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Panel Session 
 
 
This years panel session will be passed around a discussion on a set of three statements. We 
are including the questions here to give you an opportunity to think about them before hand, 
in the hope that this will stimulate discussion at the meeting.  
 
In the current context of rapidly growing activity in the bio-ontology sector and possible new 
horizons in the Semantic Web, there are many contentious issues facing our community: 
 
Statement 1) 
 
We should be more authoritarian and less liberal in the building of Bio-Medical Ontologies. 
 
Background:  
 
As the development of bio-medical ontologies has become more widespread, the 
development of multiple ontologies with overlapping terms is inevitable (and is, to some 
extent, already happening).  
 
Currently, a very "free market" approach is being followed. Is this a strength? Or should it be 
replaced with something more centralised, similar to, for example, the Human Gene 
Nomenclature Committee.  
 
Statement 2) 
 
We are better at developing Bio-Medical Ontologies that we are at using them as key 
components of critical applications in academic research and commercial systems. 
 
Background:  
 
BioMedical ontologies now have a broad spread over the subject area. The main use of these 
ontologies is to annotate records which we then retrieve by query or navigation. Should we 
be doing more with these ontologies? Even this narrow use lacks good use facing and 
reusable tooling. 
 
Statement 3) 
 
The future for BioMedical ontologies is to be the semantic infrastructure for the 
computationally enabled systems biology view of life.  
 
Background: 
 
In the Semantic Web vision, data and services are described semantically, such that they 
become computationally amenable. Bioinformatics is in a strong position to realise this vision, 
which might affect both the way the world uses data, and the way biologists view life. Is this 
either or both possible or desirable.  
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ABSTRACT 
 
Motivation:  The FungalWeb Ontology aims to support the 
data integration needs of enzyme biotechnology from incep-
tion to product roll out. Serving as a knowledge base for de-
cision support, the conceptualization seeks to link fungal 
species with enzymes, enzyme substrates, enzyme classifi-
cations, enzyme modifications, enzyme retail and applica-
tions. We demonstrate how the FungalWeb Ontology sup-
ports this remit by presenting application scenarios, concep-
tualizations of the ontological frame able to support these 
scenarios and semantic queries typical of a Biotech Man-
ager. Queries to the knowledge base are answered with 
description logic (DL) and automated reasoning tools. 

1 INTRODUCTION  
Fungi are microorganisms well know for the range of novel 
enzymes they produce and enzymes of fungal origin are 
now used in industrial processes which amount to billions of 
dollars of revenue annually. The path to product develop-
ment, namely gene discovery, enzyme characterization, mu-
tational improvement and industrial application is long and 
fraught with numerous hurdles, both with respect to the do-
main knowledge and technical challenges. In an RnD envi-
ronment many decisions are frequently made on incomplete 
knowledge. The current need is to have an integrated 
framework for discovery and decision support. This must 
integrate data from laboratory research, data accessed from 
distributed database, web and textual resources as well as 
the results of bioinformatics computation. To provide a reli-
able semantic resource in a contemporary RnD environment 
the scientific and technical span of ontology must encapsu-
late a more inter disciplinary range of concepts. The full 
range of conceptualizations required for commercial enzy-
mologists includes taxonomy, gene discovery, protein fam-
ily classification, enzyme characterization, enzyme im-
provement, enzyme production, enzyme substrates, enzyme 
performance benchmarking, and market niche. Inclusion of 
such concepts and instance data in ontology is within the 
scope of the FungalWeb data integration initiative.  

2 ONTOLOGY DEVELOPMENT 
The Fungal Web Ontology [1] is the result of integrating 
numerous biological database schema, web accessible tex-
tual resources and interviews with domain experts. The on-
tology includes both hierarchical structures supporting full-
subsumption taxonomies and a broader conceptual frame  

 
with novel relationships for specific domain knowledge. 
The major resources for fungal terminologies and concepts 
come from the following sources:  NCBI taxonomy and 
literature databases [2] , NEWT: is the taxonomy database 
[3],  BRENDA enzyme database [4], Saccharomyces Ge-
nome Database [5], Neurospora crassa Genome Database 
[6], Commercial Enzyme Vendor Web Resources and the 
Enzyme Nomenclature Database [7].  
 
The FungalWeb Ontology (FWOnt) reuses and integrates 
existing bio-ontologies and knowledgebases by merging, 
mapping and sharing common concepts using logics. Our 
ontology is an integrated ontology which used components 
of Gene ontology (GO) [8], TAMBIS [9] to establish the 
basic frame upon which biotechnology specific concepts 
have been added. The Ontology is a formal ontology written 
in OWL-DL, a sublanguage of Ontology Web language 
(OWL) with correspondence to description logics (DL). 
This provides maximum expressiveness, without losing 
computational completeness and decidability of reasoning 
systems. Protégé 2000 [10] was used (with Owl plug-in) as 
a knowledge representation editor. Aptness (considering 
completeness, consistency and conciseness) of the ontology 
for its intended application and the scientific integrity was 
evaluated by posing DL queries. RACER [11] was used as a 
description logic reasoning system with support for T-Box 
(concepts) and A-Box (instances).   

3 APPLICATION SCENARIOS  
We demonstrate the scope of our ontological conceptualiza-
tion and the range of cross disciplinary queries that can be 
posed. We describe junction scenarios where a biotechnolo-
gist would ask support from the ontology and illustrate the 
how the diverse needs of the fungal biotechnology manager 
can be accommodated. The scientific context of these se-
mantic queries and the conceptual frames designed to sup-
port them are outlined. nRQL syntax of DL queries to the 
ontology using Racer are presented for each scenario.  

1.1 Enzymes acting on substrates 
The ontology includes a concept representing the semantic 
stem of the systematic chemical names of enzyme sub-
strates. This concept is instantiated with an NLP derived 
word stem of the most common term found in the enzyme 
descriptions of enzyme reaction classification scheme of the 
International Union of Biochemistry (IUB). By instantiating 
the semantically rich descriptions of the IUB into the con-
ceptualization of the ontology we are able to query for mul-

* baker@cs.concordia.ca  1
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tiple enzymes families known to degrade / modify a chemi-
cal substrate. A use case example querying for enzymes that 
act on the glucuronic acid polymer ‘pectin’ is described.  

1.2 Enzyme provenance 
A deep fungal taxonomy and enzyme reaction hierarchy are 
included in the ontology. The establishment of the relation-
ship ‘has been reported to be found in’ between the concepts 
enzyme and fungus, reflecting information in scientific pa-
pers, facilitates the query of provenance of fungal enzymes 
(which enzyme is found in which fungal species). Such a 
query is further complemented by queries able to identify 
the common taxonomic lineage of all enzymes with a par-
ticular function and is of value to the biotech manager inter-
ested in the gene discovery and biodiversity.  

1.3 Enzyme benchmark testing  
An industrial specification is an important component of the 
FungalWeb ontology, representing concepts of value to the 
commercially oriented enzymologist. Access to information 
on commercial enzymes, product names, product parameters 
and vendors assists in the benchmarking the performance of 
newly discovered or mutationaly improved enzymes. Typi-
cally such information is distributed on diversely formatted 
and company websites and promotional literature.  
 
Fig. 1. Instance data generated by Mutation Miner.  
 
<Protein> 
         <Name>xylanase</Name></Protein> 
<Organisms> 
         <Name>Bacillus circulans</Name></Organisms> 
<label>PMID: 9930661: GI: 17942986</label> 
<Mark>D37N</Mark> 
<Context>The upward shift of the optimum pH of the D37N 
mutant was predictable from the results of structural and 
amino acid sequence comparison.</Context> 

1.4 Enzyme Improvement 
An additional need of the commercial enzymologist is ac-
cess to information on mutational studies resulting in better 
enzymes. We discuss the inclusion of ontological concepts 
to support the instance data produced by the NLP tools [12] 
designed specifically to extract information on experimen-
tally introduced mutations and their impact on protein per-
formance. The ultimate goal being to interrogate the ontol-
ogy regarding mutations resulting in improved enzyme per-
formance under defined environmental conditions. Instances 
generated by the NLP tool are shown in Figure 1. 

CONCLUSION 
We have used semantic web technology to create ontology 
and a large knowledgebase in the domain of fungal biotech-
nology and genomics from trusted biological sources to 
provide unified semantic access to heterogeneous resources. 
We have demonstrated the capacity of the ontological con-

ceptualization through a series of queries. Since our target 
audience is the decision making industry manager, not nec-
essarily skilled in data mining technologies, we strive to 
facilitate answers without requiring advanced knowledge of 
query methodologies. We reason that sizeable time saving is 
made by and justifies the conceptual development of the 
ontology and its instantiation. Our semantic interrogations 
of the knowledge base provide us with further insight into 
structures of queries that the bio-scientific domain demands, 
thereby showing us the limits of the DL query technologies 
so that we can enhance the capabilities of Racer and nRQL.  

ACKNOWLEDGEMENTS 
This work was financed in part through the Genome Quebec 
project Ontologies, the semantic web and intelligent systems 
for genomics (V. Haarslev and G. Butler).  

REFERENCES 
[1] Sheban-Nejad A., Baker C. J. O., Butler G. Haarslev V. (2004) 

The FungalWeb Ontology: The core of a Semantic Web Applica-
tion for Fungal Genomics, 1st Canadian Semantic Web Interest 
Group Meeting (SWIG’04) Montreal, Quebec, Canada 

[2] Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, 
Schuler GD, Tatusova TA, Rapp BA (2000). Database resources 
of the National Center for Biotechnology Information. Nucleic Ac-
ids Res 2000 Jan 1;28(1):10-4  

[3] Phan, I. Q. H., Pilbout S. F., Fleischmann1  W. and Bairoch A. 
(2003) NEWT, a new taxonomy portal, Nucleic Acids Research, 
Vol. 31, No. 13 3822-3823 

[4] Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, 
Schomburg D. (2004) BRENDA, the enzyme database: updates 
and major new developments. Nucleic Acids Res. Jan 
1;32(Database issue):D431-3. 

[5] Saccharomyces Genome Database http://www.yeastgenome.org/) 
[6] Neurospora crassa Database 
 (http://www.broad.mit.edu/annotation/fungi/neurospora/) 
[7] Bairoch A. The ENZYME database in 2000 (2000) Nucleic Acids 

Res 28:304-305 
[8] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry 

JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill 
DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson 
JE, Ringwald M, Rubin GM, Sherlock G. (2000) Gene ontology: 
tool for the unification of biology. Nat Genet, 25(1):25-9 

[9] Baker PG, Brass A, Bechhofer S, Goble C, Paton N, Stevens R. 
(1998) TAMBIS--Transparent Access to Multiple Bioinformatics 
Information Sources. Proc Int Conf Intell Syst Mol Biol. 
1998;6:25-34  

[10] Noy N. F., Sintek M., Decker S., Crubezy M., Fergerson R. W., 
& Musen M. A.. (2000) Creating Semantic Web Contents with 
Protege-2000 IEEE Intelligent Systems 16(2):60-71,  

[11] Haarslev V, Möller R. (2001) Description of the RACER System 
and its Applications. Proceedings of the International Workshop 
on Description Logics (DL-2001). Stanford, USA 

 [12] Witte R and Baker C.J.O. (2005) Combining Biological Data-
bases and Text Mining to support New Bioinformatics Appli-
caions. A.Montoyo etal. (Eds.) NLDB 2005, LNCS 3513,310–321. 

2



 

Using Multiple Ontologies to Integrate Complex Biological Data 
Mary Shimoyama*, Victoria Petri, Dean Pasko, Susan Bromberg, Wenhua Wu, Jiali Chen, Na-
taliya Nenasheva, Simon Twigger, Howard Jacob 

Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 

 
ABSTRACT 
Motivation: The strength of the rat as a model organism lies in its 
utility in pharmacology, biochemistry, and physiology research. Data 
resulting from such studies is difficult to represent in databases and 
creation of user-friendly data mining tools has proven difficult.  The 
Rat Genome Database has developed a comprehensive ontology-
based data structure and annotation system to integrate physiologi-
cal data along with environmental and experimental factors, as well 
as genetic and genomic information. RGD uses multiple ontologies 
to integrate complex biological information from the molecular level 
to the whole organism, and to develop data mining and presentation 
tools. This comprehensive research platform will allow users to in-
vestigate the conditions under which biological processes are al-
tered and to elucidate the mechanisms of disease. 

1 ONTOLOGIES AT RGD 
Initially, RGD used ontologies to provide a simple frame-
work for classifying, representing and navigating across 
gene, phenotype, and disease information to link genomic 
data to function and disease (1, 2) and as a means to view 
biological information in the context of the genome. RGD 
implemented four ontologies: Gene Ontology (GO), Mam-
malian Phenotype Ontology(MP), Disease Ontology(DO) 
and a PathWay ontology (PW). The MP was initially devel-
oped at Mouse Genome Informatics (3) and is now being 
developed in a collaborative effort between RGD and MGI. 
The disease ontology was adapted from the Medical Subject 
Headings (MeSH, 4) and the pathway ontology was devel-
oped at RGD in order to integrate data from existing path-
way databases such as the Kyoto Encyclopedia of Genes 
and Genomes (5), REACTOME (6), GenMapDB (7) and the 
Biomolecular Interaction Database (8), as well as pathway 
data found in the literature.  It also includes “altered path-
way” terms to allow for the representation of pathways 
whose events or interactions are altered by genetic or envi-
ronmental factors. 

2 ONTOLOGY BASED TOOLS 
Current ontology based tools at RGD include the GViewer 
(Fig 1) which provides a genome-wide view of the genes 
and QTLs related to a single or multiple ontology query and 
GBrowse, which provides ontology tracks showing gene 
  
* To whom correspondence should be addressed.  

function, pathway, disease and phenotype information in the 
context of the genome. 
 
 
 
 
 
 
 
 
Fig 1. GViewer display of related genes across the genome 

3 INTEGRATING PHYSIOLOGICAL DATA VIA 
MULTIPLE ONTOLOGIES 

For the more complex data generated by much of the rat 
research community, the simple annotations provided by 
single ontologies are insufficient.  They don’t answer ques-
tions about the conditions under which the biological phe-
nomena take place or what factors could inhibit or modify 
them.  They also don’t provide a mechanism for relating 
disparate types of biological information to allow research-
ers to elucidate patterns or mechanisms involved in disease. 
RGD developed a structure that would allow the integration 
of multiple ontology annotations as well as qualifiers and 
actual values into a single record.  The relationships among 
multiple ontologies and values for a single annotation are 
achieved through an Experiment/Assay Table shown below.   

 

 

 
 
 
 
 
 
 
 
This compound annotation can be associated with the ge-
nomic elements in RGD such as genes, QTLs and strains, 
but it also can stand alone as an experimental record related 
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to phenotypes, drugs, diseases, pathways and other physio-
logical phenomena. Ontologies for rat anatomy, cell types, 
developmental stages, drugs, genetic factors, and environ-
mental conditions as well as qualifiers are being added to 
the system for integration and representation of complex 
phenotype, disease, expression, pathway and pharmacologi-
cal data.  Phenotype annotations will thus include not only 
the phenotype ontology term, but also the actual value and 
the experimental and genetic factors involved.  The use of 
the Experiment/Assay Data Object allows RGD to include 
pharmacological and physiological data that is not tied to a 
specific genetic or genomic object such as a gene or QTL. 

 

 

 

 

 
 
Because the rat is used by a diverse community involved in 
physiological and disease research, investigators often are 
unsure of the best model to use to study particular pheno-
types.  By integrating environmental and genetic factors into 
our model, as well as the inclusion of actual values, RGD 
can provide phenotype analysis tools to aid the researcher in 
choosing appropriate models based on the phenotype and 
conditions of interest.   

 

 

 

 
 
 
 
 
The multiple ontology data structure and annotation system 
supplies the user with an instant view of the processes, phe-
notypes, pathway(s) and environmental and genetic factors 
pertinent to a given disease. The design and implementation 
of additional sophisticated data mining tools for experimen-
tal data will allow investigators to more easily search for the 
answer to questions such as these:  
Under what conditions is an increase in the severity of a 
phenotype or a change in the expression of a gene or mutant 
gene observed? Are diseases caused by associated with the 

same pathway different in their manifestations because of 
the differences in the nature of the alterations?  Is, for in-
stance, Notch signaling pathway compromised because the 
promoters of target gene are mutated, the receptors are not 
properly modified or because mutations in either receptor or 
ligand interfere with the normal activity?  Are the manifold 
malformations (heart, eye, column) of the Alagille syn-
drome the result of the various instances of Jag1 ligand mu-
tations, scattered across the entire gene? Are individuals 
affected with CADASIL condition more sensitive to envi-
ronmental stress because the mutations within the Notch3 
receptor irrevocably compromise a three-disulfide bond 
pattern and for this matter its structural integrity? It is pre-
cisely the ability to navigate between and link instances of 
expression, genetic and environmental attributes, where 
ontology annotations could help researchers unthread the 
interplay between genes, mutations and environment that 
underlie complex human diseases. 
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ABSTRACT 

Background: Biological databases and knowledgebases 
are proliferating rapidly. In order to support human and com-
puter-aided information integration and inference, a know-
ledgebase must be trustworthy. Further, it should structure 
information using an ontology that is expressive and well-
structured enough to support computer-aided reasoning. 
Before using a pathway knowledgebase as a data source, it 
is therefore desirable to “proofread” it for trustworthiness and 
expressiveness. 

