Rankovi¢ et al., 2021; Suherman et al., 2020; Tamura et al., 2018). The remaining
eight articles focused on how to plan for project scope, with three on human
resource management (Assavakamhaenghan et al., 2020; Bai et al., 2021; Dritsas
et al., 2021), three on function management (Anish et al., 2019; Chatterjee et al.,
2020; Osman & Zaharin, 2018), and one each on critical success factors (Perera et
al., 2021) and (Masuda et al., 2017).

Executing

Seven publications (13.46%) looked into the executing process. They covered Al-
enabled tools to improve the software development process (Lopez-Martin et al.,
2017; Mahfoodh & Hammad, 2020; Oliveira et al., 2021), predict software
development technical debt (Wang et al., 2020), support project execution control
(Pefa et al., 2019), enhance effective team collaboration (Buah et al., 2020), and
predict project execution delay (Yaseen et al., 2020)

Monitoring and Controlling

Ten articles (19.23%) focused on the monitoring and controlling process. Some
studies designed Al applications to detect, track or predict software bugs and
defects

©International Information Management Association, Inc. 2021 90 ISSN: 1941-6679-On-line Copy



The Applications of Artificial Intelligence Noteboom - Ofori - Shen

(Ekenetal., 2019; K. Lietal., 2020; Y. Li etal., 2017; Mahfoodh & Obediat, 2020;
Pohl et al., 2020; Shrikanth et al., 2021; Tamura & Yamada, 2017). Others focused
on performance evaluation (Li, 2021), scrum adoption prediction (Hanslo &
Tanner, 2020), and maturity prediction (Liu et al., 2017).

PM TARGET

Listed in Table 5 is the information regarding PM targets in the sampled papers.
These targets were organized according to the triple constraint of project
management.

Table 5. PM Target

PM Target N %
Time 4 7.69
Schedule management 3| 5.77%
Technical debt prediction 1 1.92%
Cost 7 13.46
Cost prediction 7 13.46
Scope 30 | 57.69%
Effort estimation 16 30.77
Risk prediction 5 9.62
Requirement management 3 5.77
Human resource management 2 3.85
Risk management 1 1.92
Team formation 1 1.92
Critical Success Factors 1 1.92
Communication management 1 1.92
Performance 11 21.15
Defect prediction 7 | 13.46%
Performance evaluation 1 1.92%
Scrum adoption prediction 1 1.92%
Execution control 1 1.92%
Maturity prediction 1 1.92%
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Time

Every project is a limited-time endeavor. This means time is an essential resource
to the project, which can contribute to the success or failure of the project. Four
papers (7.69%) explored the time constraint of PM, specifically schedule
management (Lu et al., 2017; Ma & Deng, 2021; Wang et al., 2020) and technical
debt prediction (Zhang & Wang, 2021)

Scope

The scope of the project is also essential for defining the entire project. It determines
the size of the project about detail, quality, and the scale of the project deliverables.
More than half of the studies surveyed — thirty (57.69%) — dealt with issues
concerning this constraint. Sixteen papers examined effort estimation (e.g.,
Choetkiertikul et al., 2019, 2019; lonescu, 2017), five explored risk prediction (e.g.,
Owolabi et al., 2020; Yaseen et al., 2020), three were on requirements management
(Anish et al., 2019; Chatterjee et al., 2020; Osman & Zaharin, 2018), and two on
human resource management (Assavakamhaenghan et al., 2020; Dritsas et al.,
2021). The remaining were risk management (Bai et al., 2021), team formation
(Masuda et al., 2017), critical success factors (Perera et al., 2021), and
communication management (Buah et al., 2020).

Cost

A project’s budget allows it to be completed on time and within the specified scope.
Thus, the cost of a project is also critical to its success. Overall, seven (13.46%) of
the studies in this literature review were found to explore topics about the cost of
the project (e.g., EImousalami, 2021; Kareem Kamoona & Budayan, 2019; Lin et
al., 2019).

