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Abstract
Healthcare services become increasingly technology dependent every passing day such as the Internet of Things (IoT),
Fog Computing, 5th generation (5G) and beyond communications, etc. They enable the processing and exchange of huge
volumes of healthcare data whose integrity and real-time delivery are critical for healthcare services. Optimal power
consumption in such essential healthcare infrastructure is critical for the well-being of patients and crucial to reduce the
operational cost of healthcare facilities. In this paper, a Fog node has been introduced in an IoT healthcare infrastructure with
power consumption as a key deciding factor. This work proposed a mathematical formulation to decide the deployment of
two heterogeneous gateways in the healthcare infrastructure. The target of optimization is to minimize transmission power
and infrastructure costs. Two swarm intelligence-based algorithms have been used to solve the computationally challenging
optimization problem. These evolutionary algorithms are a discrete fireworks algorithm and a discrete artificial bee colony
algorithm with an ensemble of local search methods. Their performance is compared against the genetic algorithm. The
simulation results demonstrate a saving of up to 33 percent in power consumption in the proposed healthcare infrastructure
that can significantly improve healthcare data communications and its operational costs.

Keywords Fog node · IoT network · Integer programming · Gateway placement · Optimization · Minimize power

1 Introduction

Rapid progress in information technology is being leveraged
by businesses and industries to digitize their operations,
products and services. Healthcare operations and services
are also benefiting from this rapid change [1]. Healthcare
information systems enable demographic identities, clinical
operations such as appointments, admissions and discharge,
and medical professional services such as diagnostics, pro-
cedures, pharmacy, and vaccinations. They provide critical
real-time support to providers for managing chronic dis-
eases such as diabetes and cancer and pandemics like
COVID-19 [2, 3]. The primary goal of effective healthcare
is the correct diagnosis, timely monitoring and management
of disease stages (prognosis), and prevention of diseases.
Good medical care, whether during hospitalization or at
home, rely on tracking several physiological indicators, for
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instance, heart rate, blood sugar, blood calcium, height, and
weight among several others. Timely access to numerous
indicators and data from multiple sources helps health-
care professionals understand and manage their patient’s
health with precision. Healthcare data is typically transmit-
ted to cloud servers from local healthcare infrastructures
for processing and storage. Healthcare staff can access and
use the data in the cloud simply by using a good inter-
net connection. Cloud computing appears to be a reliable
data processing backbone that can be used for healthcare
information infrastructure [4–6]. Indeed, it offers impres-
sive computing and storage power [4, 6, 7]. However,
cloud computing is not yet a reliable solution for crit-
ical and real-time applications in the healthcare system
because of its inherent limitations of the network archi-
tecture such as dependency, bandwidth and unpredictable
response time [8–12]. Recently, encryption and Blockchain-
based methods are proposed to enhance the security and
reliability in healthcare systems [13, 14]. Optimization
issues and appropriate site selection is common real-world
problems [15, 16].

On one hand, traditional centralized cloud infrastructure
is facing significant power/energy consumption and virtual
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machine (VM) migration issues [17, 18]. On the other hand,
it is also not a trustworthy solution for real-time health-
care applications with a poor response time [19–21]. The
fog computing paradigm can overcome such shortcomings
in traditional clouds and provide quality services at criti-
cal physical locations (such as the edge) of the network.
Including a fog node in cloud computing infrastructure is
an extension of distributed computing which constitutes
a backbone of most modern critical information process-
ing and exchange activities like in healthcare services. Fog
cloud is a local cloud computing infrastructure which is
made up of partially delegated - otherwise traditional -
cloud responsibilities at local facilities with an intention
to satisfy the critical demands in healthcare [4, 22, 23].
Healthcare data is not only abundant in volume but also
diverse in modalities which opens up new avenues for exist-
ing and upcoming technologies to be leveraged such as
Big Data, Fog computing, Edge computing, 5th Genera-
tion and beyond communication, and the Internet of Things
(IoT) [5, 24], etc. These technologies offer a range of func-
tionalities such as larger computing power, storage, and
communication capacities to peripheral devices to improve
the quality of service in a real network environment. Thus,
Fog computing lends itself better to latency-sensitive or
real-time applications [25] such as healthcare. In addition,
fog computing uses intermediate nodes such as gateways
to provide services with short latency and response time,
and efficient energy consumption [6, 26, 27]. Recent stud-
ies show that the most difficult constraints to take into
account in medical applications are response time and
latency in energy/power optimization problems [28, 29].
Therefore, Fog computing-enabled infrastructure has the
potential to perform delay-sensitive computing with
reduced power consumption and improvements in traffic
congestion [20, 27, 30].