Results: In this work we check the pathways stored in the 
Reactome knowledgebase to verify its trustworthiness and 
evaluate its usefulness for computer-aided reasoning. We 
make explicit the event language implicit in the Reactome 
ontology, and specify a complementary logic for this lan-
guage. We use this logic to formulate a set of tests to verify 
desirable pathway properties in Reactome. We then perform 
such verification upon the latest two Reactome releases (10 
and 11) and compare the results. We also discuss the ex-
pressiveness of the Reactome ontology and its potential for 
supporting computer-aided inference tools. 

1 INTRODUCTION  
The advent of high-throughput technologies has contributed 
to revolutionary increases in the volume and variety of data 
available to biologists, and many biological databases have 
been developed for storing and querying the rapidly accu-
mulating data. However, locating, retrieving and integrating 
data have become increasingly burdensome tasks, and there 
is a growing need for tools that facilitate the interpretation 
of biological data. As a partial solution to this problem, 
some biological process databases represent information at a 
high enough level of abstraction to be designated “pathway 
knowledgebases.” The pathway resource list (PRL) at 
www.cbio.mskcc.org/prl currently lists 167 pathway re-
sources.  

The structured information stored in pathway knowl-
edgebases has the potential to be more immediately useful 
for computer-aided information integration than the raw 
data stored in more conventional databases because the in-
  
* To whom correspondence should be addressed.  

formation stored in such knowledgebases follows an explicit 
ontology. The usefulness of a pathway knowledgebase de-
pends on characteristics we designate as trustworthiness and 
expressiveness. The trustworthiness of a knowledgebase is a 
measure of its quality and completeness, while the expres-
siveness of a knowledgebase is reflected in such properties 
as the complexity and sophistication of the queries it will 
support and its ability to represent biological systems at 
multiple scales. To be trustworthy, a pathway knowledge-
base should be free of internal conflicts, explain as many 
steps as possible in each pathway, and provide the most 
complete set of pathway descriptions possible. Omissions, 
inconsistencies, errors in the order of steps in a pathway, 
missing steps, and extra steps all limit the utility of a know-
ledgebase. We believe that a trustworthy knowledgebase 
should minimally be complete, consistent, direct, gap-free, 
well-formed and acircular.  

2 RESULTS 
 
In this work, we give precise mathematical definitions for 
each of the above properties and present our logical frame-
work for assessing a knowledgebase’s trustworthiness using 
its ontology as a basis. We apply our tests to the latest re-
leases of a deployed pathway knowledgebase (the Reactome 
knowledgebase) and thereby show how these tests can be 
used to proofread and fine-tune a knowledgebase while it is 
being developed. 

The Reactome project, a collaborative effort in-
volving the Cold Spring Harbor Laboratory, the European 
Bioinformatics Institute, and the Gene Ontology Consor-
tium, is developing a knowledgebase comprising the core 
pathways and reactions in human biology. The information 
in the Reactome knowledgebase is authored by expert bio-
logical researchers and maintained by the Reactome edito-
rial staff. The basic unit of Reactome is the reaction, defined 
as any biological event that converts inputs to outputs. We 
show that Reactome’s event based ontology implicitly gen-
erates a formal language. We make this language explicit 
and then show how to define relationships between events. 
We then provide a definition of a model as expressed in the 
Reactome language and specify a logic under which we can 
perform model checking. We use this logical machinery to 
demonstrate how to check pathways by testing for certain 
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desirable properties, the aggregate of which we defined as 
the trustworthiness of the knowledgebase.  

We present the results of performing these tests on 
the two most recent releases of Reactome. We also discuss 
the concept of expressiveness and suggest modifications that 
can increase the expressiveness of the Reactome pathway 
knowledgebase. For the latest release of Reactome, we 
found that 14 pathways were incomplete (36 events) and 9 
pathways had inconsistencies (24 events), corresponding to 
3.7% incompleteness and 2.5% inconsistency. There were 5 
pathways with gaps (6 events), 21 verbose pathways (57 
events) and 3 terse pathways (3 events), corresponding to 
0.6% gaps, 5.9% verbosity and 0.3% terseness. Of the 65 
concrete human pathways in release 11, 30 were 80% well-
formed and 43 were more than 50% well-formed.  

We believe that evaluating knowledgebases for 
trustworthiness and expressiveness is an important step to-
ward the overall goal of using knowledgebases like Reac-
tome as effective resources for information integration and 
computer-aided reasoning about biological processes. This 
research facilitates our parallel efforts to develop a set of 
tools that will allow ontology based querying of existing 
information. 
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ABSTRACT 
Motivation:  Analyzing micorarray data in the context of biologi-
cal processes can be a daunting task. Current algorithms are useful 
only in identifying statistically significant gene expression 
changes. However, a list of genes does not provide much insight to 
the biologist studying the underlying processes. In fact, identifying 
discriminatory pathways/networks of gene interactions from a set 
of significantly expressed genes can provide crucial information 
for understanding complex processes and identifying therapeutic 
targets. We present a method to analyze high throughput (HT) 
gene expression data based on three-way statistical analysis of 
ontological information for identifying interesting pathways. 

1 METHOD 
Given a list of interesting genes from microarray study (say output 
of SAM algorithm [1]) and a knowledge base of ontologies, our 
goal is to discover significantly over- and under-represented ontol-
ogy terms. The ontology knowledge base was created from three 
different ontologies, namely Gene Ontology (GO, 
http://www.geneontology.org), curated pathways, and literature-
based gene association networks. GO annotations were obtained 
using Biomolecule Naming Service (BNS) [2]. The curated path-
way database contains 360 curated pathways collected at Stanford 
from various sources such as KEGG (http://www.genome.jp/kegg), 
BioCarta (http://www.biocarta.com/genes/allpathways.asp), and 
SPAD (http://www.grt.kyushu-u.ac.jp/spad/menu.html). A large 
association network (an association represents a relation among 
genes or proteins extracted from a sentence of text) was automati-
cally constructed using BioFerret and ALFA [3] from over 350,000 
PubMed abstracts.  For each gene, “g”, in the large network, a sub-
network was extracted consisting of “g” and its first neighbors, 
yielding 5,200 association networks, one for each gene.  

1.1 Statistical Significance Score 
Given a subset of differentially expressed (“interesting”) genes, l, 
and a list of ontology (pathways/networks/GO) terms (each repre-
sented in terms of its genes), a statistical Z-score was computed for 
each term under a hypergeometric distribution assumption, as de-
fined in [4]. 

 
In this case, K is the total number of entries in the N microarray 
genes mapping to specific ontology term p, and k is the number of 
entries in n mapping to the same term p. The Z-score represents a 
surprise in finding “k” terms when we were expecting “nK/N” 
terms. A high positive value (signifying statistical over-abundance) 

or high negative value (signifying statistical under-abundance) of 
Z-score for an ontology term implies a significant surprise level, 
and hence, interestingness of the ontology term based on the ex-
perimental data. Ontology terms with |Z-score| >3 were con-
sidered significant. 

2 RESULTS 
We applied the statistical analyses to two microarray datasets.  

2.1 Validation Study 
We conducted a validation study on a mouse myocardial develop-
ment dataset consisting of 16 samples, for ~20,300 genes per mi-
croarray, and comparing embryo tissue (9) to post-birth (7) sam-
ples.  Our expectation was to test if the three different ontology-
based analyses yield consistent results in terms of identifying sig-
nificant biological processes in the two tissue types. 
 
In the mouse myocardial development dataset, the three-way 
analysis validated that the embryo stage was extensively character-
ized with cell cycle and division processes (ontology terms corre-
sponding to these processes were scored significantly higher in all 
the three analyses), whereas the post-birth stages over-abundantly 
represented cell respiration and metabolism processes (see Table 
1.). We are encouraged by these results, especially for the litera-
ture-based ontology, since automatically extracted literature-based 
associations were not manually curated. 

2.2 Mouse Heart Chamber Study 
Encouraged by the results of the mouse developmental dataset, we 
analyzed a new microarray dataset consisting of mouse heart 
chamber samples. The data consisted of 12 samples, three samples 
per chamber (left and right atria and ventricle) for ~23,600 genes 
per microarray. We conducted three-way ontology-based statistical 
analyses on atria vs. ventricle samples to identify significant bio-
logical differences among these two tissue types.  
 
In the mouse chambers data we discovered an over-abundant pres-
ence of ventricle up-regulated genes in metabolic pathways, such 
as oxidative phosphorylation and carbon fixation (see Table 2). We 
observed an over-abundant presence (albeit slightly weaker signal) 
of atrial up-regulated genes in signaling pathways, such as Ras 
signaling and IL-10 anti-inflammatory signaling pathway. We 
believe that these fundamental differences in gene expression in 
the two tissues may be explained by the inherent differences in the 
tissue functions. The higher energy expended in ventricular tissue 
for pumping blood probably explains why genes participating in 
energy metabolism are more active in ventricular tissue. Further, 
over-representation of signaling pathways in the atria tissue may 
suggest that atria are more susceptible to respond to external
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GO Term #Symbols #Embryo-500 Z-Score
ribosome 176 51 10.47
cytosolic 32 16 8.98
replication 69 24 8.39
mitotic 41 16 7.50
ribonucleoprotein 39 12 5.35
mitosis 34 11 5.35
spindle 9 4 4.13
cycle 300 43 4.03

GO Term #Symbols #Post-Birth-500 Z-Score
nadh 27 20 13.74
ubiquinone 18 14 11.84
mitochondrion 235 62 11.54
dehydrogenase 104 36 11.00
chain 32 15 8.85
respiratory 17 10 8.41
tricarboxylic 14 8 7.38
malate 9 6 7.05

Pathway Term #Symbols #Embryo-500 Z-Score
 Cell cycle - Homo sapiens 58 19 18.31
Cell Cycle: G1/S Check Point 14 6 11.90
Cycling of Ran in nucleocytoplasmic transpo 3 2
Selenoamino acid metabolism - Mus musc

8.70

  (a)       (b) 
Table 1. Ontology-based statistical analysis of mouse heart development data for GO, curated pathway, and literature-based association 
ontology terms; (a) and (b) represent statistically significant terms for 500 most discriminating genes in embryo (post-birth) stage (up-
regulated in embryo (post-birth) and down-regulated post-birth (embryo)), respectively; curated pathway containing the largest subset of 
genes associated with a literature association term are also displayed with the literature association term.  

  (a)       (b) 
Table 2. Ontology-based statistical analysis of mouse heart development data; (a) and (b) represent significant ontological terms for most 
discriminating 1,715 ventricle and 1,015 atria genes, respectively; only pathway and literature-based ontology results are shown. 
 
stimuli (say therapeutic) than ventricles. We also note that while 
the curated pathway analysis yields much lower Z-scores (only 6 
curated pathways having score greater than 3), literature-based 
associations yield a number of sets of genes with higher Z-
scores. We believe that although literature-based associations 
can be erroneous, they bring in important current information 
not yet manually curated into pathways or GO categories. Fi-
nally, combining results from all the three analyses can yield 
significant clues regarding biological processes that may be 
playing a major role in the disease under study. New experi-
ments can be designed to validate these biological processes, 
identify biomarkers for disease prognosis, and identify therapeu-
tic targets for cure.     

3. CONCLUSIONS 
We have developed statistical methods for ontology-based 
analysis of microarray data. We present a three-way analysis 
method for identifying biological processes that may play a role 

in the experimental condition under study. Application to two 
microarray datasets demonstrates the significance of these 
analyses in better understanding of HT gene expression data.   
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u 5 2
E2F1 Destruction Pathway 5 2 6.62
Cyclins and Cell Cycle Regulation 13 3 5.96

6.62

Pathway Term #Symbols #Post-Birth-500 Z-Score
Oxidative phosphorylation - Mus musculus 41 15 18.21
Carbon fixation - Mus musculus 13 6 13.04
ATP synthesis - Mus musculus 24 8 12.63
Pyruvate metabolism - Mus musculus 14 6 12.54
Citrate cycle (TCA cycle) - Mus musculus 10 5 12.42
Phenylalanine, tyrosine and tryptophan biosynthesis - 5 3 10.60

Association Mapped Pathway #Symbols # Post-Birth Z-Score
cox7c Oxidative phosphorylation - Mus musculus 12 5 11.27
acadvl Fatty acid metabolism - Mus musculus 5 3 10.60
acadm Valine, leucine and isoleucine degradation 5 3 10.60
ndufs4 Oxidative phosphorylation - Mus musculus 5 3 10.60
ndufs2 Oxidative phosphorylation - Mus musculus 5 3 10.60
bgn Butanoate metabolism - Mus musculus 6 3 9.62
cox6b Oxidative phosphorylation - Mus musculus 3 2 9.14

Association Mapped pathway #Symbols # Embryo Z-Score
bub1 Cell cycle - Homo sapiens 10 7 16.70
cks1 Cell cycle - Homo sapiens 8 6 16.03
mcm7 Cell cycle - Homo sapiens 8 5 13.29
ccne2 Cell cycle - Homo sapiens 3 3 13.16
smarcb1 MAPKinase Signaling Pathway 3 3 13.16
mcm2 Cell cycle - Homo sapiens 12 6 12.93
rps19 Arginine and proline metabolism - 12 6 12.93

Pathway Term #Symbols #ATRIAL Z-Score
Activation of PKC through G protein coupled receptor 3 3 4.01
Ras Signaling Pathway 16 8 3.77
Alternative Complement Pathway 2 2 3.27
Overview of telomerase protein component gene hTert Transcriptional 4 3 3.25
IL-10 Anti-inflammatory Signaling Pathway 7 4 3.01
Thrombin signaling and protease-activated receptors 7 4 3.01
Signaling Pathway from G-Protein Families 10 5 2.98
beta-Alanine metabolism - Mus musculus 10 5 2.98

Pathway Term #Symbols #VENTRICLE Z-Score
Oxidative phosphorylation - Mus musculus 57 37 9.82
Citrate cycle (TCA cycle) - Mus musculus 13 12 7.33
Glycolysis - Gluconeogenesis - Mus musculu 38 23 7.28
Pyruvate metabolism - Mus musculus 24 15 6.04
Ubiquinone biosynthesis - Mus musculus 13 10 5.84
Proteasome - Homo sapiens 30 16 5.41
Reductive carboxylate cycle (CO2 fixation) - 5 5 5.01
Valine, leucine and isoleucine degradation - 24 13 4.94

Associati Mapped Pathway #Symbols #ATRIAL Z-Score
tnf NF-kB Signaling Pathway 138 54 7.60
arf1 Rac 1 cell motility signaling pathway 24 17 7.42
cd48 IL 18 Signaling Pathway 21 14 6.42
wnt WNT Signaling Pathway 132 46 6.07
col3a1 Multi-step Regulation of Transcription by Pitx2 13 10 6.06
lbp Inactivation of Gsk3 by AKT causes accumulation of b-catenin in A 9 8
cd9 Cell cycle - Homo sapiens 37 19 5.96
emb Corticosteroids and cardioprotection 16 11 5.83

Association Mapped Pathway #Symbols #VENTRICLE Z-Score
ndufs2 Oxidative phosphorylation - Mus musculus 8 8 6.34
eno1 Glycolysis - Gluconeogenesis - Mus musculus 14 11 6.23
psmb5 Proteasome - Homo sapiens 12 10 6.21
psmb2 Proteasome - Homo sapiens 12 10 6.21
ndufs8 Oxidative phosphorylation - Mus musculus 21 14 6.16
pfkl Fructose and mannose metabolism - Mus musculus 7 7 5.93
ndufs7 Oxidative phosphorylation - Mus musculus 7 7 5.93
ndufv1 Oxidative phosphorylation - Mus musculus 7 7 5.93
ndufa6 Oxidative phosphorylation - Mus musculus 7 7 5.93

6.03
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ABSTRACT 
Motivation:  Bio-ontologies, such as the Gene Ontology, 
represent important sources of prior knowledge that may be 
automatically integrated to support predictive data analysis 
tasks. The assessment of similarity of gene products pro-
vides the basis for the implementation of classification tools 
and the automated validation of functional associations. This 
study discusses alternative techniques for measuring ontol-
ogy-driven similarity of gene products. Relationships be-
tween these types of similarity information and key functional 
properties, such as gene co-expression, are discussed. 

1 INTRODUCTION  
Bio-ontologies represent important knowledge bases, which 
have traditionally been applied to enhance database annota-
tion and interoperation as well as cross-database information 
retrieval tasks.  The Gene Ontology™  (GO) (The Gene On-
tology Consortium, 2001) is one such resource that is be-
coming the de facto standard for annotating gene products.  