Performance

Eleven (21.15%) of the surveyed studies explored topics regarding project
performance. These included seven on defect prediction (e.g., Pohl et al., 2020;
Tamura et al., 2018). Others were scrum adoption prediction (Hanslo & Tanner,
2020), performance evaluation (H. Li, 2021), maturity prediction (Liu et al., 2017),
and execution control (Pefia et al., 2019).
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INDUSTRY

Summarized in Table 6 is the distribution of industry. The IT/Software industry
was predominant, with 37 papers (71.15%) applying Al to bug tracking, defect
prediction, and effort estimation problems. This was followed by the Construction
and Energy industries with eight (15.38%) and two (3.85%) papers, respectively.
One paper surveyed project managers but was not industry-specific (Bai et al.,
2021). With only one article each, other industries included procurement (Garcia
Rodriguez et al., 2019), transportation/logistics (H. Li, 2021), human resource
management (Dritsas et al., 2021), and farming and agriculture (Elmousalami,
2021). The dominance of IT/software development projects in the sampled papers
can be attributed to at least two factors. First, project teams working on IT/software
development are knowledgeable of Al technologies and techniques and are
comfortable applying them to PM. Second, Al techniques are readily applicable to
many repetitive tasks in software development, such as cost, debugging, and
testing.

Table 6. Industry Distribution

Industry N %
IT/Software Development 37 | 71.15%
Construction 8 | 15.38%
Energy 2 | 3.85%
Others 5 | 7.70%
- Procurement 1| 1.92%
- Transportation & Logistics 1 1.92%
- Human resource management | 1 | 1.92%
- Farming/Agriculture 1 | 1.92%
Not mentioned 1 | 1.92%

PUBLICATION STATISTICS

Table 7 shows the information on publication outlets and years. Of the 52 selected
studies, 30 of the articles (57.69%) were in the proceedings of conferences like the
IEEE/ACM International Conference on Automated Software Engineering (ASE)
and the International Conference on Reliability, Infocom Technologies, and
Optimization (ICRITO). The remaining 22 papers (42.31%) were published in
international English-language journals such as IEEE Access (n=5), Sustainability
(n=3), and Mathematical Problems in Engineering (n=3).
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Most selected papers were published in 2021, and 29 were published in the last two
years (55.77%). Publications have been growing steadily in the last three years.
Next, we report the review findings on Al, PM, and industry.

Table 7. Publication Outlet and Year

Publication Outlet N %
Conference Proceedings 30 57.69
Journal articles 22 42.31

Publication Year N %
2017 9 17.31%
2018 5 9.62%
2019 9 17.31%
2020 14 26.92%
2021 15 28.85%

DISCUSSION

Summary of Results

In our review, over 600 records were narrowed down to 52 full-text articles. The
analyses of the 52 papers have revealed some interesting patterns in the applications
of Al in PM, such as the popularity of ML (especially supervised ML), the limited
availability of data, wide use of Al in IT/software development projects. More
importantly, our review provides empirical evidence that Al applications play
significant roles, from conceptualizing and planning to implementing, monitoring,
and evaluating projects. Al is shown to effectively manage the time, scope, and cost
targets at the different PM processes, contributing to the projects’ performance.

In construction projects, Al has been applied to predict various PM targets. Yaseen
and colleagues (2020) developed an Al model called integrative random forest
classifier with genetic algorithm optimization to predict delay (missing the
deadline). Based on the measured accuracy, kappa statistics, and classification
error, the model was robust and reliable to predict project delay (time target) in the
executing process. Owolabi and colleagues (2020) also took an interest in project
delay, specifically in public-private partnerships construction projects. They
devised a series of predictive models using linear regression, regression trees,
random forest, support vector machine, and deep neural network to predict
construction project completion. Their study found that random forest is an
effective technique for predicting delays with lower average test predicting error
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than other techniques. Zhang and Wang (2021) examined another aspect of the time
target — schedule management — in the initiating process. Their ML-based model
was demonstrated to estimate task duration with improved computation efficiency
without losing any prediction accuracy.