The limited life of the battery is a significant problem
that IoT nodes may suffer during communication. At the
same time, the exhaustion of the battery of an IoT/sensor
in healthcare can lead to loss of data with serious
consequences for the patient. To this end, extending the
battery life of these IoT nodes can be considered an
important priority in IoT networks applied to healthcare.
In this paper, a Fog node is introduced in the Internet of
Things healthcare (IoH) infrastructure to automate several
critical healthcare services. The data traffic generated in
the power-aware IoH can be routed directly to installed
gateways or indirectly through access points (AP) as shown
in Fig. 1. The IoH network is composed of three nodes:
(1) IoH traffic as virtual machines (VMs), (2) gateways
with reduced computing resources (GR), and (3) gateways
with extended computing resources (GE). The goal of
introducing gateways with different computing resources is
to: (1) plan different sizes of network clusters, (2) minimize
power consumption, and (3) minimize the hardware cost.

1.1 Contributions

This paper proposes a power-aware fog-supported mathe-
matical formulation for IoH. The optimization problem is
formulated as an integer programming problem for health-
care applications and it has been solved using two swarm
intelligence-based algorithms. The main contributions of
this paper are as follows:

1. Mathematical formulation with binary decision vari-
ables.

2. Encoding binary representation to non-binary integer
representation.

3. The ”insert”, ”swap”, and ”interchange” local search
methods are used for experimenting with the Discrete

Fig. 1 Fog-supported IoT-enabled healthcare infrastructure
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fireworks algorithm (DFWA) and Discrete artificial bee
colony (ABC).

4. A repair algorithm is used to fix the out-of-bounds
candidate solutions.

5. Statistical test is used to analyze the performance of the
algorithms.

The remaining part of the article is organized as follows:
related work is presented in Section 2, and a system model
and a mathematical formulation are presented in Section 3.
Brief descriptions of swarm intelligence-based algorithms
and encoding for the formulated problem to operate
with swarm intelligence-based algorithms are presented
in Section 4. Section 5 will present a discussion of the
experiment and its results. Last Section 6 is the conclusion
of this work.

2 Related work

Multiple dimensions of power/energy consumption in IoT
networks are the significant focus of recent research. In [31],
an architecture with Bluetooth Low Energy (BLE), for IoT
networks, is proposed by using ultra-low power and hybrid
topology. The IoT network operation with BLE intends to
avoid power wastage in real-time communication. While
[32] investigates a dynamic model for the energy demands
of exponentially growing IoT networks that enables the
efficient management of power resources in a sustainable
energy ecosystem. Two user-scheduling algorithms were
adopted: (1) minimum distance scheduling (MDS), and
(2) maximum channel gain scheduling (MCS). Improved
network efficiency is observed when these algorithms were
used alongside a power optimization. For a similar goal, a
power control strategy is investigated for a Massive MIMO-
enabled IoT system in [33]. The objective is to increase
total throughput and better-differentiated levels of service
in IoT networks. A closed-form SINR of Massive MIMO
was used with the Lagrange multiplier to find the optimum
power control coefficients for several scenarios. Authors

in [34] investigate integrating re-configurable intelligent
surface (RIS) on minimizing the average sum age of
information (AoI) in uplink non-orthogonal multiple access-
based IoT networks. An optimization problem is formulated
to optimize the RIS configuration, the transmit power per
IoT device and the clustering policy of IoT devices. The
formulated problem is a mixed-integer non-convex problem,
which is solved by adopting a semi-definite relaxation
(SDR) approach with better results.