The relevance of the GO goes beyond annotation and in-
formation retrieval applications. It has been shown that GO 
may facilitate large-scale predictive applications in func-
tional genomics. The analysis of GO annotations in gene 
expression analysis may help to explain why a particular 
group of genes share similar expression patterns. Several 
tools have been proposed to identify functionally-enriched 
clusters of genes. FatiGO (Al-Shahrour et al., 2004), for 
example, extracts GO terms that are significantly over- or 
under-represented in clusters of genes. GO-based annota-
tions have been incorporated to construct functional predic-
tors that in combination with other information resources 
have shown to improve functional association prediction 
(e.g. protein-protein interactions) (Jansen et al., 2003). 
Hvidsten et al. (2003) combined gene expression data with 
annotations originating from the GO biological process tax-
onomy. They applied rough set theory to assign biological 
process terms to genes represented by expression patterns. 
King et al. (2003) implemented decision trees and Bayesian 
networks to predict new GO terms-gene associations based 
on existing annotations from the SGD and FlyBase. Al-

  
* To whom correspondence should be addressed.  

though these functional prediction tools process GO annota-
tions they do not fully exploit the knowledge that can be 
extracted from analyzing relations of GO terms and their 
information content in different annotation databases. For 
instance, traditional functional prediction support or cluster 
analysis tools mainly process information about the fre-
quency of individual annotation terms associated with a list 
of genes.  Furthermore, such applications may be improved 
by explicitly considering similarity relationships between 
the genes, which may be estimated by analyzing both the 
information content and structure of the GO. It has been 
suggested that by ignoring such semantic similarity between 
closely related GO terms (e.g., between a parent and a 
child), traditional methods may fail to identify the functional 
similarity between genes annotated with these closely re-
lated yet distinct terms.  

Thus, the GO has been proposed as a tool for measuring 
similarity between genes. Previous research showed signifi-
cant relationships between semantic similarity of pairs of 
genes and their sequence-based similarity (Lord et al., 
2003). Also we have evaluated relevant quantitative rela-
tionships between GO-driven similarity and gene expression 
correlation (Wang et al., 2004).  GO-driven clustering algo-
rithms based on such approaches have been recently re-
ported (Wang et al., 2005, Speers et al., 2004).  Moreover, 
they have provided the basis for developing tools that may 
facilitate the identification of relevant partitions from clus-
tering, using, for example, GO-driven cluster validity indi-
ces (Bolshakova et al., 2005) 

This paper discusses our current research on the design of 
GO-driven similarity assessment techniques. It aims to 
compare two approaches to estimating between-gene simi-
larity, which may be implemented using different schemes 
for measuring between-term similarity. Relationships be-
tween semantic similarity and gene co-expression are fur-
ther investigated taking into account both approaches. 

2 SEMANTIC SIMILARITY APPROACHES TO 
ASSESSING GENE SIMILARITY 

Given a pair of terms, c1 and c2, a traditional method for 
measuring their similarity consists of calculating the dis-
tance between the nodes associated with these terms in the 
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ontology, whose limitations have been discussed elsewhere 
(Zhong et al., 2002). Information-theoretic models have 
been studied as alternative approaches to measuring similar-
ity in an ontology. Let C be the set of terms in the GO.  In-
formation-theoretic approaches to measuring similarity be-
tween terms, , may be based on the amount of infor-
mation associated with them or shared by them in common. 
Several techniques may be implemented using this princi-
ple, such as those proposed by Lin, Resnik and Jiang (Lord 
et al., 2003, Wang et al., 2004). Similarity (or distance) val-
ues for a pair of gene products described by GO terms may 
be calculated based on such techniques (Lord et al., 2003, 
Wang et al., 2004). Given a pair of gene products, g

Cc∈

i and gj, 
which are annotated by a set of terms Ai and Aj respectively, 
where Ai and Aj comprise m and n terms respectively, the 
semantic similarity, SIM(gi , gj), may be defined as the aver-
age inter-set similarity between terms from Ai and Aj: 

∑
∈∈

×
×

=
jpik AcAc

pkji ccsim
nm

ggSIM
,

),(1),(  (1) 

where sim(ck,cp) represent the similarity between terms. 
This approach does not always meaningfully estimate simi-
larity.  For example, similarity is expected to be equal to 1 
when the gene pair has the same set of annotation terms.  
However, this is not true when several annotations within a 
hierarchy are assigned to the genes.  In order to address such 
a limitation we are currently evaluating an alternative ap-
proach that selectively aggregates maximum inter-set simi-
larity values as follows: 

)),(((1),( ∑×
+

=
k

pkpji ccsimaxm
nm

ggSIM  

))),((max∑+
p

pkk
ccsim  (2) 

2.1 Linking semantic similarity and other func-
tional properties 

The analysis of quantitative relationships between semantic 
similarity and other functional information resources is im-
portant to allow the identification of novel integrative pre-
diction strategies.  Such relationships may indicate whether 
semantic similarity may be combined with other large-scale 
predictive resources (e.g. gene expression correlation, se-
quence binding patterns, etc.) to improve key functional 
prediction factors, such as accuracy and coverage. Based on 
(1) previous research has confirmed that GO-driven similar-
ity and expression correlation of pairs of gene products in S. 
cerevisiae are significantly interrelated (Wang et al., 2004). 
This property has shown to be consistently valid for similar-
ity information originating from all of the GO hierarchies.  
We are currently analyzing these relationships using (1) and 
(2) on the latest GO annotation release for S. cerevisiae. 

We are assessing relationships between semantic similar-
ity and other functional properties such as gene co-

regulation and protein-protein interactions in S. cerevisiae 
and C. elegans.  One of our hypotheses is that the GO-
driven similarity of a pair of genes may be used as an indi-
cat

ogically meaningful identification of functional net-
works. 
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or of regulatory and protein-protein interactions.  
Furthermore, we are investigating how GO-driven seman-

tic similarity may be applied to support the detection of spu-
rious (co-regulation or protein-protein) interaction predic-
tions.  After studying this, one could in principle justify the 
design of prediction support tools for co-regulation and pro-
tein-protein interactions, which in combination with other 
resources, e.g. co-expression, may support a more accurate 
and biol
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ABSTRACT 
Plant Ontology Consortium (POC) (www.plantontology.org) 
is a collaborative effort of several plant databases and ex-
perts in plant systematics, botany and genomics. A primary 
goal of the POC is to develop simple, yet robust and exten-
sible controlled vocabularies that accurately reflect the biol-
ogy of plant structures and developmental stages. These 
provide a network of vocabularies linked by relationships to 
facilitate meaningful cross-species queries across datasets 
from various species or from plant databases. The current 
ontology release integrates the diverse vocabularies in use 
to describe Arabidopsis, maize, rice and Triticeae anatomy, 
morphology and growth stages. This integration spans two 
major flowering plant taxonomic divisions namely, the mono-
cots and eudicots. Using the ontology browser, over 3500 
gene annotations from three species-specific databases, 
TAIR, Gramene and MaizeGDB, can now be queried and 
retrieved. In the presentation, with the help of examples from 
member databases, we will demonstrate how the PO sup-
ports gene discovery, phenotype prediction, and gene prod-
uct functions, as well as the organizing principles and rules 
followed in developing the Plant Ontologies. The project is 
supported by National Science Foundation grant No. 
0321666. 
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ABSTRACT 
Motivation:  In order to predict the metabolic fate of an arbi-
trary compound based solely on structure, it is useful to be 
able to identify substructural “functional groups” which are 
biochemically reactive.  These functional groups are the 
substructural elements that can be removed and replaced to 
transform one compound into another.  This problem of iden-
tifying functional groups is related to the problem of classify-
ing compounds.  The research presented here discusses the 
state of the art in biochemical databases and how these 
sources may be applied to the problem of classifying com-
pounds based solely on structure. 

1 INTRODUCTION AND BACKGROUND 
This research is mainly focused on developing novel meth-
ods for predicting the metabolic fate of compounds in an 
organism.  While networks of reactions do exist in sources 
like KEGG and MetaCyc, it is not obvious how one might 
predict the metabolic fate of a xenobiotic from these net-
works. This project discusses our research in identification 
of functional groups in arbitrary compounds, and using 
these groups to classify the compounds.  These groups and 
classes can then be used to help define substrate specificities 
for many enzymes.  For instance, “alcohol dehydrogenase” 
should be a plausible catalyst for an alcohol.  The question 
is whether or not a compound is an alcohol or at least has 
the alcohol functional group. 

2 BACKGROUND 
   Previously, we have shown that these databases of en-
dogenous metabolism can be used to aid in the prediction of 
xenobiotic metabolism.  This is because the KEGG database 
curates “abstract reactions” which can be converted into 
rules and applied to specific compounds.  For instance, the 
reaction that converts “alcohol” into “aldehyde” can be ap-
plied to a xenobiotic alcohol (in our example, furfurol) to 
produce the aldehyde form (furfural).  However, specificity 
was found to be quite a problem.   For instance, not all –OH 
moieties are functionally active as alcohols.  Nevertheless, 
the substructural search/replace algorithm seems to be suffi-
cient to capture many transformations of interest. 

  
* To whom correspondence should be addressed.  

  Another aspect of the specificity problem is that of classi-
fying compounds.  Fundamentally, the fact we are looking 
to capture are of the form “ethanol is an alcohol.”  These 
relationships are not curated in KEGG.  The MetaCyc on-
tology also lacks this fact, though it is ontology based.  
MetaCyc has “ethanol is an unclassified-compound” .  
MetaCyc does have a class “an alcohol”, which is also an 
unclassified-compound. 
  The KEGG database curates 835 compounds which have 
“abstract” structures – i.e. the chemical formula contains a 
Markush  (“R”) group.  KEGG compound C00226 has for-
mula CH3OR.  The MetaCyc database, by comparison, 
lacks formula for the alcohol abstraction. 
  It is worth noting that  in the MeSH classification, ethanol 
is a child of “alcohols”.  In MeSH, however, the parent-
child relationship is not obviously an “isA” type relation. 
Consider that ethanolamines is a child of ethanol, and the 
statement “epinephrine is a ethanol” is not entirely true.  
Clearly there is some relationship, but it is more of a sub-
structural “hasA” type relation.  MeSH, of course, has no 
chemical structure nor links to other datasources.  However, 
NCBI has a database of compounds called PubChem which 
does have links to the MeSH tree for specific compounds 
like ethanol, but not for classes like alcohol. 
  EBI has recently adopted Ashburner’s chemical ontology 
as ChEBI.  The ontology here is also a directed acyclic 
graph, and we can see, for instance that ethanol is a great-
grandchild of “alcohols”.  It is interesting to note that etha-
nol is a child of ethanols, and is sibling to chloroethanols 
and (1S)-1-phehylethanol.  Phenylethanol is a child of etha-
nol in MeSH.  ChEBI does contain links to KEGG for spe-
cific instances like ethanol, but not for abstract classes like 
alcohol (or “ethanols” for that matter).   

   To summarize, we would like to identify functional 
groups in arbitrary structures.  This capability should allow 
us to generate the ontological relationships expressed in 
resources like MeSH and ChEBI.  Existing ontologies tend 
to be DAGs, and are quite limited in their expressive power. 
Since they only allow a single “parent-child” relationship, 
this gets uses in semantically sloppy ways.  This lack of 
precision in defining the relationship makes using these ex-
isting ontologies challenging. 

  13



D.McShan 

3 APPROACH 
Our approach is to integrate the above databases in a single 
ontology.  Using the compound structures from KEGG and 
PubChem, we intend to improve on the unspecified relation-
ships in the MeSH and ChEBI ontologies.  For instance, 
phenylethanol hasSubstructure ethanol by virtue of the fact 
that the structure of phenol contains the structure of ethanol 
(give or take a few hydrogens).  Using advanced chemin-
formatics tools, we intend to define the substructural rela-
tionship between related nodes in MeSH and ChEBI. 
  A preliminary attempt at this problem simply attempted to 
find substructural matches of the 835 abstract compounds in 
KEGG within the other 10,000+ compound in the database.  
This resulted in 120,455 substructural relationships.  What 
we found, however, was that substructure alone is not suffi-
cient to identify functional groups.  This was expected – 
consider that the –OH in a carboxy does not behave as an 
alcohol.  Furthermore, substructures are not sufficient, nor 
even necessary in some cases for compound classification.  
The classic example of the latter is the fact that proline is 
classified as an “amino acid” by ChEBI (“proline is child of 
glutamine family amino acids is child of amino acids”).  
Proline, however, is NOT an amino acid.  It is an imino 
acid.  This fact is actually encoded by MeSH – proline is a 
child of imino acid.  Unfortunately, imino acid is also a 
child of amino acid, confusing the issue.  Interestingly, 
imino acid is not even in ChEBI, although “imino group” is 
present, but unclassified. 
   Currently, we are exploring biochemical descriptors of the 
immediate milieu around substructural matches to see if 
they can help to distinguish reactive groups from nonreac-
tive ones.  This should aid in determining substrate speci-
ficities for promiscuous enzymes. 
   The classification problem is a bit trickier, since the 
classes are human defined, and not always rational.  Proline 
is NOT an amino acid in the strict biochemical sense.  How-
ever, it does behave similar to the other amino acids, and 
participates in similar reactions.  We think that perhaps the 
function of the compound – e.g. what types reactions it par-
ticipates in – may be a distinguishing characteristic.  For 
instance, the fact that Proline participates in a transferase 
reaction with tRNA is indicative that it’s a protein building 
block.  Similarly, the presence of the tRNA(Pro) compound 
also indicates the same function. 
   We are presently exploring these other avenues in our 
attempt to characterize and classify biochemical com-
pounds. 
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Abstract 
Recording and maintaining metadata of biological images 
has been a challenging issue in life sciences. Our 
research focuses on managing provenance, an important 
type of metadata for biological images. We develop an 
ontology that captures the semantics of provenance for 
biological images. We also describe a software system 
that helps record and maintain provenance in a 
convenient way. 
 
1  INTRODUCTION 
 
A major challenge in life sciences is devising ways to manage 
the vast amounts of biological images generated  using high 
throughput imaging devices and techniques such as confocal 
and electron microscopy, and Magnetic Resonance Imaging 
(MRI) to name a few. To ensure timely analysis, biological 
images need to be easily accessed and interpreted, necessitating 
that metadata (background description about the data) 
associated with images is accurately and efficiently captured, 
recorded, and represented. The metadata of a biological image 
should include information about the history and pedigree of the 
data [1] including facts such as who or what processes created 
the image, what initial sources were used, what instrument 
recorded it along with machine specific settings and parameters, 
when it was created and/or used, etc.  We refer to all of this 
background as “provenance”. Knowing the provenance of 
biological images is extremely important for scientific purposes 
because it helps assess the quality and usefulness of the images, 
and it also enables scientists to analyze the images in context. 
Therefore, to ensure that images, created by different techniques, 
are ready for scientific use, it is imperative that the provenance 
of the images be captured and easily accessible to their users.  
Our research aims to develop a provenance ontology that 
captures the semantics of provenance for biological images. Our 
ontology represents different elements of provenance (e.g. 
instrument, processing procedures, people involved, storage 
location, etc.) and their relationships to each other. Working in 
collaboration with researchers from the Arizona Research 
Laboratories at the University of Arizona, we are developing a 
software system that records and maintains provenance of 
biological images in a convenient manner. 
 
2  RELATED WORK 
 
Current efforts to capture and record metadata on biological 
images include efforts such as the OME framework and the 
BioImage Database Project. The latter project is developing a 
collection of bio images recorded by various microscopic 

techniques relevant to life sciences [4]. In this project, a 
BioImage ontology has been designed to optimize the 
submission and retrieval of biological images. While this 
ontology focuses on recording the content of bio images, it also 
describes multi-media objects as well as scientific experiments 
[2]. Our work is complementary to this effort; our ontology 
focuses on the provenance rather then the content of bio images.  
Besides documenting experimental details involved in the 
generation and/or acquisition of images, our ontology records 
various provenance events in the image life cycle including 
creation, usage, and transformation of the images and 
documents different elements related to these provenance events. 
Our research is also influenced by research on provenance of 
biological data.  In the last decade, significant research has been 
carried out on describing the provenance of data in biology and 
genetics database such as SWISSPROT and OMIM. As an 
example, the myGrid project captures provenance of 
bioinformatics data by depicting the workflow of in silico 
experiments. The derivation path of a workflow records the 
process used to transform input data [3]. Our ontology goes 
beyond workflow provenance and captures a wide range of 
elements of provenance including details of who or what 
process created or processed the image, where, when, with what 
instrument, for what purpose. 
Adoption of open standards for microscopy by equipment 
manufacturers and ability to store relevant meta data for further 
analysis have given rise to frameworks such as the open 
microscopy environment (OME) [5]. Efforts will be directed 
towards integrating our tools with community resources like the 
OME framework, supplementing its attributes and semantic 
types.  
 
3 OUR PROVENANCE ONTOLOGY 
 
We develop an ontology to represent the provenance of 
biological images. The structure of our ontology is shown in 
Figure 1. In developing this ontology, the domain of provenance 
has been conceptualized as a combination of seven 
interconnected elements. The element “what” captures 
provenance events such as creation, usage and transformation 
that can happen to a biological image. The element “why” 
describes the causes that can be attributed to a provenance event. 
The element “how” describes the processes that led/lead to a 
provenance event.  The element of “with what” refers to the 
instruments that recorded or processed the data. The element 
“who” records information about people who create, use, access, 
and/or process an image. Finally, the element “when” defines 
the occurrence time of a provenance event, and the element 
“where” describe the storage location or source of an image.  
Each element of our provenance may be further classified into 
component elements. As shown in Figure 1, a process that 
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creates or transforms the data (represented by the node labeled 
“how” in the ontology) may include filtering, recording, 
synthesizing, etc. The instrument used in image creation may be 
a confocal microscope that has components such as a specific 
type of lens and/or a filter. With this design, our ontology 
provides answers to questions such as “who created the image”, 
“what processes were used to create the image with what 
instruments”, “why and when was the bio image created”, 
“where has the image file been stored”. 