Arage and Dharwadkar (2017) forecast the cost of construction projects based on
district schedule rates in the initiating process with a simple linear regression
model. The proposed model, tested with a small dataset, gave 91% to 97%
prediction accuracy. More sophisticated models are also developed to estimate
construction costs to provide a reliable basis for decision-making at the onset of
projects. Lin et al. (2019) proposed a support vector machine model optimized by
a particle swarm optimization algorithm with principal component analysis for
power substation projects. The model was shown to have lower error rates and
higher prediction accuracy than traditional models.

Moreover, Al applications find ways to predict risks associated with more than one
PM target. For instance, Zhong and colleagues (2021) proposed an Al model based
on the one-dimensional convolution neural network to forecast risks associated with
time and cost. After training and learning, the model could predict construction
period risk and cost risk with an average absolute error of less than 0.1%. This
shows Al-based model can solve the problem of low accuracy of traditional
construction project time and cost prediction in the planning process. Choi et al.
(2021) developed an Al-based intelligent decision support system with different
modules for cost estimation in the initiating process, schedule delay in the executing
process and maintenance prediction in the monitoring and controlling process. The
system can help project managers with risk management by preventing errors and
improving work accuracy.

Similarly, Al shows promise in the different PM processes in software projects.
Four papers examined Al applications in the initiating process. Two of them
focused on schedule management. Ma and Deng (2021) used use genetic algorithm
to solve the problems in project scheduling. They showed that Al could find the
optimal schedule plan by satisfying the project priority and resource constraints for
medium or large-scale software projects. Lu and colleagues (2017) designed a
hybrid algorithm combining simulated annealing and genetic algorithm to manage
schedule risk for IT outsourcing projects. Their simulations indicate that the hybrid
algorithm was superior to the simulated annealing and genetic algorithm in terms
of stability and convergence. Desai and Mohanty (2018) proposed using artificial
neural networks to optimize software cost estimation. In addition to a single PM
target, Asif and Ahmed (2020) looked at scope, time, and cost. Specifically, they
proposed an intelligent system to mitigate software risks from scope, time, and cost
for software project managers. Association rule learning, a rule-based ML, was
used to find frequent patterns among risk factors and generate risk mitigations.
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Research on Al in the software project planning process examines solely the scope
target. Effort estimation received most of the research attention (Ali et al., 2021,
Choetkiertikul et al., 2019; Hammad & Algaddoumi, 2018; Hosni & Idri, 2017,
lonescu, 2017; Khan et al., 2021; Korenaga et al., 2019; Predescu et al., 2019;
Rankovi¢ et al., 2021; Suherman et al., 2020; Tamura et al., 2018). These studies
adopted various Al techniques, such as linear regression, decision trees, support
vector machines, and neural network, to estimate how much effort a project will
take to bring to life. Moreover, the sampled research examines other aspects of
software project scope, such as requirement management (Anish et al., 2019;
Chatterjee et al., 2019, Osman & Zaharin, 2018), human resource management
Assavakamhaenghan et al., 2020), team formation (Masuda et al., 2017) and critical
success factors (Perera et al., 2021). Overall, Al-based models outperformed
tradtional models in providing accurate prediction of the scope target.

The scope target, specifically effort estimation, is also explored in the executing
process (Lopez-Martin et al., 2017; Mahfoodh & Hammad, 2020; Oliveira et al.,
2021). For instance, Oliveira and colleagues investigated the use of ML to automate
issue assignment (aka bug triage) in a global electronics company. They compared
different algorithms with the aim of minimizing the time spent and the errors that
can arise in the issue assignment process. The performance target is considered, as
well. For example, Pefia et al. (2019) proposed a method for project execution
control partically based on ML techniques (e.g., neural networks and genetic
algorithms), and validation of the method ratified an improvement in the quality of
project evaluation. Wang and colleagues (2020) designed and implemented a deep
learning-based prototype tool for automatic detection and management of technical
debt (a suboptimal solution that software developers take shortcuts to achieve rapid
delivery during development) in open-source software projects. They demonstrated
the effectiveness of the tool over the manual approach.