The digital healthcare system is deploying data-intensive
applications (machine learning) for the prediction of the
health status of patients where usually IoTs are the main
source of real-time data [35]. Emerging IoT applications
commonly face energy and power-related challenges in path
discovery [36] and cluster formation [37], but healthcare
is one of the areas where accurate and real-time results
remain the key factors and no compromises can be made.
Therefore, the fog computing paradigm has been adopted
for real-time, reliable, and efficient results. Optimizing
power in IoT networks in healthcare can be implemented
by efficiently positioning fog devices in order to have
minimum latencies and reasonable response times [4, 22,
26, 38]. It can therefore result in faster communication,
allowing adequate and timely actions to relieve patients in
critical conditions. Indeed, one of the crucial challenges in
IoT networks applied to healthcare lies in improving power
consumption. Specifically, reducing power consumption
is crucial in the case of IoTs/sensors, the number of
which continues to skyrocket in the context of patient
monitoring [6, 20, 27, 39].

Table 1 shows existing literature to minimize both
infrastructure cost and power in IoT networks. In [40, 41],
power is minimized while planning service placement on
various gateways in IoT networks. However, infrastructure,
coverage and capacity are not the objectives of the
optimization in [40, 41]. In [42, 43], infrastructure cost
and power are being optimized while planning capacity and
coverage of IoT network during gateway deployment on
candidate sites. A significant research gap is noted despite
some similarities with the proposed power-aware IoH

Table 1 Optimizing power in IoT network

Ref. no. Problem and objective Hardware planning Coverage and capacity Mathematical formulation Algorithms

[40] Finding service locations and Data

optimizing energy. algorithm.

[41] Finding service locations and optimizing Heuristic

energy with response time. algorithm.

[42] Minimizing hardware or gateway and Heuristic

power costs. algorithm.

[43] Gateway placement and minimizing Fuzzy C means

hardware with capital costs. with Heuristic.
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scheme. For example, the proposed IoH network scheme
considers heterogeneous gateway placement in healthcare
while homogeneous gateway placement is considered
in [42, 43].

In the proposed mathematical scheme, GE and RE are
two different gateways in terms of their computing capa-
bility and appropriate locations for these nodes are chosen
by the decision variables. In addition, transmission power is
also a decision variable among communication nodes. The
proposed optimization scheme can be distinguished from
the existing closely related work as follows: (1) power-
aware healthcare infrastructure, (2) appropriate locations for
heterogeneous gateways, and (3) mathematical framework.
The only disadvantage of this work is that power consump-
tion may not be explicitly considered a big issue for a
small-scale healthcare infrastructure.

3 Systemmodel andmathematical
formulation

3.1 Systemmodel

The power-aware Fog-supported IoT network in Healthcare
(IoH) comprises three communicating nodes including two
gateways as in Fig. 2: gateways with extended computing
resource (GE), gateways with reduced computing resource
(GR), and virtual machines (VMs). Any data traffic
either from IoHs or from Wi-Fi access points (APs) is
considered a VM. GE and GR nodes make up the fog
layer for the IoH network as shown in Fig. 2. This
network model considers a specific topology where GEs are
intended to cater capacity if links are established among
VMs-GR-GE and alternatively cater coverage if multi-
hop links are established among VMs-GR-GR-GE. In this
network model, GR can relay data to another GR and has

Fig. 2 System model workflow

comparatively less computing power when compared to GE.
An IoH can be connected to GE/GR nodes either directly
or via a Wi-Fi access point (AP). However, two GRs can be
connected to each other assuming that no two IoHs, APs and
GEs are connected to each other. This work assumes that
GEs are main-powered while GRs are either main-powered
or battery-powered [13, 14].