 
Fig. 1. A part of the provenance ontology 

4  A SOFTWARE SYSTEM 
 
We are in the process of developing a Provenance Management 
System for Biological Images (PROMISE) that utilizes the 
ontology to capture the provenance of biological images. The 
architecture of PROMISE is shown in Figure 2. Based on the 
ontology, the Provenance Capture Module in our system will 
generate a provenance template for different types of images to 
semi-automatically capture user-provided provenance.  The 
captured provenance elements will be automatically recorded in 
XML/RDF format and stored in the data provenance knowledge 
base. A unique feature of PROMISE is that it will provide both 
image files and provenance to the user simultaneously. The user 
may retrieve various types of images stored in the database. 
Along with the images, the relevant provenance will be 
extracted from the provenance knowledge base and provided to 
the user upon request.  Via a web-based graphical user interface, 
the Provenance Navigation Module in PROMISE will parse the 
provenance data, display the provenance graphically and enable 
the user to easily navigate and also modify/enhance the 
provenance if necessary.  We also propose to develop a 
mechanism to capture the provenance automatically. For 
instance, every time a set of images are used to create other 
composite images, the provenance of all the images involved in 
the process will be updated. Anytime an image is accessed, its 
provenance will be update to reflect the access. We believe it is 
especially important to create this two way link between the 
data (bioimages) and the provenance.  
 

 
Fig. 2. Architecture for the provenance management 

system (PROMISE). 
 

 
5  CONCLUSION 
 
In summary, we are developing an ontology for capturing and 
representing the provenance of biological images. Our ontology 
extends existing approaches to recording biological image 
metadata that focus on describing the content of images.  Our 
ontology captures various elements of provenance including the 
“who”, “what”, “why”, “where”, “when” and “how” of 
biological images.  The recorded provenance will permit 
scientists to interpret the images in context and also to replicate 
and validate the procedure that created or processed the images. 
We are also developing a software system based on the 
ontology for automatically or semi-automatically capturing and 
maintaining provenance of biological images, which is essential 
to life scientists who are seeking a convenient way of recording 
a large amount of metadata. We believe that development of an 
automatic or semi-automatic provenance capture and 
deployment system will significantly reduce human effort in 
creating and managing provenance. It will also help to improve 
the quality and accuracy of the metadata by eliminating possible 
human mistakes. 
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ABSTRACT 
The entities described in the Gene Ontology, (i.e., molecular 
functions, cellular components and biological processes), 
often make reference (in their names) to other entities, either 
from GO or from other ontologies, such as ontologies of 
chemical entities, cell types and organisms. We developed a 
method for mapping terms from the Open Biomedical Ontol-
ogy (OBO) family to GO. We show that 55% of the 17,250 
GO terms include in their names the name of some chemical 
entity (ChEBI). Our findings are consistent with that of other 
studies. Additionally, our study provides a quantification of 
the relations between GO terms and terms from other on-
tologies. 

1 INTRODUCTION  
Several approaches have been used to identifying rela-

tions among terms form the Gene Ontology (GO1) [1]. The 
lexical approach developed by Ogren et al. exploits the 
compositional properties of GO terms, i.e., GO terms nested 
within other GO terms [2]. They found that 65% of all GO 
terms contain another GO term as a proper substring. For 
example, the molecular function electron transporter activ-
ity includes in its name the biological process electron 
transport.  
The goal of this study is slightly different: it is to investigate 
the degree to which GO terms are related to terms from on-
tologies external to GO. In particular, we are interested to 
make explicit the relations existing between GO terms and 
terms from other ontologies of the Open Biomedical Ontol-
ogy (OBO) family2. OBO includes ontologies such as 
ChEBI (Chemical entities of biological interest), InterPro 
(protein families, domains and functional sites) and Plant 
ontology (plant structures and growth/developmental 
stages). 
Related to this study is Obol [3], a language created for rep-
resenting relations embedded in the names of GO entities, 
with the objective of facilitating the maintenance of the on-
tology. The work most closely related to ours is the GONG 
project [4], an attempt to convert GO into a description lo-
gics formalism. In addition to GO terms themselves, GONG 
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also used entities from the KEGG database as a reference 
for the enzymes referenced in GO. The objective of this 
study is to generalize such cross-references (i.e., between 
GO and other ontologies) to all entities represented in OBO 
ontologies. 
As suggested by Smith & al. [5], GO entities must be linked 
to entities in external ontologies such as cell types (e.g., 
alpha-beta T-cell activation) and organisms (e.g., light-
harvesting complex (sensu Viridiplantae)). In a previous 
study [6], we investigated the relations between GO and 
ChEBI. This paper proposes to generalize the method de-
veloped for ChEBI to other members of the OBO family. 

2 LINKING GO TO CHEBI 
The first phase of this project consisted to link GO terms 

to chemical entities from the Chemical Entities of Biologi-
cal Interest (ChEBI). ChEBI is “a freely available dictionary 
of ‘small molecular entities’ (i.e., atom, molecule, ion, ion 
pair, radical, radical ion, complex, conformer, etc.); ChEBI 
entities are either products of nature or synthetic products 
used to intervene in the processes of living organisms.” 
ChEBI is developed at the European Bioinformatics Insti-
tute (EBI). ChEBI names were extracted from the OBO file 
dated December 22, 2004. Both preferred names (name 
field) and synonyms (synonym field) are used in this study. 
A total of 27,097 names were extracted from the file 
(13,709 synonyms in addition to one preferred name for 
each of the 10,516 entities). For example, names for the 
ChEBI entity identified by CHEBI:26216 include the pre-
ferred name potassium and two synonyms: kalium and K. 

2.1 Methods 
Every ChEBI name is searched for in every GO name 

(Figure 1). ChEBI names of less than three characters are 
ignored. These names often correspond to chemical symbols 
(e.g., K, symbol of potassium) and may be ambiguous with 
words in English (e.g., As – symbol of arsenic – and the 
preposition as). As the names of ChEBI entities may be 
capitalized, the comparison between ChEBI and GO strings 
is rendered cased-insensitive. In order to avoid infelicitous 
matches, the name of a ChEBI entity is required to be not 
simply a substring, but a lexical item. In practice, the char-
acters surrounding the name of the ChEBI entity in a GO 
name must be word boundaries (i.e., space, hyphen, punc-

 17



O.Bodenreider  et al. 

tuation, etc.). For example, the ChEBI entity carbon is iden-
tified in the GO name carbon-oxygen lyase activity, but not 
in carbonic anhydrase activity. Finally, we performed a 
limited normalization of the ChEBI names, principally to 
allow the names of classes of entities – often in plural form 
(e.g., cations, acids, esters, nitrates, etc.) to match names of 
entities derived from these classes, often present in singular 
form as in GO names. In practice, we complemented the list 
of synonyms provided by ChEBI by adding, if necessary, 
the singular form for the name of a plural class (e.g., ester 
for esters). 2,872 such synonyms were added to ChEBI3. 
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Figure 1 – Lexical inclusion relations between ChEBI terms 
and GO terms. 
 

2.2 Results 
Of the 10,516 entities in ChEBI, 2,700 (26%) were identi-

fied in the names of 9,431 GO terms. In other words, 55% 
of the 17,250 GO terms include in their names the name of 
some ChEBI entity. These name inclusion relations resulted 
in 20,497 associations between a ChEBI entity and a GO 
term. 

3 GENERALIZATION TO OTHER 
BIOLOGICAL ONTOLOGIES 

In addition to updating the results of an earlier mapping 
between GO and ChEBI, this study proposes to apply the 
method developed for ChEBI to the other members of the 
OBO family. All terms from the 23 other ontologies (apart 
from GO and ChEBI) will be mapped to GO and quantita-
tive results will be reported. 

These results will contribute to quantifying the relations 
existing between entities in GO and in the other OBO on-
tologies. This work can be understood as a first step towards 
the generalization of Obol to the other OBO ontologies [4]. 
In addition, as shown in [6], such relations can be used to 
suggest dependence relations among GO terms. 
  
3 As we simply removed the trailing s from ChEBI names, some inaccurate 
names were generated (e.g., phosphoru and mustard ga). Such incomplete 
names will not mach any lexical items in GO names and, beside slowing 
down slightly the matching process, this overgeneration has no detrimental 
consequences on the identification of ChEBI entities in GO names. 
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ABSTRACT 
We present an approach (GOALIE) to use the GO process 
ontology to reconstruct formal temporal logic models of 
cellular systems. The reconstructed models are expressed 
as Kripke structures and support various query, inference, 
and reasoning operations. This application highlights how 
the use of an ontology can help describe complex cellular 
dynamics in the vernacular of propositional temporal logic. 
 
Introduction  
The GO process ontology spans a wide range of biological 
events, from intra-nuclear processes such as DNA 
transcription, to organism-wide processes such as aging. 
The traditional use of such a vocabulary is in functional 
enrichment analysis of gene sets, as a driver for automated 
annotation of hypothetical proteins, or for model 
management in biological databases. Such applications 
essentially exploit only the taxonomical properties (e.g., 
membership, set containment) of the ontology but do not 
otherwise use its process-oriented nature to present 
dynamical perspectives on biological systems. In this paper, 
we present an approach (GOALIE; Gene Ontology 
Algorithmic Logic for Invariant Extraction) that uses the 
GO process ontology to reconstuct formal temporal logic 
models of cellular events.  
 
The models reconstructed by GOALIE are formally referred 
to as Kripke models in the model checking literature [2]. For 
our purposes, a Kripke model is simply a directed graph 
whose nodes encode possible transcriptional states, edges 
indicate state transitions, and where the nodes are labeled by 
propositions that hold true in that state. By choosing these 
propositions from the set of 8517 possible GO process 
ontology terms, we ensure that any inferences made (e.g., a 
temporal invariant) on the resulting Kripke structures are 
interpretable as biologically relevant patterns and 
hypotheses. For instance, from Fig. 1 we see that all state 
transitions from a state where q is true to a state where r is 
true must pass through a state where p is true. This shows 
that cell size serves as an effective checkpoint in the 
transition into the DNA synthesis phase. The biologist can 
similarly pose other interesting queries about the satisfaction 
(or refutability) of temporal logic formulae, in the 
reconstructed model, under given conditions, obtaining 
affirmative or impossibility answers. Needless to say, a 
Kripke model is a powerful mechanism to reason about 
process happenings in a biological context. 

  
GOALIE 
We recover Kripke structures by utilizing the GO process 
ontology in conjunction with time course microarray 
datasets. We define the states of the Kripke structures as 
clusters obtained by partitioning (e.g., by a k-means 
algorithm) overlapping time windows of the time course 
dataset. These clusters are then labeled with the GO process 
ontology term  using an empirical Bayes approach. Labeled 
clusters are then “chased” to yield transitions to clusters in 
neighboring time windows. The basis for relating clusters 
across time windows is the commonality of labelings as 
revealed by the previous step. The above stages are then 
repeated, as necessary, in an iterative fashion to refine the 
initial clusterings (in response to the identified state 
transitions) or to adjust the transitions (to reflect new cluster 
assignments). Since the propositions are taken from a 
controlled vocabulary, we can combine these propositions to 
create formulate in a propositional temporal logic (CTL), 
useful in describing complex cellular dynamics. For more 
details, see [1]. 
 
EXPERIMENTAL RESULTS 
Fig. 2 depicts a screenshot of the GOALIE software for use 
in reconstructing a temporal logic model of cell cycle regu-
lation in S. cerevisiae (dataset of [3]). GOALIE allows the 
user to interatively explore chains of GO labelings across 
time windows and track the validity of temporal formulae, 
to see if they change state. The system provides hyperlinks 
to external websites (e.g., related to definitions of GO cate-
gories, public repositories of experimental datasets) as well 
as visualization and query interfaces. Fig. 1 (right) shows 
the Kripke structure itself; the correspondence with the ide-
alized diagram of Fig. 1 (left) is readily seen. 
 
GOALIE is now being employed in many different case 
studies, including studying host-pathogen interactions, the 
dynamics of cancer progression, and the life cycle of the 
malaria parasite. We are building fast inference algorithms 
to answer interesting biological queries over large Kripke 
structures. Our aim is to develop GOALIE into a general 
framework for reasoning in any suitable vocabulary, not just 
of temporal processes as done here, but also other multimo-
dal logics that can encompass richer abstractions of space, 
control, and variation. 
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Fig. 1(left) State transition diagram depicting key stages of cell cycle regulation in S. cerevisiae. The nodes are labeled with the names of 

the stages – M(itosis), Gaps, and S(ynthesis). (middle) Kripke diagram of cell cycle regulation obtained manually. States in a Kripke 
diagram are labeled by the propositions that hold in them. Here, the propositions p, q, r and s denote “cell size large enough for 
division,” “cytokinesis takes place,” “DNA replication takes place,” and “cell is in quiescence.” For ease of illustration, not all states are 
labeled. (right) Kripke diagram of cell cycle regulation, obtained automatically by GOALIE. The nodes are identified by cluster 
numbers (arbitrary) in given time course windows and labeled by GO process ontology terms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 2: A screesnshot of GOALIE.The left part shows the various time slices utilized in this study. The top right displays a snapshot of 
interactive exploration and chasing of clusters. The bottom right part identifies propositions that remain true when going from a source 
cluster to a destination cluster as well as propositions that become true and those that cease to be true. Notice that cluster 7 in the first time 
window has been “chased” to yield a chain through successive time windows (clusters 7, 4, 4, 11, and 12 respectively). The links between 
clusters are labeled with the cardinality of GO terms in common. For instance, the first edge in this chain involves 2 common GO terms, 
the second involves 3 common GO terms, and so on. 
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ABSTRACT 
Motivation: In previous work on biomedical ontologies we 
showed how the provision of formal definitions for relations 
such as is_a and part_of can support new types of auto-
mated reasoning about biomedical phenomena. We here 
extend this approach to the transformation_of characteristic 
of pathologies. 

1 INTRODUCTION  
Pathological entities exist in the biological domain at vari-
ous levels of granularity, from cell components to whole 
populations. Such entities involve in every case processes – 
for example, the patho-physiological pathways involved in 
the etiology of a range of different types of diseases – which 
cross granular levels. The proper treatment of pathologies 
within a formal-ontological framework thus demands a fa-
cility for simultaneous representation of entities existing at 
different levels of granularity. We here present the outlines 
of such a framework, against the background of our previ-
ous work on the treatment of relations, time, change and 
granularity in biomedical ontologies especially within the 
context of the OBO Relation Ontology [1]. 
We shall confine our focus here on pathological continuant 
entities, which include neoplasms, blisters, punctures, frac-
tures, portions of pus, portions of amyloid but also the bear-
ers of such entities (a wounded knee, a carcinomatous colon, 
a fractured tibia, and so on). 
To say that such entities are continuants is to say that they 
endure as self-identical through time even while undergoing 
a variety of different sorts of changes. This is in contrast to 
occurrents (events, processes, happenings), which unfold 
themselves through time in successive temporal phases or 
stages which share no parts in common. 
Some pathological continuants are subclasses of the class 
anatomical structure, a designation we take over from the 
Foundational Model of Anatomy (FMA) [2]. Such patho-
logical structures are classified as pathological relative to 
others classified as ‘normal’ or ‘canonical’. We here leave 
open the question of what it is in virtue of which a given 
instance is to be classified as normal. We shall assume that 
both are subclasses of the same parent anatomical structure, 
whose instances include both pathological and normal struc-
tures, along the lines indicated in Figure 1. 

 
* Corresponding author 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A simple classification-schema for pathological structures

 
We then have, for example: 

pathological colonic mucosal cell is_a pathological structure 
canonical colonic mucosal cell is_a canonical structure 

colon with pathological features is_a pathological structure 
normal colonic mucosal cell is_a colonic mucosal cell 

pathological colonic mucosal cell part_of colon 
Here is_a and part_of are defined as follows, using vari-
ables We use A, B, C ... to range over classes (universals, 
types) of pathological continuants, c, c′, ... to range over the 
instances of such classes, and t, t′, ... to range of instants of 
time: 
A is_a B =def. for all c, t, if c instance_of A at t then c instance_of 
B at t. 
A part_of B =def. for all c, t, if c instance_of A at t then there is 
some c′ such that: c′ instance_of A at t and c part_of c′ at t, 

where ‘part_of’ is the instance-level part relation (between, 
for example, this particular cell and this particular lung). 
The reference to times in these definitions is designed to do 
justice to the fact that one and the same entity can instantiate 
different classes and gain and lose parts in the course of 
time. Note also the all-some structure of the definition of 
part_of, which is characteristic of almost all relations be-
tween classes of the sort treated by biomedical ontologies. 
Some (but not all) kinds of pathological structures are such 
that their instances are in every case transformations of ca-
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nonical structures of entities of a given kind existing earlier. 
We define transformation_of as a relation between contin-
uant classes: 
A transformation_of B =def. for all t and all c, if c is an instance of 
A at t, then there is an earlier time t′ at which c is an instance of B, 
and for no t, c is c an instance of both A and B at t.  