The performance target is also the focus of the monitoring and controlling process
of software projects. Many studies applied Al technologies to predict defects (Eken
etal., 2019; Lietal., 2020; Li et al., 2017; Mahfoodh & Obediat, 2020), Pohl et al.,
2020; Shrikanth et al., 2021; Tamura & Yamada, 2017. They proved that Al tools
could successfully classify bug tickets and predict software defects. Al technologies
were also used to predict mature projects in the open source software project
community (Liu et al., 2017) and Scrum adoption (Hanslo & Tanner, 2020). The
values of Al for PM targets in different PM processes also reverberated in other
industries, as ensemble algorithms like the random forests technique were
effectively used to evaluate the project performance in transportation and logistics
(Li, 2021) and estimate project cost in procurement (Garcia Rodriguez et al., 2019).
In sum, the reviewed literature has shown that Al-based models have the capacity
to solve dynamic, uncertain, and complex tasks in PM.
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Al applications can support various PM targets in different PM processes.
Compared to the traditional methods, AL methods are more computationally
efficient and more accurate in classification, prediction, automation, and
optimization.

It is clear that Al technologies are in a pole position to streamline, support, and
simplify PM processes and accomplish PM targets.

Research Agenda for Al in PM

Our findings have pointed out avenues for future research to advance Al
applications in PM. They indicate that the current PM literature has only looked
into ML and NLP of the various Al research areas. ML-powered applications
dominated the reviewed papers. The scope of Al-enabled NLP has been limited to
a small number of studies that focused on performance targets such as software bug
tracking and defect prediction (Eken et al., 2019; Pohl et al., 2020; Shrikanth et al.,
2021) or scope targets like requirement management (Anish et al., 2019; Chatterjee
et al., 2020; Osman & Zaharin, 2018). More novel NLP applications in PM need
more systematic research, considering the various NLP capabilities in content
categorization, topic discovery, sentiment analysis, document summarization, and
machine translation. For example, future research can explore NLP-enabled
chatbots to effectively handle routine project management tasks such as scheduling,
reminder, and follow-ups to eliminate the need for human input. Future research
can also investigate how other Al research areas (e.g., knowledge representation)
can be incorporated into PM. Such Al applications can be valuable in contributing
to the success of PM across the project, the project teams, and its cultural
environments, such as a dynamic product definition, improved collaboration and
communication, and management buy-in (Noteboom et al., 2021).

Moreover, our analysis uncovers some issues with data, which are the lifeblood of
Al applications. Big data that have enabled the recent Al advances boasts not only
structured data, such as transactional data in a relational database, but also
unstructured data from audio, images, video, and so on (Constantiou & Kallinikos,
2015). However, existing Al applications in PM have relied heavily on textual data.
In other words, the unstructured data are hardly analyzed. Future research needs to
consider the impacts of unstructured data on Al applications in PM. Again, take
NLP, for example. The recent breakthroughs in speech recognition make voice NLP
applications valuable to automate some verbal communications to improve PM
operational efficiency. Voice NLP applications can also free up significant time for
project managers and team members from recording and reporting to working on
their deliverables. In addition, hidden in the diverse unstructured data is valuable
information that can be turned into meaningful actions.
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Our review shows that Al applications fed on textual data are powerful in predicting
time, cost, scope, and performance targets. Unstructured data can be used for
prediction, as well.

Most reviewed research has worked on small numbers of data. This may explain
why only supervised ML techniques are employed in the sampled literature.
Unsupervised ML’s capability to learn without human input requires extremely
large datasets. It scales much better with more data than its supervised counterpart.
While supervised ML typically plateaus in performance after it reaches a threshold
of data, the performance of unsupervised ML continues to improve when exposed
to more data. Future research needs to work on more sizable data for more robust
models, valid statistical inferences, and powerful outcomes.