The total cost of the Power-aware Fog-supported IoH
includes the cost of the site, the cost of the hardware
installations, transmission power, etc. The overall objec-
tive is to minimize the total cost of the network, which
is the weighted sum of the infrastructure (i.e., con-
struction, rent, installation, etc.) cost and transmission
power (among connecting nodes). The proposed planning
scheme also considers the capacities of the GEs, GRs, and
wireless links (or channel capacities). The energy model
used to evaluate the total cost of the Power-aware Fog-
supported IoH network and the used parameters are similar
to the one in [44]. Indeed, the transmission power of each
node is calculated based on a path-loss model given by the
formula:

PT X = PRX ×
(
4π

λ
× d

)2

(1)

where PT X, PRX, λ and d in Eq. 1 represent the trans-
mission power, the reception power, the wavelength and
the distance between the transmitter and the receiver
respectively. The parameters used in our simulation are
specified by the IEEE 802.11ac standard [45]. The
power is sued as a function of path loss to cater to
the heterogeneous and Multiple Radio Access Technol-
ogy (multi-RAT) characteristics of the 5G and beyond
wireless networks.

3.2 Mathematical formulation

Table 2 shows the list of notations and definitions of the
symbols used in the planned IoH network. The objectives of
the optimization and associated constraints for the power-
aware IoT enables Fog-supported infrastructure planning
are as follows:

3.2.1 Cost function

In the proposed optimization scheme for healthcare
contexts, the objective function is divided into two parts:
1st part defines the hardware cost, and this will include
the deployment cost of gateways with extended computing
resources (GEs), and gateways with reduced computing
resources (GRs), or any other hardware related costs. Binary
decision variables sG

g ∈ {0, 1} and sH
h ∈ {0, 1} are used to

find optimal sites for GEs and GRs, respectively. The cG
g
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Table 2 Terminologies and notations for Power-aware IoH network

Symbol Definition

G is a set to denote candidate sites for gateways with extended computing resource (GE).

H is a set to denote candidate sites for gateways with reduced computing resource (GR).

Q is a set to denote virtual machines (VMs) that represents the data traffic transmitted

G or H. The data traffic transmitted to G or H either come from Healthcare Internet

of Things (IoH) or from Wi-Fi access points (APs).

(g, h) represents the index connecting a wireless link between a candidate site g in G and a site h in H .

(g, q) represents the index connecting a wireless link between a candidate site g in G and a VMs q in Q

(h, q) represents the index connecting a wireless link between a candidate site h in H and a VMs q in Q.

(h, h′) represents the index connecting a wireless link between a site h in H and another site h′ in H , where

h �= h′, and h, h′ ∈ H . Both h and h′ communicate in a parent-child mode respectively. Also, h �= h′

means that at any given time no site h in H is connected to itself.

cW
w and denote FCPGs and RCPGs costs at the FCPG site w

cS
s and RCPG site s, respectively.

pGH
g,h , pGQ

g,q , are representing transmission power of wirelessly connecting links that are associated

p
HQ
h,q , and with each wireless connection link (g, h), (g, q), (h, q), and

pHH
h,h′ (h, h′) respectively, where h, h′ ∈ H and h �= h′.

mGH
g,h , m

GQ
g,q , are representing the channel capacity (as information flow) associated with each of the wirelessly

m
HQ
h,q , and connecting links (g, h), (g, q), (h, q), and (h, h′) respectively, where h, h′ ∈ H and h �= h′.

mHH
h,h′ The channel capacity may be +inf if the capacity on the wireless link is considered unlimited.

u
Q
q is representing data demand of virtual machines (VMs).

cG
g and cH

h represent GE and GR costs at the GE site g and GR site h, respectively.

c1 and denotes bits per second highest capacity for each of the installed gateways with extended

c2 computing resource (GE) and reduced computing resource (GR) respectively.

φ1 and φ2 are parameters for the weighted sum of two parts of the target function.

sG
g and are binary variables that decide if a gateway GE is installed on GE site g, whether a GR

sH
h is installed on GR site h, respectively.

xGH
g,h , xGQ

g,q , are representing transmission power of wirelessly connecting links that are associated with

x
HQ
h,q , and with each wireless connection link (g, h), (g, q), (h, q), and

xHH
h,h′ (h, h′) respectively, where h, h′ ∈ H and h �= h′.

and cH
h represent the cost for the GEs and GRs respectively.