The pathological colon mucosal cell can be a transformation 
either of the canonical colon mucosal cell or of its precursor, 
depending on whether the pathology is hereditary or ac-
quired. Because transformation_of is transitive, however, 
we can assert quite generally: 

pathological colon mucosal cell transformation_of 
canonical colon mucosal cell precursor 

given that in every case:  
colon mucosal cell transformation_of colon mucosal cell precursor 
The temporal relationships between canonical entities and 
entities with pathological features have not been sufficiently 
addressed in ontologies thus far, and even developmental 
ontologies utilizing the methodology of stages have pre-
ferred not to incorporate a formal machinery for dealing 
explicitly with times [3]. Thus most of the instances of 
colonic mucosal cells with pathological features are a trans-
formation of instances of normal colonic mucosal cell. In 
some cases, the former is a transformation of a precursor 
entity of the latter. Transtemporal relations of this sort are 
not recorded in the National Cancer Institute Thesaurus, 
where for example no relations are asserted between the two 
classes abnormal cell and normal cell, not even that they 
have a common parent: cell [4]. Transformation relations 
are also absent in the SNOMED CT terminology [5]. A rela-
tion which we do find in SNOMED CT, however, is that of 
location, for example in: 

lung cyst finding_site lung structure 

Better, however, would be to eliminate the epistemological 
connotations of ‘finding_site’ by using a location relation 
such as GALEN’s locus  [6] or OBO’s located_in [1]: 

A located_in B =def. for all c, t, if c instance of A at t then there is 
some c1 such that: C1c1t and c located_in c1 at t. 

PathBase [7] provides a subsumption hierarchy for various 
pathological processes. It has 

endoplastic reticulum defect is-a subcellular defect 
This relation can thus be used with the colon cell assertions 
above to generate for example: 
pathological colon mucosalcell with endoplastic reticulum defect 

is-a pathological colon mucosal cell with subcellular defect 

Further implications which can be drawn are: 
endoplastic reticulum defect located-in endoplastic reticulum 

fpathological colon mucosalcell has_level_of_granularity cell. 

where levels of granularity can be inferred from an is_a 

hierarchy such as that of the FMA, e.g. from the fact that the 
colon is an organ we can infer: 

colon has_level_of_granularity organ 

and thus also that both canonical and pathological colon have 
this same level of granularity. 

2 CANCER STAGING 
We can use the framework to capture some of the informa-
tion contained in systems for cancer staging such as the 
TNM (for: Tumour, Node, Metastasis) system, which is 
used to classify pathological states into specific categories 
important for carcinoma management. The T2 stage, for 
example, is defined as: carcinoma has invaded the muscu-
laris mucosa of the colon wall and the T1 stage as: carci-
noma has invaded the mucosa. N1 designates a stage with 
one to four lymph nodes, M1 a stage where a metastasis is 
present in a non-contiguous part of the body. We can then 
assert that a pathological entity of the type carcinoma in 
colon at stage T2N1M1 must be a transformation of either a 
T1N1M1 or a T2N0M1 structure. If a carcinoma is a trans-
formation from T1N1M1 to T2N1M1 then there has oc-
curred a process of the type muscularis mucosa invasion. If 
there is a transformation from T2N0M1 to T2N1M1 then 
this implies that the last process to take place was one of 
lymph node metastasis. If there is a transformation from 
T2N1M0 to T2N1M1, then this implies that the last process 
to take place was one of metastasis to a non-contiguous 
body region.  

3 CONCLUSION 
We have sketched a formal approach to class-class relations 
in the realm of pathologies that is designed to support new 
types of cross-granular reasoning and also reasoning about 
entities which exist at different points in time, for example 
in the domain of cancer staging. 
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ABSTRACT 
The need for automation of protein classification is moti-
vated by the growing number of genome sequencing pro-
jects and the resulting stock-pile of data requiring annota-
tion. Classification plays a central role in the annotation 
process and is the first step in understanding the molecular 
biology of an organism. However, classification and annota-
tion are now rate-limiting steps. 
We present a method for the automated classification of a 
protein family from the protein complement of a genome 
using ontological reasoning.  
Introduction  
Classification of proteins by human experts is regarded as 
the gold-standard in biological data annotation. Human ex-
pertise is able to recognise the properties that are necessary 
and sufficient to place an individual gene product into a 
specific class. These differences are often subtle and auto-
mated annotation often fails to achieve the same classifica-
tion at a fine-grained, subfamily level. 
Many proteins are assemblies of domains. Each domain 
might have a separate function within the protein, such as 
binding or catalysis, but it is the composition of the different 
domains that gives each protein its specific function. There 
are many tools dedicated to discovering functional domains, 
for example, SMART (Letunic et al, 2004) and Interpro-
Scan (Mulder et al, 2005) but whilst they can report the 
presence of functional domains, bioinformaticians are re-
quired to perform the analysis that places a protein with a 
particular set of domains into a particular protein family or 
subfamily. To reach human expert standards, automated 
methods must also perform this analysis step. The ontology 
system presented here does just that. By capturing the nec-
essary and sufficient conditions for membership of each 
protein family or subfamily, in an OWL ontology, we for-
malise the rules for class membership. This enables the use 
of ontology reasoners to perform the human analysis step of 
comparing individual proteins to the defined protein family 
classes and assign them to a place in the classification.  
In this study, we present the results of analysing the protein 
phosphatase complement of the human and Aspergillus fu-
migatus genomes. Phosphatases were a suitable case-study 
because they are a large protein family involved in almost 
all cellular processes, making classification at a detailed 
level vital for understanding the specificity of individual 
proteins and for comparative genomic studies. Several 
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phosphatase proteins have also been implicated in diseases, 
such as, diabetes, cancer and neurodegenerative conditions 
(Schonthal, 2001, Zhang, 2001 and Tian & Wang, 2002), 
making them important targets for medical and pharmaceu-
tical research. 
Methods 
The automated classification system we present combines 
description logics (DL) reasoning (Baader et al, 2003) with 
service oriented architecture (oinn et al, 2004) to extract and 
classify the protein phosphatase complement of an organ-
ism. The foundation step was to produce an ontology in 
OWL (Web Ontology Language), describing the domain 
architecture of each protein phosphatase subfamily, derived 
from peer-reviewed literature by protein phosphatase ex-
perts. These class descriptions were then used to compare 
with the domain architecture of individual proteins using the 
Instance Store (IS) (Horrocks et al 2004). The IS combines a 
description logic reasoner with a relational database and 
allows reasoning over large numbers of individuals.  
The domain architecture of individual proteins was deter-
mined by performing InterproScans of the raw sequence 
data and translating the results into abstract OWL format. 
The combination of ontology, Instance Store, bioinformatics 
domain analysis and ontological reasoning provided the 
technology to facilitate the automated extraction and classi-
fication of any number of proteins from raw sequence data. 
Figure 1 shows the architecture of the ontology system. 
 

 
Figure 1: The ontology System Architecture 
Results 
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Human protein phosphatases have been isolated and charac-
terised in previous studies (Alonso et al, 2004, cohen, 1997, 
kennelly, 2001), so comparing the results of the classifica-
tion from the ontology system with the classification pro-
duced by domain experts provides a way of measuring the 
success of the ontology system. The results showed that all 
of the 118 phosphatase proteins identified and classified in 
previous studies were classified in the same place in the 
protein family hierarchy using the ontology method. 
An interesting result from the analysis was that, using the 
ontology, we were able to identify additional functional 
domains in two dual specificity phosphatases that present 
the opportunity to refine the classification of the subfamily 
into further subtypes.  
The results from the A.fumigatus investigation revealed 
large differences between the protein phosphatases the two 
species. Not only were there far fewer phosphatases in 
A.fumigatus, for example, 1 myotubularin and 1 MAP 
kinase phosphatase, as opposed to 16 and 11 respectively in 
human, but there were whole subfamilies not represented.  
Some of these missing subfamilies may reveal differences in 
phosphorylation pathways and are targets for further inves-
tigation. 
The A.fumigatus results also identified a novel type of cal-
cineurin phosphatase with an extra homeobox domain. Fur-
ther investigation showed that this extra domain was present 
in closely related pathogenic fungi, but we were unable to 
identify it in any other species, making it as a potentially 
interesting drug target for pharmaceutical investigation 
Discussion 
The scale of data production in post-genomic bioinformatics 
presents new problems for the bioinformatician. The pace at 
which new data is produced is outstripping the pace at 
which it can be analysed and annotated. Often, compromises 
on the quality of annotation have to be made in order to in-
terpret large data sets quickly, providing annotation at a 
more generic level, which results in the loss of information. 
The method we present here addresses part of this problem 
by encoding human expert knowledge as an ontology. The 
differences between protein classes can be captured at a 
detailed level to discriminate between closely related protein 
subfamilies.  
The human phosphatase study demonstrated that this system 
equaled the performance of manual human expert classifica-
tion. It was also discovered that the ontology system was 
efficient at uncovering novel, unexpected functional do-
mains, revealing anomalies that did not fit the community 
knowledge.  
The use of ontological technology in the bio-ontologies do-
main has been largely restricted to enhancing browsing and 
querying over existing data, or to statistical investigation. In 
this paper, we have described the application of ontological 
reasoning to enhance community-developed knowledge.  
By encoding pre-existing community knowledge in this 
form we have gained the advantage of automation and addi-

tionally, the ability to systematically analyse large volumes 
of biological data. 
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ABSTRACT 
INDUS (Intelligent Data Understanding System) is a feder-
ated, query-centric system for information integration and 
knowledge acquisition from distributed semantically hetero-
geneous data sources.  INDUS employs ontologies (con-
trolled vocabularies of domain specific terms, and relation-
ships among terms) and inter-ontology mappings, to enable 
a user to view a collection of such data sources (regardless 
of location, internal structure and query interfaces) as though 
they were a collection of tables structured according to a 
user-supplied ontology. 

1 INTRODUCTION  
Ongoing transformation of biology from a data-poor science 
into an increasingly data-rich science has resulted in a large 
number of autonomous data sources (e.g., repositories of 
protein sequences, structures, expression patterns, interac-
tions).  This has led to unprecedented, and as yet, largely 
unrealized opportunities for large-scale collaborative dis-
covery in a number of areas: characterization of macromo-
lecular sequence-structure-function relationships, discovery 
of complex genetic regulatory networks, among others.  
At present, there are hundreds of databases of interest to 
molecular biologists alone [Discala et al., 2000]. Because 
the data repositories are typically autonomous, and often 
focused on specific subfields of biology, ontological (and 
hence semantic) differences among them are simply un-
avoidable. However, in exploring specific scientific ques-
tions of interest, scientists often need to be able to retrieve 
and analyze data from multiple sources.  Effective use of 
such data in a given context requires reconciliation of se-
mantic differences among the relevant data sources from a 
user’s point of view. Hence, there is an urgent need for tools 
to support rapid and flexible assembly and analysis of data 
from semantically heterogeneous data sources [Jagadish and 
Olken, 2003].  

2 APPROACH 
INDUS is a federated, query-centric system for data integra-
tion and knowledge acquisition from distributed, semanti-
cally heterogeneous data (See Fig. 1). INDUS makes ex-
plicit data source specific information, such as the data 
source schema and (the typically implicit) data source on-
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tologies. The resulting ontology-extended data sources 
[Caragea et al., 2004] enable users to specify semantic cor-
respondences between the user ontology and the data source 
ontologies by specifying inter-ontology mappings.  

Fig. 1.  INDUS: a system for data integration and knowl-
edge acquisition from semantically heterogeneous distrib-
uted data.  
 
This enables each user to view a collection of autonomous, 
semantically heterogeneous, distributed data as though they 
were a collection of inter-related tables structured according 
to an individual user’s ontology. Thus, users can interact 
with and explore data sources of interest to them from mul-
tiple points of view simply by changing their perspective 
(i.e., user ontology and semantic correspondences between 
the user ontology and the data source ontologies). Queries 
posed using terms in the user ontology are transformed, us-
ing a sound query rewriting algorithm, into queries that can 
be answered by the individual data sources.  The results are 
expressed in terms of the user’s ontology [Caragea et al., 
2004] (See Fig. 1). 

3 INDUS PROTOTYPE 
We have completed the implementation of a working proto-
type of the INDUS system to enable biologists with some 
familiarity with the relevant data sources to rapidly and 
flexibly assemble data sets from multiple data sources and 
to query these data sets. This can be done by specifying a 
user ontology, simple semantic mappings between data 
source specific ontologies and the user ontology and queries 
– all without having to write any code. An initial version of 
the INDUS software and documentation are available at 
www.cild.iastate.edu/GM066387_homepage.htm.  
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The current implementation includes support for:  
• Import and reuse of selected fragments of existing on-

tologies (e.g., Gene Ontology GO), editing of ontolo-
gies, specification of semantic relationships between 
ontologies using inter-ontology mappings [Bao and 
Honavar, 2004].  

• Specification of semantic correspondences between a 
user ontology OU and data source ontologies OD [Car-
agea et al., 2004]. Semantic correspondences between 
ontologies can be defined at two levels: schema level 
(between attributes that define data source schemas) 
and attribute level (between values of attributes). 
INDUS allows the following types of semantic corre-
spondences at both schema and attribute level: semantic 
equality (e.g., AASequence:OD ≡ ProteinSe-
quence:OU,,), semantic subsumption (e.g., 
MIPS:16.19.01:OD ≤ GO: 0017076:OU) and procedural 
mappings (e.g., from AASequence:OD to AAComposi-
tion:OU). Consistency of semantic correspondences are 
verified by an efficient algorithm for reasoning about 
subsumption and equivalence relationships. 

• Registration of a new data source using a data-source 
editor for defining the schema of the data source (the 
names of the attributes and their corresponding onto-
logical types), location, type of the data source and ac-
cess procedures that can be used to interact with a data 
source. In the current implementation several types of 
data sources can be defined including multiple rela-
tional databases (Oracle, MySQL, PostgreSQL), and 
files (e.g., ARFF files used in WEKA, a widely used 
open source machine learning software package). 

• Specification and execution of queries across multiple 
large, semantically heterogeneous data sources with 
different interfaces, functionalities and access restric-
tions. Each user may choose relevant data sources   
from a list of data sources that have been previously 
registered with the system and specify a user ontology 
(by selecting an ontology from a list of available on-
tologies or by invoking the ontology editor and defin-
ing a new ontology).  

Once the ontology-extended data sources and the user on-
tology have been specified, the user can select mappings 
between data source ontologies and user ontology from the 
available set of existent mappings (or invoke the mappings 
editor to define a new set of mappings). Once the necessary 
mappings are specified, the system can answer queries 
posed by the user. The data needed for answering a query is 
specified by selecting (and possibly restricting) attributes 
from the user ontology, through a user-friendly interface. 
Queries posed by the user are sent to a query-answering 
engine (QAE) that decomposes a user query into sub-
queries  that can be answered by the individual data sources 
(using predefined or user-supplied mappings between the 

respective ontologies). The answer to the user query (ex-
pressed in terms of user ontology) is constructed and pre-
sented to the user by the QAE using results of queries to the 
distributed data sources. INDUS has been used to assemble 
several data sets used in the exploration of protein sequence-
structure-function relationships [Caragea et al., 2005]. Ex-
amples of such data sets include: a data set used for building 
a classifier for automating functional annotation of protein 
sequences based on sequence composition [Andorf et al., 
2004] and structural features of proteins and a comprehen-
sive database of protein-protein interfaces 
www.cild.iastate.edu/GM066387_homepage.htm.  

4 CONCLUSIONS 
We have presented INDUS, a federated, query-centric ap-
proach to answering user queries from distributed, semanti-
cally heterogeneous data sources. INDUS assumes a clear 
separation between data and the semantics of the data (on-
tologies) and allows users to specify ontologies and map-
pings between data source ontologies and user ontology. 
INDUS enables users (or application programs e.g., learning 
algorithms) to retrieve results of queries from semantically 
heterogeneous data sources. 

ACKNOWLEDGEMENTS 
This work was funded in part by grants from the National 
Science Foundation (IIS 0219699) and the National Insti-
tutes of Health (GM 066387).

REFERENCES 
Andorf, C., Silvescu, A., Dobbs, D. and Honavar, V. (2004). 

Learning Classifiers for Assigning Protein Sequences to Gene 
Ontology Functional Families. In: Fifth International Conference 
on Knowledge Based Computer Systems (KBCS 2004), India.  

Bao, J. and Honavar, V. (2004). Collaborative ontology building 
with wiki@nt - a multi-agent based ontology building environ-
ment. In: Proc. of 3rd International Workshop on Evaluation of 
Ontology based Tools, ISWC 2004, Japan. 

Caragea, D., Pathak, J., and Honavar, V. (2004). Learning Classifi-
ers from Semantically Heterogeneous Data. In: Proceedings of 
the Third International Conference on Ontologies, DataBases 
and Applications of Semantics for Large Scale Information Sys-
tems (ODBASE’04), October 25-29, 2004, Agia Napa, Cyprus. 