In addition, while the reviewed literature stresses the technical superiority of Al
technology in PM, it does not pay attention to some critical concerns that can hinder
the progress of Al in PM. One such concern is the need for more transparency in
Al algorithms. Although what information is put together and goes in a non-
proprietary Al application is known, it usually goes unexplained how the algorithm
reaches its conclusions (Castelvecchi, 2016).). DL algorithms can be particularly
opaque because they continuously tweak their parameters and rules as they learn.
As Al algorithms adapt over time, they are then not only opaque but also likely to
change over time. This black box problem of Al algorithms creates problems in
validating the outputs of Al applications and identifying errors or biases in the data
(Adadi & Berrada, 2018). It can make project managers skeptical about Al
applications as they cannot understand the rationale of Al applications. To expand
the use of Al in PM, future research needs to explore how to open the black box
mystery to gain the trust of project managers.

Trust can also be compromised by the reliability of Al applications (Shneiderman,
2020). Al applications go through training and testing phases. However, the training
and testing phases can only cover some possible scenarios that an Al application
may encounter in the real world. And Al technologies could make mistakes. In
addition, an Al application can be fooled in ways that humans would not be. For
example, random dot patterns can lead a machine to ‘see’ things that are not there.
Al technologies could make errors. The stake of mistakes and errors can be high in
PM. Future research needs to improve the reliability of Al applications before the
large-scale adoption of Al technologies in PM becomes a reality.

Significance to Practitioners

Our research is significant for PM practitioners. First, it helps project managers and
team members understand the basics of Al technologies. Given the rapid pace with
which Al is being developed, many definitions, terms, and phrases have been used
to describe Al technologies.
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Our review surveys major Al technologies (e.g., ML, NLP) and techniques (e.g.,
neural networks, ensemble) and how they are related (e.g., supervised vs.
unsupervised learning). Such conceptual explanations can give PM practitioners
interested in Al an understanding necessary to comprehend Al applications in PM.
Second, our findings can stimulate more interest in applying Al to PM. Al
applications’ success in managing software, construction, and energy projects can
encourage PM teams in other areas to embrace and adopt Al technologies. Our
findings can also guide future implementation of Al applications as they show
where Al technologies and techniques can serve the project’s needs and improve
project success.

LIMITATIONS

The current study is not without its limitations. Most notably, a limitation in most
reviews, such as this one, relates to the sampling. The publication rate in Al
applications in PM is fast increasing, and our review may have difficulty keeping
up with new developments. Nevertheless, this review provides a general scope of
Al applications in PM. Second, we only analyzed full-text papers written in
English. Though our review is representative of Al applications in PM in the last
five years, it may miss some development in the dynamic and fast-paced research
reported in languages other than English. Finally, our review focused on the PM
processes and targets and did not capture the impacts of Al applications on other
aspects of PM (e.g., the skills required for project managers).

CONCLUSION

Al has emerged as the defining technology of the 21% century (Liu et al., 2018). Al
technologies have been undergoing tremendous and rapid advancements in recent
years (Whittaker et al., 2018). They can draw distinctions invisible to the naked
eye, analyze data and uncover patterns that elude human observers, and have the
advantage of efficiency and effectiveness (Chen, 2013). As such, Al technologies
are finding a home in many areas, including PM. With the ability to automate
routine activities and unlock new insights, Al can disrupt PM at an unprecedented
scale and has become a budding area of research in PM (Auth et al., 2019).

This paper presents a systematic analysis of research on the applications of Al
technologies in PM in the last five years. It has provided encouraging results that
Al applications improve PM processes and targets compared to traditional methods.
This paper helps researchers and practitioners understand AI’s status in the PM
domain. Equally important, it highlights important areas of Al-powered research to
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move the PM field forward. Success in Al and PM requires a focus on integrating
two fast-growing fields. It needs technical Al domain expertise and PM discipline
knowledge. Al applications in PM are promising, and much more systematic
research is necessary for the practical or commercial implementation of Al-driven
PM.
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