The ϒ1 cost mathematically can be represented as:

ϒ1 =
∑
g∈G

sG
g .cG

g +
∑
g∈G

∑
h∈H

sH
h .cH

h (2)

The second part minimizes power consumption in the net-
work operation. Operational cost is represented by the
transmission power of the wireless links among candi-
date locations, wherever gateways with extended comput-
ing resources (GE) and gateways with reduced computing
resources (GR) are installed. The variables xGH

g,h , x
GQ
g,q ,

x
HQ
h,q , xHH

h,h′ ∈ {0, 1} are finding optimal wireless connec-
tions (as transmission power) within links (g, h), (g, q),
(h, q) and (h, h′), respectively. The following mathemati-

cal expression ϒ2 represents the operational power of the
network:

ϒ2 =
∑
g∈G

∑
h∈H

pGH
g,h .xGH

g,h +
∑
g∈G

∑
q∈Q

pGQ
g,q .x

GQ
g,q

+
∑
h∈H

∑
q∈Q

p
HQ
h,q .xHQ

h,q +
∑
h∈H

∑
h′∈H

pHH
h,h′ .xHH

h,h′ (3)

The proposed objective function is a power-aware Fog-
supported IoT network plan which minimizes the overall
cost of the network. The objective function is optimizing
over the decision variables xGH

g,h , x
GQ
g,q , x

HQ
h,q , xHH

h,h′ ∈ {0, 1},
where φ1 and φ2 are used as a weighted sum parameter to
represent hardware and power costs separately. Finally, the
objective function will be a weighted sum of the Eqs. 2 and
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3 for the proposed IoH network plan. The objective function
can be written as:

minimize

sG
g , sH

h φ1 × (ϒ1) + φ2 × (ϒ2)

xGH
g,h , x

GQ
g,q , x

HQ
h,q , xHH

h,h′

(4)

For GE and GR gateways, the variables sG
g , sH

h ∈
{0, 1} are assigned the value ’1’ in case any of the GE
and GR is installed on their associated candidate sites,
but ’0’ otherwise. The corresponding infrastructure costs
are included in the first part of the Eq. 4 as explicitly
expressed in Eq. 2. On the other hand, the variables
xGH
g,h , x

GQ
g,q , x

HQ
h,q , xHH

h,h′ ∈ {0, 1} will be assigned a value
’1’ if connections among links (g, h), (g, q), (h, q) and
(h, h′) are established, and the same is ’0’ otherwise. The
corresponding operational (power) cost is included in the
second part of the Eq. 4 as explicitly expressed in Eq. 3.

Minimizing the objective function as Eq. 4 subject to the
following constraints:

3.2.2 Topology constraints

The following mathematical expressions represent the
topology of the proposed IoH network.∑
g∈G

xGH
g,H ≤ sH

h , ∀h ∈ H (5)

xHH
h,h′ ≤ sH

h + sH
h′ )

2
, ∀h, h′ ∈ H, h �= h′ (6)

∑
h∈H

xHH
h,h′ ≤ 1, ∀h, h′ ∈ H, h �= h′ (7)

x
HQ
h,q ≤ sH

h , ∀h ∈ H, ∀q ∈ Q (8)

xGH
g,h ≤ sG

g , ∀g ∈ G, ∀h ∈ H (9)

xGQ
g,q ≤ sG

g , ∀g ∈ G, ∀q ∈ Q (10)

∑
g∈G

xGQ
g,q +

∑
h∈H

x
HQ
h,q = 1, ∀q ∈ Q (11)

Equation 5 confirms that each GR must have a wireless
connection to only one GE, and Eq. 6 declares that two GRs
may establish a wireless connection. These two constraints
indicate that the installed GRs and GEs are in operation.
Equation 7 makes sure that any installed GR may establish
a link to an installed GR only. Equation 8 ensures that a
VM can establish a link to the installed GR only. Similarly,
Eqs. 9 and 10 ensure that both VM and GR cannot establish
a link to a non-deployed GE. Equation 11 requires that every
VM in the system should not establish a link to any of the
non-deployed GEs or GRs, but also any VM should not link
to a GR and a GE together.