Caragea, D., Silvescu, A., Pathak, J., Bao, J., Andorf., C., Dobbs, 
D. and Honavar, V. (2005).  Information Integration and 
Knowledge Acquisition from Semantically Heterogeneous Bio-
logical Data Sources. In: Proc. of the 2nd Int. Workshop on 
Data Integration in Life Sciences (DILS'05), San Diego, CA. 

Discala, C., Benigni, X. Barillot, E. and Vaysseix, G. (2000). 
DBcat: a catalog of 500 biological databases. Nucleic Acids 
Res. 2000 Jan 1;28(1):8-9. 

Jagadish, H.V. and Olken, F. (2003). Data Management for the 
Biosciences. Report of the NSF/NLM Workshop of Data Man-
agement for Molecular and Cell Biology, Feb. 2-3, 2003. 

 26



 

News & Views: The BioPAX Pathway Data Exchange Format 
BioPAX Workgroup 

Presenters: Michael P. Cary1 and Joanne S. Luciano2

 

1 - Memorial Sloan-Kettering Cancer Center, New York, NY 
2 - Harvard Medical School, Boston, MA 
 
ABSTRACT 
 
Motivation:  Gathering existing knowledge is the first 
step in modeling or analyzing a biological process, 
thus pathway data integration is vital for many appli-
cations of computational biology[1]. As the number of 
pathway databases increases, pathway data integration 
becomes more difficult. At the start of 2005, there 
were over 170 databases containing pathway informa-
tion, widely varying in form and content 
(http://www.cbio.mskcc.org/prl).  A standard ex-
change format for pathway data, supported by major 
pathway databases, will significantly reduce the 
amount of time and energy spent by computational 
biologists on data integration and lead to increased 
pathway data sharing. 

1 INTRODUCTION  
BioPAX (http://www.biopax.org) is a community-

based effort to develop a biological pathway data ex-
change format. BioPAX Level 1, which focuses on 
metabolic pathway information, was released July 
2004. BioPAX Level 2, which will add support for 
molecular interactions via inclusion of the PSI-MI data 
model, will be finalized mid-2005. Level 3, currently 
under development, will add support for molecular 
states and genetic regulatory networks. Future levels 
will be able to represent genetic interactions and ge-
neric molecules and processes. 

BioPAX is being developed in a practical, leveled 
approach in which each level supports a greater variety 
of pathway data. BioPAX Level 1, implemented in 
OWL, is supported by BioCyc[2], WIT[3], KEGG[4] 
and others. BioPAX Level 2 is expected to be sup-
ported by aMAZE[5], Reactome[6] and others. 

The BioPAX group is coordinating with other 
pathway related standards initiatives, such as 
SBML[7], CellML[8], and PSI-MI[9], to minimize 
duplication of work and to ensure compatibility with 
these standards in areas of overlapping coverage. 
Participation in BioPAX is voluntary and without fee. 
The BioPAX format and any associated software de-
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veloped by the BioPAX group are open source and 
freely available to all under the GNU LGPL license 
(http://www.gnu.org/copyleft/lesser.html). 

2 ONTOLOGY DETAILS 
Four basic classes are defined in the BioPAX on-

tology to represent pathway information: the root level 
entity class and its three subclasses: pathway, inter-
action and physicalEntity.  
 
Entity: Any concept referred to as a discrete biologi-
cal unit when describing pathways. 
 
Pathway: A set of interactions. A pathway is a col-
lection of molecular interactions and reactions, often 
forming a network, which biologists have found useful 
to group together for organizational, historic, bio-
physical or other reasons. 
 
Interaction: An entity that defines a single biochemi-
cal relationship between two or more entities. 
 
PhysicalEntity: An entity that has a physical struc-
ture. This class serves as the super-class for all physi-
cal entities, although its current set of subclasses is 
limited to molecules. Physical entities are frequent 
building blocks of interactions. 
 
     BioPAX Level 1 defines seven main types of inter-
action and four types of physical entity. 
Interactions: conversion (and three subtypes: complex 
assembly, transport, biochemical reaction) and control 
(and two subtypes: catalysis and modulation); Physical 
entities: complex, protein, RNA, small molecule 
(DNA is available in BioPAX Level 2). 

Pathway information in BioPAX is represented by 
creating instances of these classes. For example, defin-
ing a typical enzyme-catalyzed biochemical reaction 
requires physical entity instances for the substrates, 
products, and enzyme, a biochemical reaction instance 
to describe the conversion of the substrates to the 
products, and a catalysis instance to define the rela-
tionship between the enzyme and the reaction. For 
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more detail, see the full documentation at 
www.biopax.org. 

3 EXAMPLE USE CASES 
 
Pathway Data Warehouse BioPAX could make crea-
tion of pathway data warehouses easier if many data-
bases provide access to their data in the BioPAX for-
mat. Similar to sequence data warehouses, these could 
be locally maintained to provide fast access to publicly 
available pathway data. 

 
Pathway Analysis Software Example: Molecular 
profiling analysis Molecular profiling experiments, 
using such technologies as gene expression microar-
rays and mass spectrometers, are often compared 
across two or more conditions (e.g. normal tissue and 
cancerous tissue). The result of this comparison is of-
ten a large list of genes that are differentially present 
in the tissue of interest. It is interesting and useful to 
analyze these lists of genes in the context of pathways. 
For instance, one could look for pathways that are sta-
tistically over-represented in the list of differentially 
expressed genes. The result is a list of pathways that 
are active or inactive in the condition of interest com-
pared to a control. The list of pathways is often much 
shorter than the list of input genes and easier to com-
prehend. BioPAX could facilitate this and other kinds 
of pathway-based analyses by giving tools easy access 
to a large body of pathway data in a common format. 

 
Visualizing Pathway Diagrams Pathway diagrams 
are useful for examining pathway data. A number of 
formats are available for these images, but only a few 
available viewing tools link components in the image 
to underlying data. A mapping of BioPAX to a symbol 
library for pathway diagrams (such as Kohn maps - 
http://discover.nci.nih.gov/kohnk/symbols.html) could 
be the basis for a general pathway diagram generation 
tool. 

 
Pathway Modeling Mathematical modeling to under-
stand the dynamics of a pathway system is a frequent 
use of pathway information. Many of the tools avail-
able for pathway modeling support the SBML 
(http://sbml.org) and CellML (http://www.cellml.org) 
standards, which describe models in sufficient detail to 
allow model sharing between tools. While BioPAX is 
not designed to represent pathway models in as much 
detail as SBML and CellML, it contains a number of 
biological concepts not present in these standards. Use 
of BioPAX to annotate SBML and CellML models 

could allow linking models to pathway databases and 
the functional annotations contained therein. 
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ABSTRACT 
Motivation:  Genes residing at different branches in the 
Gene Ontology (GO) DAG are often used as benchmark 
standards in validating data mining algorithms.  It is desir-
able to reverse this validation procedure and investigate 
what kind of data features may characterize these GO terms 
in various data collections.   
Method:  Genes sharing the same biological process, ac-
cording to the Gene Ontology consortium, are mapped to a 
co-citation gene networks.  Connectivity and density of the 
resulting subgraphs are studied.  Furthermore, interconnec-
tivity between these subgraphs is scored and some biologi-
cal processes with high interconnectivity are listed. 
Results:  GO groups may not always map into dense areas 
in the co-citation network.  Interconnectivity between the 
mapping images of GO groups indicates their relationships. 
 

1 INTRODUCTION  
When new methodologies and algorithms are proposed to 
generate gene lists from data (for example, “signatures” 
from supervised learning or “modules” from unsupervised 
learning), the concentration of biological processes attrib-
uted to the genes is often a standard way to show the effec-
tiveness of the methodologies and algorithms and the sig-
nificance of the findings.  Sometimes one may wonder why 
a gene list generated from one method, say, a particular 
graph clustering algorithm, fits more to a biological process 
than another list.  To answer this question, an inverse inves-
tigation is desirable in discovering the natural structure of 
genes involved in a biological process, in terms of specific 
data.  Study exists on global comparison of different gene 
networks, including those based on biological functions.  
There is the need to investigate further, for more detailed 
and localized analysis.  Here we report some results from 
our investigation of the similarity between the grouping of 
genes based on biological processes, defined by the Gene 
Ontology consortium, and gene network defined by Medline 
co-citation. 

  
* To whom correspondence should be addressed.  

We have devised graph clustering algorithms to find 
“dense spots” in a network of genes and showed that many 
of these clusters contain genes of particular biological proc-
esses.  Similar results on different gene networks have been 
reported elsewhere.  In this investigation, we tried to answer 
three questions.  First, how likely two genes within the same 
biological process are adjacent or closely related in a certain 
gene network.  Secondly, to what varying degrees gene 
groups at specific levels of the gene ontology DAG (di-
rected acyclic graph) are densely connected in those net-
works.  Thirdly, what biological processes may be mapped 
to subgraphs with high interconnectivity. 

2 GENE ONTOLOGY TERMS MAPPED TO 
THE CO-CITATION NETWORK 

We collected mammalian genes indicated at the three lowest 
levels of the Gene Ontology DAG, as GO groups.  These 
include 425 groups at the sink or leaf level of the DAG, 642 
groups at the level above the sinks, and 207 at two levels 
above the sinks, all within the size range between 3 and 700.  

We mapped these groups to a gene network of 12,727 
genes and 106,142 edges connecting genes co-cited signifi-
cantly in MedLine abstracts.  We found that 29,024 (27.3%) 
of these edges were connecting genes within some GO 
group in our collection.  On the other hand, there were 
1,376,012 pairs of genes belonging to the same GO group, 
and thus the chances for genes within the same GO group to 
be co-cited were very low (2.1%). 

When we allowed genes in the co-citation network to be 
considered in the mapping when they were connected with a 
path of length 2, the latter percentage increased to 32.5% 
(with 447,341 intra-GO-group pairs connected in the co-
citation network directly or by paths of length 2).  This per-
centage increased to 80.8% (1,112,029 pairs connected) 
when the maximum path length was 3. 

Table 1 summarizes the proportions of intra-GO-group 
pairs that are also connected in the co-citation network. It is 
interesting to notice that GO groups at the sink level (level 
0) gave significantly less improvement in the percentage for 
longer path lengths, compared with those at higher levels. 
This may have something to do with the relatively smaller 
sizes of the level-0 GO groups. (The average GO group 
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sizes for level 0, level 1, and level 2 are 9.3, 25.1, and 15.9, 
respectively. 

Table 1. Proportions of intra-GO-group pairs that are also connected in the 
co-citation network. Group level indicates how close the GO term is to the 
sinks or leaves of the DAG.  Path length indicates how apart a pair are in 
the co-citation network. 

Group level Path length = 1 Path length <= 2 Path length <= 3 

0 2.5% 24.0% 67.5% 
1 2.0% 32.3% 81.0% 
2 2.7% 38.4% 85.9% 

0-2 2.1% 32.5% 80.8% 
 

A GO group, as a gene list, is mapped to the co-citation 
network as a subgraph.  The percentages listed in Table 1 
are also the average density of these subgraphs within the 
co-citation network.  Here, the density of a subgraph is the 
proportion of the possible edges between its vertices that are 
actually present in the graph (network).  Figure 1 below 
shows the distribution of density vs. GO group size for three 
different path lengths. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Density distribution of GO groups mapped to the co-
citation network with three different ranges of path lengths to be 
considered as adjacent. 

3 CO-CITATION ACROSS GO GROUPS 
After mapping GO groups onto the co-citation network, they 
form (possibly overlapping subgraphs).  Given the sizes of 
two GO groups, S and T, the size of the intersection between 
them, U, and the number of edges in the co-citation network 
between non-overlapping members from different groups, 
W, we define an interconnectivity score for the pair of 
groups as W/((S-U)(T-U)).  This score is the proportion of 
the possible inter-group pairs that are adjacent in the co-
citation network.  Table 2 lists come of the GO terms with 
some of the highest interconnectivities. 

Table 2. Some GO terms with the highest co-citation interconnectivity. 

Group ID Biological process Group ID Biological process Inter-
connectivity

  6882 negative regulation 
of follicle-
stimulating hor-
mone secretion 

50808 synapse organiza-
tion and bio-
genesis 

61.2% 

  6684 sphingomyelin 
metabolism 

9798 axis specification 57.7% 

  7129 synapsis 45162 clustering of volt-
age-gated so-
dium channels 

57.7% 

6118 electron transport 15893 drug transport 36.3% 
6512 ubiquitin cycle 46661 male sex differen-

tiation 
35.9% 
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4 CONCLUSION 
From the study we can see that even though genes involved 
in the same biological process are expected to have been co-
cited in literature, sometimes it is not the case.  The dispar-
ity shown by different GO groups in density distribution 
when mapped to other gene networks encourages further 
study on their structural characteristics in those networks.  
On the other hand, the interconnectivity scores give rise to a 
network of biological processes, indicating their interrela-
tionships.  Path Length <= 3
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ABSTRACT 
ExperiBase is the instantiation of an object model to 
handle an important selection of the experimental pro-
tocols that currently exist in biology.  A consistent data 
definition strategy is demonstrated that handles gel 
electrophoresis, microarrays, fluorescence activated 
cell sorting, mass spectrometry, and microscopy within 
a single coherent set of information object definitions.  
Other experimental methods can be added with rela-
tive ease because the object model used to describe 
the data is easily extended.  The object model sup-
ports previous work done with microarrays (MAGE OM 
and Miamexpress), HUPO definitions for mass spec-
trometry, and the object model for microscopy pro-
posed by OME. 

1 INTRODUCTION  
Over the past several years, the explosive growth of biologi-
cal data generated by new high-throughput instruments has 
literally begun to drown the biological community.  There is 
no infrastructure to deal with all of these data in a consistent 
and successful fashion.  Available methods generally store 
the data either in spreadsheet form or in flat files where, in 
advanced cases, the files contain metadata identifying some 
of the parameters of the experiment that produced the data.  
It is nearly universally true that the data are in general not 
queryable across important properties such as the sample 
origin and treatment, instrument settings, or the results of 
analytical methods applied to the data.  It is also often the 
case that the scope of the annotating metadata is far less 
than is required to create self-describing information ob-
jects; file names, ad hoc context clues such as directories for 
files, and file dates substitute for defined queryable fields. 
 
ExperiBase is an object model that supports the use of ex-
tensive metadata to describe a biological experiment, its 
results, and its relation to the outside world including access 
privileges and projects to which it is related.  It is an object 
model that supports object models and ontologies proposed 
by others so that many different experimental methods can 
be treated in a consistent and uniform manner, and the data 
from different experimental methods can be stored and que-
ried in a uniform way.  Considerable economy of effort and 

  
* To whom correspondence should be addressed.  

an improved ability to support new and evolving require-
ments results. 
 
Many of the paradigms used in ExperiBase follow logically 
from the object models developed for medical images by the 
American National Standards Institute and the National 
Electrical Manufacturers Association (ACR-NEMA).  The 
resulting standard, called DICOM, was completed in 1993 
and has been an enormous success, allowing all of the major 
medical image modalities (MR, CT, Ultrasound, X-Ray, 
ECG, Pathology images, Angiograms, and Nuclear images) 
to be treated in a uniform and consistent manner.  The4 ex-
istence of active standing committees for the different spe-
cialties has allowed the standard to evolve over a number of 
years, adding new methods and evolutionary changes to the 
existing modalities.  The standard has been actively used as 
the primary tool for handling digital medical images since 
its inception; every piece of medical imaging equipment 
produced in the world must support the standard if the 
manufacturer wishes to sell it. 

2 METHODS  

Several important experimental techniques in contemporary 
biology have been used to create a single composite 
schema.  The results bear a striking relationship to the 
DICOM standard of 1993 that provides information object 
definitions of all of the major medical imaging modalities 
(MR, CT, US, XA, NM, VL, CR, and Waveforms).  The de 
novae information object definitions developed for gel elec-
trophoresis by the authors of this paper were found to be 
very similar to the existing MAGE-OM information model 
for microarrays.  Further investigation revealed that similar 
object definitions characterized other experimental biology 
methods as well.  These were generalized and a full object-
relational data schema was developed.  The appended refer-
ences cite a number of the proposed standards that were 
used to develop the object model. 

3 RESULTS 

A first implementation of this work is called ExperiBase.   It 
can store and query data generated by the leading experi-
mental protocols used in biology within a single database.  
ExperiBase also has provisions to store derived data from 
analysis as a part of an expanded definition of the informa-
tion object.  Transport of the raw data and analytical results 
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between ExperiBase and external analysis packages cur-
rently uses web-based network technologies and XML rep-
resentation of the data itself.  The information object model 
is used to define the form of the XML data document.  Im-
port and export of data in spreadsheet format is also sup-
ported.  ExperiBase has been ported to three leading data-
base platforms: Oracle, DB2 and Informix.  There are no 
platform-specific dependencies other than the necessity to 
support object models and large binary data types in effi-
cient native format.  From an implementation point of view, 
the database in which ExperiBase is implemented should 
support sparse data matricies with no significant storage 
penalties. 

Figure 1 is a high-level view of the organization 
of the data and metadata that, together, 

 

Figure 1 Biological experimental data can be grouped into 
five packages: study plan (also called as project), sample, 
experiment, high level analysis, and administration package. 

comprise a single experiment.  Figure 2 is a 
condensed view of the expanded object model 
containing the elements used to describe each of 
the top-level concepts shown in Fig. 1.  

4 CONCLUSIONS 

The medical and biological communities are 
invited to participate in this effort to develop 
international standards to handle the massive 
data collections that are now being created in 
every pharmaceutical company and every aca-
demic biology laboratory.  Having consistent 
formats for the information objects will greatly 
speed the development of analysis tools 
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Figure 2  The Information Object Definition for fluo-
rescent activated cell sorting  following Leif et al. 
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ABSTRACT 
The Gene Ontology (GO) project 
(http://www.geneontology.org) is a collaborative effort to 
construct and use ontologies to facilitate the biologically 
meaningful annotation of genes and their products in a wide 
variety of databases. Participating groups include the major 
model organism databases and other database groups. 
 
The GO ontologies provide a systematic language for the 
description of attributes of gene products, in three key 
domains that are shared by all organisms: Molecular function 
describes elemental roles, such as catalytic or binding 
activities, at the molecular level.  Biological process 
describes broad objectives, each accomplished by one or 
more ordered assemblies of molecular functions. Cellular 
component describes locations where a gene product may 
act, and includes both subcellular structures and 
macromolecular complexes. 
 
From its inception, the GO project has developed its 
ontologies for the express purpose of gene product 
annotation. As biological research advances, and as the GO 
vocabularies are applied to more species, the ontology 
content must be continually refined so as to remain useful for 
the purpose of functional annotation. The model organism 
database curators who use GO terms for gene product 
annotation therefore play a key role in guiding the 
development of GO: The interaction between ontology 
editors and annotators lies at the core of the GO update 
procedure, ensuring that GO terms reflect usage in the 
biomedical literature to the greatest extent possible, and that 
the relationships between terms accurately capture 
biological knowledge. 
 
When GO is applied to new organisms, many ontology 
changes are typically required to accommodate biological 
systems not previously represented. For example, when The 
Arabidopsis Information Resource (TAIR) joined the GO 
Consortium in 2000, the ontologies– previously applied only 
to animal and fungal gene products—were extended to 
cover plant biology. Many more such changes lie ahead, as 
the GO Consortium has begun an effort to actively 
encourage new groups to use GO for gene product 
annotation, and to make the resulting annotation data 
available to the public as part of the GO repository. The 

understanding that GO will adapt its ontologies as needed to 
permit accurate and complete annotation in any species is a 
key factor in GO's widespread uptake by the biological 
database community. (Improvements made at the request of 
annotators additionally benefit many other users, both within 
and outside the GO Consortium, who may use GO data for a 
wide variety of applications.) 
 
To complement input from the annotators who use GO 
intensively, the GO Consortium strives to involve members 
of the research community in the ontology development 
process. Experts in various biomedical fields can provide 
thorough, detailed knowledge of their particular topics that 
complements GO curators' understanding of existing GO 
structures and conventions. The GO Consortium uses 
several mechanisms to promote communication among 
these various contributors and ensure consistency within the 
ontology even as its content is modified. All changes to the 
ontologies are centrally coordinated by the GO Editorial 
Office staff, who have backgrounds in biology. A small group 
of curators—also biologists—have write access to the CVS 
repository in which GO files are maintained. To supplement 
mailing lists and online documentation, we have adapted the 
online tracking system provided by SourceForge to manage 
suggestions for changes to the ontologies (see 
http://geneontology.sourceforge.net/). With the SourceForge 
system, any user can track the status of a suggestion, see 
changes currently under consideration, and comment on 
suggestions; all suggestions and discussions are archived. 
In 2002 the GO Consortium established Curator Interest 
Groups to focus on areas within the ontologies that are likely 
to require extensive additions or revisions. Interest Groups 
may include outside experts as well as curators from GO 
Consortium databases. Of the 28 Interest Groups now 
established, the four most active also have archived mailing 
lists associated with them. The latest addition to the range of 
ontology development approaches is the initiation of a series 
of meetings devoted to specific biological content areas in 
GO. At the first content meeting, held last year, three topics 
were selected, and members of the relevant research 
community joined GO curators to determine how GO should 
represent each area. 
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A different source of suggested changes is computational 
analysis of existing GO terms and relationships, which can 
identify missing relationships and missing or misplaced 
terms. These computational efforts, most notably the OBOL 
project (see http://www.fruitfly.org/~cjm/obol/), improve the 
logical consistency of GO, and will eventually enable GO to 
adopt more formal computational representations for its 
ontologies. 
 
Similar principles, both sociological and technical, govern the 
development of other ontologies in the Open Biomedical 
Ontologies (OBO) collection The GO Consortium welcomes 
feedback from the biology and bioinformatics communities 
on any aspect of its ontologies or their use. 
 

34



 

Automating Ontological Function Annotation:  
Towards a Common Methodological Framework 
Cliff A Joslyn*, Judith D Cohn, Karin M Verspoor, and Susan M Mniszewski 

Los Alamos National Laboratory, Los Alamos, NM, USA 

 
ABSTRACT 
Motivation:  Our work in the use of ontology categorization 
for functional annotation is motivating our focus on an overall 
methodological framework for ontological function annotation 
(OFA). We draw on our experiences to discuss test set se-
lection, annotation mappings, evaluation metrics, and struc-
tural ontology measures for general OFA. 

1 INTRODUCTION  
A new paradigm for functional protein annotation is the 

use of automated knowledge discovery algorithms mapping 
sequence, structure, literature, and/or pathway information 
about proteins whose functions are unknown into a func-
tional ontology, typically (a portion of) the Gene Ontology 
(GO, GO Consortium 2000)1. For example, our own work 
(Verspoor et al. 2004, 2005) involves analyzing collections 
of GO nodes (e.g. annotations of protein BLAST neighbor-
hood) using the POSet Ontology Categorizer (POSOC, Jos-
lyn et al. 2004)2 to produce new annotations. Both in exe-
cuting this work and in examining similar efforts (e.g. Pal 
and Eisenberg 2005, Martin et al 2004), we have uncovered 
a variety of methodological issues which we believe could 
be valuable for the community to focus on. Here we first 
explicate our sense of a generic architecture for automated 
ontological functional annotation (OFA) into the GO, and 
then discuss specific methodological issues which are ge-
neric to OFA, illustrated by our own experience.  

2 GENERIC AUTOMATED OFA 
A simple formulation for protein function annotation into 

the GO assumes a collection of genes or proteins X and a set 
of GO nodes (perhaps for a particular branch) P. Then in the 
most general sense, annotation is a function  
assigning each protein  a collection of GO nodes 

. So while a known protein x may have a known 
set of annotations F(x), a new protein y may not have any 
known annotations, and instead we wish to build some 
method G returning a predicted set of GO nodes 

. Typically, we have information about y such 

PXF 2: →
Xx∈

PxF ⊆)(

PyG ⊆)(
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2 http://www.c3.lanl.gov/~joslyn/posoc.html 

as sequence, structure, interactions, pathways, or literature 
citations, and to build G we exploit knowledge of the pro-
teins “near” y in that space which have known functions. In 
a testing situation, we take a known protein x and compare 
its known annotations F(x) against its predicted annotations 
G(x). Thus to measure the accuracy of our prediction G, we 
need to compare two different sets of GO nodes, F(x) and 
G(x), against each other over the set of known proteins X. 

3 METHODOLOGICAL ISSUES  
We now briefly survey the methodological issues we will 

explicate completely in the presentation and full paper. 

3.1 Protein Test Sets 
First we select one or more "gold standard" test sets X of 

proteins with trusted annotations in the GO. While any such 
test set should be shared within the community, nonetheless 
requirements for a gold standard will vary among research 
groups. POSOC currently needs a test set containing both 
sequence and structure data, and so we use Swiss-Prot pro-
tein sequences with existing PDB structures3. Other groups 
have used a variety of test sets, for example Pal and 
Eisenberg (2005) use a set of protein sequences from the 
FSSP structure library4 to evaluate their ProKnow system; 
Martin et al (2004) use sequence data from seven complete 
genomes to test GOtcha.  

A further consideration is non-redundant test data which 
is sampled to avoid over-representation in any part of the 
test space. For example, the non-redundant Astral subsets of 
SCOP domains are designed to cover the variation in SCOP 
structure space while ensuring that no two SCOP domains 
in a particular subset have a sequence homology greater 
than a specified cutoff value (e.g. 95% or 40%) (Chandonia 
et al. 2004).  We propose development of a non-redundant 
test set covering GO function space.  

3.2 Annotation Mappings 
The value of any gold standard is very much tied to the 

accuracy of their known annotations F. POSOC uses the 
GOA5 UniProt6 annotation set for protein sequences, and it 

 
3 http://www.rcsb.org/pdb 
4 http://www.chem.admu.edu.ph/~nina/rosby/fssp.htm 
5 http://www.ebi.ac.uk/GOA 

  35



C Joslyn  et al. 

could be useful for this set, or other annotations for other 
data types, to be regularized as a community standard to 
provide a means of comparing various studies, including 
studies attempting to create better annotation sets. Extension 
to include the source of annotations for a particular type of 
data and a common ranking for the evidence codes included 
in GO annotation files (e.g. IC = inferred by curator, IEA = 
inferred from electronic annotation), as implemented by Pal 
and Eisenberg (2005), could also be very helpful.  

3.3 Evaluation Metrics 
Given a gold standard X, annotation mapping F, and pre-

diction function G, we next need evaluation metrics which 
compare “ground truth” annotations F(x) against predictions 
G(x), typically comparing ratios of true and false positives 
and negatives. While precision, recall, and F-score are stan-
dard measures, some architectures force different choices. 
The results G(x) produced by POSOC do not form a simple 
set, but rather a ranked list of effectively indefinite length, 
requiring a non-standard measure of precision. Such alterna-
tive measures are available from the information retrieval 
literature, and include measuring precision at different recall 
levels, computing average precision at n correct results, and 
others such as mean average precision, R-precision (preci-
sion at rank equal to the total number of correct results for a 
given query), and reciprocal rank.  

These alternatives need to be considered and evaluated for 
meaningfulness specifically in the context of annotating into 
a structured ontology. Kiritchenko et al (2005) propose an 
explicitly hierarchical extension of precision and recall with 
respect to the subgraph containing the predicted node and all 
of its ancestors (the “node subgraph”) and the node sub-
graph of the correct node. Pal and Eisenberg (2005) con-
sider precision at various ontology depths, hierarchically 
matching nodes in the node subgraph of the predicted node 
and nodes in the node subgraph of the correct node. 

3.4 Ontology Distance Metrics  
In the context of the GO, what we even mean by a “true 

positive” or a “near miss” must be questioned. For example, 
every annotation to a node  should also be consid-
ered an annotation to all its ancestors, and in many cases 
predicting a parent or grandparent of a correct annotation 
may be preferable to an “exact match”. Currently POSOC 
measures performance first with respect to both direct hits, 
and then also “nuclear” (parent, child, sibling) and “ex-
tended” (grandparent, uncle, cousin, etc.) family relations 
between nodes. 

Pp∈

Beyond such a simplistic sense of “family” relations, de-
termining the amount of overlap between F(x) and G(x) 
generalizes from precision and recall to the determination of 
aggregated distance measures between all pairs of GO nodes 

                                                                                                                            
6 http://www.ebi.ac.uk/uniprot/index.html 

in those sets. Such metrics are still in development either 
directly (Joslyn 2004, Joslyn and Bruno 2005) or indirectly 
(Kiritchenko et al. 2005). Different concepts of rank (depth) 
and location in the GO are available, but also still in devel-
opment, and these all need to be appreciated and internal-
ized by the bio-ontology community better. 

3.5 Ontology Structural Statistics 
Sets of GO nodes abound in OFA, including at least F(x), 

G(x), and G(y) for various known and unknown proteins x 
and y; for POSOC, annotation sets of BLAST neighbor-
hoods around x or y; and even whole branches CC, MF, and 
BP of the GO. So central to all OFA methodology is the 
need for infrastructure to analyze such portions of the GO. 
We are currently developing mathematical methods and 
analytical software to measure such statistical properties as 
the average depth of a node set, the size of the region it cir-
cumscribes, the relative amount of back-branching or “mul-
tiple inheritance” present, and the extent to which nodes 
exist “comparably” in vertically connected chains or “non-
comparably” in horizontally separated antichains. While 
partially exploratory, this work has been motivated by the 
direct need to analyze POSOC results in different GO 
branches with respect to different kinds of test protein sets, 
annotation mappings, and evaluation metrics described here. 
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ABSTRACT 
We introduce the ontology behind BioWarehouse.  BioWare-
house is an open source toolkit for constructing bioinformat-
ics database (DB) warehouses using the MySQL and Oracle 
relational database managers.   

1 INTRODUCTION  
 
BioWarehouse addresses the database integration problem 
in Bioinformatics by integrating its component DBs into a 
common representational framework within a single DB 
management system, thus enabling multi-DB queries using 
the Structured Query Language (SQL) but also facilitating a 
variety of DB integration tasks such as comparative analy-
ses and data mining.  
BioWarehouse currently supports the integration of UniProt 
(SWISS-PROT and TrEMBL), GenBank, ENZYME, 
KEGG, BioCyc, NCBI Taxonomy, and CMR. BioWare-
house supports the simultaneous storage of multiple ver-
sions of a given DB.     
BioWarehouse loader tools, written in the C and JAVA lan-
guages, parse and load the preceding DBs into a relational 
DB schema.  The loaders also apply a degree of semantic 
normalization to their respective source data, decreasing 
semantic heterogeneity.  That is, the schema (ontology) be-
hind BioWarehouse defines a common ontological frame-
work for representing and querying bioinformatics data. 
The BioWarehouse schema supports the following bioin-
formatics datatypes: chemical compounds, biochemical re-
actions, metabolic pathways, proteins, genes, nucleic acid 
sequences, features on protein and nucleic-acid sequences, 
organisms, organism taxonomies, and controlled vocabular-
ies.   That is, BioWarehouse can store controlled vocabular-
ies such as Gene Ontology, and a GO loader for BioWare-
house is almost complete. 
This presentation will provide an overview of the BioWare-
house architecture, and will present the design of the Bio-
Warehouse schema in detail.  We will also discuss the prin-
ciples that have driven the design of the BioWarehouse 
schema. 
As an application example, we applied BioWarehouse to 
determine the fraction of biochemically characterized en-
zyme activities for which no sequences exist in the public 
sequence DBs.  The answer is that no sequence exists for 
  
 

36% of enzyme activities for which EC numbers have been 
assigned. These gaps in sequence data significantly limit the 
accuracy of genome annotation and metabolic pathway pre-
diction, and are a barrier for metabolic engineering.  Com-
plex queries of this type provide  examples of the value of 
the data warehousing approach to bioinformatics research.  
 
Availability: BioWarehouse is an open source project that is 
freely available under the Mozilla license.  For information 
on obtaining BioWarehouse, see URL 
http://bioinformatics.ai.sri.com/biowarehouse/.    
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ABSTRACT 
Motivation:  Ontology development environments need to 
take advantage of scalable, reliable and secure data reposi-
tories. This is becoming increasingly important as ontologies 
become larger in size and the number of simultaneous users 
grows. This paper describes the merits of integrating Pro-
tégé with the RDF Data Model in the Oracle Database.  

1 INTRODUCTION  
Ontologies provide the common vocabulary for the integra-
tion of the hundreds of different knowledge bases, meta-data 
formats, and database schemas that are used in the biomedi-
cal domain. An ontological framework enables researchers 
to access a knowledge base, appraise its content, determine 
if resources are relevant, and to integrate and aggregate the 
data with in-house resources and data.  

Semantic Web technologies such as RDF and OWL are 
being increasingly used for providing the ontological 
framework as they provide a means to represent data, meta-
data about resources, and for defining relations between 
components of the resources.  

2 ARCHITECTURE 
2.1 Protégé 
Protégé is the most widely used freely available, platform-
independent, open-source technology for managing and 
developing large terminologies, ontologies, and knowledge 
bases. Protégé has been used as the primary development 
environment for several projects in the biomedical domain 
and is supported by a strong community of developers and 
users. Examples of these projects include Cerner’s Clinical 
Bioinformatics Ontology, MGED Ontology, the Founda-
tional Model of Anatomy (Rosse & Mejino 2004), and veri-
fication and identification of errors and inconsistencies in 
the Gene Ontology (Yeh et al. 2003).  

Protégé is based on Java, is extensible, and provides a 
platform for customized knowledge-based applications 
(Gennari et al. 2003).  Protégé provides support for building 
Semantic Web applications through its knowledge model, 
which is based on the Open Knowledge Base Connectivity 
(OKBC) protocol (Chaudhri et al. 1998). This enables on-
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tology editors to be built for different ontology languages 
including RDF and OWL.  