3.2.3 Flow constraints

The mGH
g,h , m

GQ
g,q , m

HQ
h,q and mHH

h,h′ are the parameters for
maximum link (or channel) capacities on links (g, h),
(g, q), (h, q) and (h, h′) respectively. The information flow
f GH

g,h , f
GQ
g,q , f

HQ
h,q , and f HH

h,h′ are representing the flow of
data for the respective wireless connection. Current data
flow must be less or equal to the respective maximum
capacity of the wireless connection that is denoted as mGH

g,h ,

m
GQ
g,q , m

HQ
h,q and mHH

h,h′ . The flow f
GQ
g,q as a function of

decision variable x
GQ
g,q ∈ {0, 1} is defined as:

f GQ
g,q

(
xGQ
g,q

)
=

{
0 if x

GQ
g,q = 0

u
Q
q if x

GQ
g,q = 1

The data flow value f
GQ
g,q for any established wireless

connection between GE and VM (i.e.,xGQ
g,q =1) must be

less or equal to the respective maximum capacity m
GQ
g,q as

in Eq. 12:

f GQ
g,q

(
xGQ
g,q

)
≤ mGQ

g,q , ∀g ∈ G, ∀q ∈ Q (12)

The flow f
HQ
h,q as a function of decision variable x

HQ
h,q ∈

{0, 1} is defined as:

f
HQ
h,q

(
x

HQ
h,q

)
=

{
0 if x

HQ
h,q = 0

u
Q
q if x

HQ
h,q = 1

The data flow value f
HQ
h,q for any established wireless

connection between GR and VM (i.e., x
HQ
h,q =1) must be

less or equal to the respective maximum capacity m
HQ
h,q as

in Eq. 13:

f
HQ
h,q

(
x

HQ
h,q

)
≤ m

HQ
h,q , ∀h ∈ H, ∀q ∈ Q (13)

The flow f HH
h,h′ as a function of decision variable xHH

h,h′ ,
x

HQ
h′,q ∈ {0, 1} where h �= h′, and h (i.e., h=i+j ) index

denotes the parent GR that is connected via wireless link
directly to a GE and h’ (i.e., h′=i+j+1) denotes the child GR
that is connected via wireless link to the GR s as follows:

f HH
h,h′

(
xHH
h,h′ , x

HQ
h,q

)
=

{ ∑
h′∈H

∑
q∈Q u

Q
q .xHQ

h,q if xHH
h,h′ =1

0 if xHH
h,h′ =0

The data flow value f HH
h,h′ for any established wireless

connection between a GR h and a GR h′ (i.e., xHH
h,h′ =1) must

be less or equal to respective maximum capacity mHH
h,h′ as

in Eq. 14:

f HH
h,h′

(
xHH
h,h′ , x

HQ
h,q

)
≤ mHH

h,h′ , ∀h, h′ ∈ H, h �= h′ (14)
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The flow f GH
g,h as a function of decision variables xGH

g,h ,

x
HQ
h,q , and xHH

h,h′ ∈ {0, 1} is defined as follows:

f GH
g,h

(
xGH
g,h , xHH

h,h′ , x
HQ
h,q

)

=
{ ∑

q∈Q u
Q
q .xHQ

h,q + f HH
h,h′

(
xHH
h,h′ , x

HQ
h,q

)
if xGH

g,h = 1

0 if xGH
g,h = 0

The data flow value f GH
g,h for any established wireless

connection between a GE and a GR (i.e., xGH
g,h =1) must be

less or equal to maximum capacity mGH
g,h as in Eq. 15:

f GH
g,h

(
xGH
g,h , xHH

h,h′ , x
HQ
h,q

)
≤ mGH

g,h , ∀h, h′ ∈ H, h �= h′

(15)