2.2 Oracle Spatial RDF Data Model 
The Oracle Database is the market leading relational data-
base management system (RDBMS) in the biomedical do-
main. With Oracle Database 10g release 2 a new Oracle 
object type (SDO_RDF_TRIPLE_S) is introduced for stor-
ing RDF and OWL data (Alexander et al. 2004). This object 
type is built on top of the Oracle Spatial Network Data 
Model (NDM), which is the Oracle solution for managing 
graphs within the RDBMS (Stephens et al. 2004).  

There are many advantages to storing RDF data as an ob-
ject type, rather than in flat relational tables. Benefits in-
clude making it easier to model and maintain RDF applica-
tions, simplifying the integration of RDF data with other 
enterprise data, re-use of RDF objects, and no mapping is 
required between client RDF objects and database columns 
and tables that contain triples. 

With the Oracle RDF Data Model triples are parsed and 
stored in the database as entries in the NDM node$ and 
link$ tables. Nodes in the RDF model are uniquely stored 
and reused when encountered in incoming triples. In user-
defined application tables, only references are stored in the 
SDO_RDF_TRIPLE_S object to point to the triple stored in 
the central schema. The RDF Data Model also simplifies 
reification by utilizing an Oracle XML DB DBUri to di-
rectly reference the reified triple in the database, and 
thereby only requires one additional triple to be stored for 
each reification. 

2.3 Integration of Protégé with the Oracle Spatial 
RDF Data Model 

In preliminary performance testing the Oracle RDF Data 
Model is demonstrating comparable performance to that 
obtained with a relational-based storage implementation. It 
is therefore expected that one of the main benefits of this 
novel architecture is the ability to manage RDF applications 
more easily, and a more performant approach to data reifica-
tion. 
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Fig. 1. BioPAX Ontology in Protégé 

ACKNOWLEDGEMENTS 
We would like to acknowledge the Oracle Spatial Develop-
ment group for the implementation of the RDF Data Model.   

REFERENCES 
Alexander, N., Lopez, X., Ravada, S., Stephens, S. and Wang, J. 

(2004) RDF Data Model in Oracle. 
http://lists.w3.org/Archives/Public/public-swls-ws/2004Sep/att-
0054/W3C-RDF_Data_Model_in_Oracle.doc 

Chaudhri, V., Farquhar, A., Fikes, R. Karp, P. and Rice, J. (1998) 
OKBC:  A programmatic foundation for knowledge base inter-
operability. In: Fifteenth National Conference on Artifical Intel-
ligence (AAAI-98), 600-607. Madison, Wisconsin: AAAI 
Press/The MIT Press. 

Gennari, J., Musen, M. A, Ferguson, R. W., Grosso, W. E., 
Crubezy, M., Eriksson, H., Noy, N. F., and Tu, W. W. (2003) 
The evolution of Protégé: An environment for knowledge-based 
systems development. International Journal of Human-
Computer Interaction 58(1). 

Rosse, C., and Mejino, J. L. V. (2004) A reference ontology for 
bioinformatics: The foundational model of anatomy. J. Biomed. 
Informat.  

Stephens, S., Rung, J. and Lopez, X. (2004) Graph Data Represen-
tation in Oracle Database 10g: Case Studies in Life Sciences. 
IEEE Data Engineering Bulletin. 
http://sites.computer.org/debull/A04dec/stephens.ps 

Yeh, I. Karp, P., Noy, N. and Altman, R. (2003) Knowledge acqui-
sition, consistency checking and concurrency control for gene 
ontology (GO). Bioinformatics 19:241-248. 

 
 

 40



 

FuGO: Development of a Functional Genomics Ontology (FuGO) 
Patricia L. Whetzel1, Helen Parkinson2, Assunta-Susanna Sansone2 Chris Taylor2, and Christian 
J. Stoeckert, Jr.1*

Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA1, EMBL-European Bioinformatics Institute, Hinx-
ton, Cambridge, UK2

 
ABSTRACT 
Motivation: Data standards and object models are being 
developed for a variety of functional genomics domains.  
Many of these object models include a reference to an on-
tology concept in order to provide a rich set of terms for an-
notation.  The MGED Ontology was developed to provide 
terms to be used with the MicroArray and Gene Expression 
Object Model and has been successfully implemented in 
production annotation applications.  This work is being used 
as the foundation to develop a Functional Genomics Ontol-
ogy, intended to model additional functional genomics do-
mains such as Proteomics, Metabol/nomics Toxicogenom-
ics, Environmental Genomics and Nutrigenomics as well as 
Transcriptomics. 

1 INTRODUCTION  
The MGED Ontology (MO) was developed as a collabora-
tive effort by members of the MGED Ontology working 
group to provide descriptors required to interpret microarray 
experiments (Stoeckert and Parkinson, 2003).  The concepts 
that these descriptors represent were derived from the Mi-
croArray and Gene Expression Object Model (MAGE-OM), 
which is a framework to represent gene expression data and 
relevant annotations (Spellman et al., 2002).  The MAGE-
OM contains a mechanism to add annotations from an on-
tology by providing an association from a given class to the 
MAGE-OM class OntologyEntry.  The MO provides de-
scriptors for the concepts in the MAGE-OM that have asso-
ciations to the class OntologyEntry.  The MO also includes 
concepts from the MAGE-OM to indicate what object 
model class the terms are to be used for, but does not repli-
cate the entirety of the object model.  These policies for 
ontology development have resulted in a rich and expressive 
ontology that is fully supportive of the MAGE-OM and is 
commonly used in microarray annotation applications.   

Since the development of MO, other functional genom-
ics domains have planned to or are developing an ontology 
(Pedrioli et al., 2004).  This wider functional genomics con-
text will significantly affect the structure and content of 
ontologies.  Core biological descriptors need to be shared, as 
well as descriptors relating to the experimental design, sam-

  
* To whom correspondence should be addressed.  

ple generation and treatments, therefore requiring extensive 
liaisons between communities. The MGED Ontology Work-
ing Group 
(http://mged.sourceforge.net/ontolgies/index.php), the 
MGED Reporting Structure for Biological Investigations 
(http://www.mged.org/Workgroups/rsbi/rsbi.html), the 
HUPO Proteomics Standards Initiative 
(http://psidev.sourceforge.net/) and the Standard Metabolic 
Reporting Structure (http://www.smrsgroup.org/) working 
groups can clearly draw in large numbers of experimental-
ists and developers and feed in the domain-specific knowl-
edge of a wide range of biological and technical experts. 
This extensive collaboration aims to develop a Functional 
Genomics Ontology (FuGO) by expanding the scope of the 
MGED Ontology to model other functional genomics tech-
nologies, such as Proteomics, Metabol/nomics as well as 
Transcriptomics and biological domains, including Toxico-
genomics, Nutrigenomics and Environmental Genomics.  
The resulting ontology will provide a consistent mechanism 
for annotating functional genomics experiments that en-
compasses different technological and biological domains 
and aid in cross-comparison of data. 

2 METHOD: DESIGN PRINCIPLES 
FuGO is designed to model the functional genomics do-
main.  That is, all concepts required to model the domain 
are included in the Functional Genomics Ontology.  This is 
in contrast to the design of the MGED Ontology, which was 
developed to provide terms for object model classes in the 
MAGE-OM.  The decision to include all concepts within the 
functional genomics domain in the ontology is based on past 
experience regarding the use of the MGED Ontology.  Al-
though the goal of the MGED Ontology was to provide de-
scriptors for concepts and to be used in conjunction with the 
MAGE-OM, other applications were developed that used 
the ontology itself as a model of the microarray domain. 
Development of the Functional Genomics Ontology will be 
done in parallel with efforts to develop a functional genom-
ics object model and therefore the ontology will be designed 
to provide descriptors for concepts in these object models 
that require an ontology annotation as well.  A middle layer, 
which provides the mapping of object model classes to 
those in FuGO, will be generated to aid the use of FuGO 
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with functional genomics object models.  Therefore, FuGO 
will be designed to take into account both of these possible 
uses of the ontology. 
  

2.1 Scope of FuGO  
The current scope of FuGO is the following domains: Tran-
scriptomics, Proteomics, Nutrigenomics, Environmental 
Genomics and Toxicogenomics.  The top node classes will 
include the classes Common and Bio, which will contain 
concepts that are shared across functional genomics do-
mains.  In addition, classes to hold concepts that are specific 
to a given functional genomics domain will also be in-
cluded.   

During the re-engineering of MO to model additional 
functional genomics domains, classes that represent con-
cepts that exist in two or more functional genomics domains 
will be added as children to either Common or Bio as is 
appropriate.  Additional branches will exist in the FuGO to 
hold technology specific concepts such as Transcriptomics, 
Proteomics, Metabol/nomics and others. 
 

2.2 Ontology Development Process  
The initial development of FuGO will involve re-
engineering MO by moving classes from the MAGE-OM 
package structure into the classes Common and Bio.  In 
addition, definitions will be modified to remove references 
to the MAGE-OM.  Ontological changes will also be in-
cluded in the development of FuGO such as moving indi-
viduals to classes and using properties to define classes 
based on reasoning over the ontology. 

New concepts that are required to represent func-
tional genomics domains will be added to FuGO in branches 
for these domains.  If the functional genomics domain re-
quires a new concept that is unique to the domain, the con-
cept will be added to the domain specific branch of the on-
tology and community members that represent the domain 
will be responsible for approving the term and definition.  If 
a domain requires a term that represents an existing concept 
in Common or Bio, the term will be added as subclass to the 
appropriate class and will be marked as being specific to the 
domain using properties.  In this case, members of the do-
main will be responsible for approving the term and defini-
tion.  Lastly, if the concept can be used by two or more 
functional genomics domains, the term will be added to ei-
ther Common or Bio as appropriate and the term will be 
approved the all those involved in the ontology develop-
ment. 
 

2.3 Implementation Details 
FuGO will be developed in Protégé using the OWL plugin 
(Noy et al., 2003).  The current working version of FuGO is 
available as a downloadable OWL format file 
(http://mged.fuge.net/ontologies/FuGO.owl).  Protégé was 

selected as it is an expressive system, covering frame based 
and description logics with a variety of export formats.   
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ABSTRACT 
Motivation:  Gene Ontology (GO) has been categorized into 
biological processes, molecular functions, and cellular com-
ponents.  However, there is no single representation that 
integrates all the terms into one cohesive model.  Further-
more, GO definitions have little information explaining the 
underlying architecture that forms these terms, such as the 
dynamic and static events occurring in a process.  In con-
trast, object-oriented models have been developed to show 
dynamic and static events.  A portion of the TGF-beta signal-
ing pathway, which is involved in numerous cellular events 
including cancer, differentiation and development, was used 
to demonstrate the feasibility of integrating the Gene Ontol-
ogy into an object-oriented model. 

1 INTRODUCTION  
Three independent ontologies, molecular function, bio-

logical process, and cellular component domains, have been 
developed to describe gene products.  When applied to a 
gene, that gene is annotated with a concise description using 
these ontologies.  It has been noted that there remains a need 
for a unifying architecture that integrates all three GO do-
mains as part of a gene product’s annotation.  Furthermore, 
to enhance the Gene Ontology and facilitate its use as a 
cross-disciplinary tool, several additional issues need to be 
addressed.  First, relationships between the biological proc-
esses, molecular functions and cellular components are not 
readily apparent [1-5].  Second, GO terms lack details.  For 
instance, when one looks at molecular function there is no 
indication of what is inputted or outputted.  Finally, existing 
tools such as GO-DEV [26] only contain software used for 
tool development and information retrieval, not software 
modeled directly after the three domains of the Gene Ontol-
ogy.  However, these issues can be resolved by integrating 
the Gene Ontology into an object-oriented system.   

On a conceptual level, the Gene Ontology has features 
that support an object-oriented architecture.  For example, 
the functions of gene products are captured in the molecular 
function domain of the Gene Ontology.  These are analo-
gous to the operations that an object can perform in an ob-
ject-oriented paradigm.  Attributes, which define key prop-

  
* To whom correspondence should be addressed. zhengw@musc.edu 

erties of a component that when changed may alter the func-
tion of that component, may be defined by the cellular com-
ponent and molecular function sections.  In addition, each 
biological process terms can be viewed as a use case in an 
object-oriented model.  However, GO biological process 
terms do not contain descriptive information about the dy-
namics or static interactions defined by the terms.  By trans-
lating a biological process into an object-oriented model the 
dynamic and static events occurring within a process can be 
represented.  In addition, building a static and dynamic 
model of a biological process requires defining the compo-
nents of the process as well as the functions and attributes 
contained within these components.  These components are 
biological entities (bioentities) that may include individual 
gene products, whose processes, functions and cellular 
components are captured in the Gene Ontology, or other 
higher-level entities such as gene product complexes.  As a 
result, a complete object-oriented model can integrate three 
domains of Gene Ontology. 

The unified modeling language has been used to capture 
various aspects of biology [6-8].  These examples highlight 
the utility of the unified modeling language as a tool for 
biological data integration, and indicate that it can be ap-
plied to construct large, complex biological models.  There-
fore, to demonstrate the feasibility of integrating the Gene 
Ontology into an object-oriented model we have created 
unified modeling language (UML) representations of a GO 
biological process, “transforming growth factor beta (TGF-
beta) receptor complex assembly” (GO:0007181).  

2 RESULTS 
The TGF-beta receptor pathway is involved in numerous 

cellular events including apoptosis, tumor development, 
differentiation, and development.  These processes stem 
from the binding of TGF-beta to its cellular receptors (TGF-
beta receptor complex assembly, GO:0007181).  Object-
oriented model was constructed using a linear, sequential 
software engineering process [8]. 

2.1 Sequence diagram generation 
The GO biological process term, TGF-beta receptor com-

plex assembly (GO:0007181), contains both static and dy-
namic features.  The events of the TGF-beta receptor com-
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plex assembly (GO:0007181) process include TGF-beta 
binding (GO:0050431) to its receptors and SMAD binding 
(GO:0046332) and activation (GO:0042301).  To capture 
the dynamic nature of these actions as an object-oriented 
software system, sequence diagrams were created.  The 
events leading to Smad 2 activation are reflected chrono-
logically in a high-level sequence diagram.  The creation of 
the sequence diagram first entails identifying gene products 
and their functions by literature searches.  Simple or com-
plex bioentities are modeled as objects, which are repre-
sented by rectangles with vertical lifelines in the diagram.  
Ontology terms taken from the molecular function domain 
that best corresponded to these functions were incorporated 
as object functions, which represent the functions of these 
gene products.  These functions are implemented by the 
methods contained within the objects.  Furthermore, these 
methods allow an object to communicate and interact with 
other objects, thus capturing cellular activities.  To capture 
interactions between objects, one object can call a method 
of another object by connecting object lifelines in the se-
quence diagram.  This invocation of a function of one object 
by another is described as one object sending a message to 
another object.  Alternatively, a message may be passed 
from an object to itself as in the case of self-checks or auto-
activation signals.  In this way, real world processes may be 
captured using an object-oriented approach.  For instance, to 
capture the formation of the TGF-beta and TGF-beta RII 
complex a GOid that closely corresponds to this ability is 
chosen as the method name.  In this way the method can be 
cross-referenced to a GO term. 

2.2 Activity diagram generation 
Biological processes are created from a series of complex 

events.  While there may be one main event scenario that 
most frequently leads to a specific outcome often, alterna-
tive scenarios that lead to a process conclusion exist.  This is 
exemplified by the sequence of events found in the TGF-
beta receptor complex assembly (GO:0007181).  For in-
stance, TGF-beta may initially bind to TGF-beta RII or 
TGF-beta RIII.  To capture these alternative events as part 
of the dynamic architecture, an activity diagram was created 
to reflect the initial stages of TGF-beta signaling (Figure 3).  
Unlike the sequence diagram, which captures main scenario 
events, the action sequence or flow of the activity diagram 
can portray alternative outcomes.  Taking the example 
above, if TGF-beta binds to the type III receptor then an 
alternative flow of events occurs for a time that then returns 
to the main flow of events.  Other possible divergences that 
were modeled included whether to internalize the TGF-beta 
receptors via clathrin-dependent or lipid raft-dependent 
mechanisms.  These pathways lead to either complex degra-
dation or signal promotion.  Because complex degradation is 
not specified in our use case, for simplicity, this event is 
routed to the final state.  However, the main success sce-

nario, signal promotion, continues until SMAD2 is released 
and TGF-beta complex assembly is finished.  Together, the 
dynamic events occurring during the biological process, 
TGF-beta receptor complex assembly (GO:0007181) are 
captured 

2.3 Class diagram generation 
The major components of a biological system are bioenti-

ties with functions and interactions.  Likewise, the center of 
an object-oriented software system is objects.  Complex 
bioentities formed from multiple gene products along with 
their relationships, are contained within the biological sys-
tem encompassing the biological process term, TGF-beta 
receptor complex assembly (GO:0007181).  To represent 
the components that execute the process, we captured these 
components as bioentities with functions, and their interac-
tions.  The events of the TGF-beta receptor complex assem-
bly (GO:0007181) process include TGF-beta binding 
(GO:0050431) to its receptors, and SMAD binding 
(GO:0046332) and activation (GO:0042301).  To capture 
this static architecture, class diagrams were generated that 
model the bioentities, operations, and interrelationships that 
occur between TGF-beta, its receptors, and Smad 2. 
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