3.2.4 Load constraints

∑
h∈H

f GH
g,h

(
xGH
g,h , xHH

h,h′ , x
HQ
h,q

)

+
∑
q∈Q

f GQ
g,q

(
xGQ
g,q

)
≤ c1, ∀g ∈ G (16)

∑
q∈Q

f
HQ
h,q

(
x

HQ
h,q

)
+ f

HQ

h,h′
(
xHH
h,h′ , x

HQ
h,q

)

≤ c2, ∀h ∈ H, h �= h′ (17)

∑
g∈G

f GH
g,h

(
xGH
g,h , xHH

h,h′ , x
HQ
h,q

)
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Constraints in Eqs. 16 and 17 maintain that information
(or channel) capacities on each installed GE and GR must
be less than the maximum channel capacities c1 and c2.
Flow conservation is an important network property which
states that information flow going into a network node must
come out of it without loss or modification of information.
Equation 18 defines information flow conservation for every
installed GR. Finally, Eq. 19 demonstrates that every VM in
a system must have enough capacity for information flow
from GE/GR.

4 Swarm intelligence-based
evolutionary algorithms

Swarm intelligence (SI) is a popular and effective com-
puting technique applied in many research fields. Swarm
intelligence has the ability to mimic the collective behaviour
of groups such as bees, birds, fish, ants, etc. Here word
”swarm” refers to any restrained collection of interacting
agents such as a swarm of bees in a colony around their
hive, a swarm of ants and their collective (and coordinated)
activities to collect and store food and so on. The swarm-
based metaphor can be extended to other such behaviours
in swarming species like bio-geography-based optimization
(BBO) [46], or swarming objects like fireworks algorithm
(FWA) and particle swarm optimization (PSO) [48, 49],
quantum-inspired, etc.

The fireworks algorithm (FWA) and the artificial
bee colony (ABC) algorithm are SI-based evolutionary
algorithms (EAs) in which a population of simple agents
act, communicate, exploit, and explore interactively and
collectively [37, 47, 49]. An agent in an SI EA can
communicate with other agents directly or indirectly using
their local environment. The target problem formulated in
Section 2 is a discrete (binary) combinatorial optimization
problem and algorithms that are intended to use can operate
only on non-binary combinatorial optimization problems
[12, 49]. Therefore, the target optimization problem is
encoded in non-binary integer space.

4.1 Encoding the problem for non-binary discrete
evolutionary algorithms

Three nodes in the proposed power-aware fog-supported
healthcare Internet of Things (IoH) network are denoted
by the sets: (1) candidate sites G as the gateways with
extended computing resource (GE), (2) candidate sites H
as the gateways with reduced computing resource (GR),
and (3) Q as the virtual machines (VMs) that represent
the data traffic transmitted to the nodes included in G or
H. As the proposed IoH network plan is based on integer
programming, a solution can be represented as a finite
vector of positive integers:

Y = (υ1, υ2, . . . , υ|Q|, �1, �2, . . . , �|H |) (20)

where |Q| and |H | are the cardinalities of sets Q and H in
Eq. 20. In Y , υq denotes the qth VM established a wireless
link to some GE g or GR h. The �h in Y denotes the hth

GR that established a wireless link to some GE g or GR
q′, where q �= q′, and �h is zero when hth GR is not
installed on the associated GR candidate site. In Y , each
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IoH and an installed GR can be wirelessly connected to
any one of the GEs or GRs, which is the reason the current
representation of Y , as in Eq. 20, is in consecutive order of
positive integers.

The candidate solution Y = (υ1, υ2, . . . , υ|Q|, �1, �2,

. . . , �|H |) is used for the implementation of the power-
aware fog supported IoH network plan. In Y , integer vari-
able υq q = 1, 2, . . . , |Q|, take a value in a set N=
{1, 2, . . . , |G| , |G| + 1, . . . , |G| + |H |}, where element
1, 2, . . . , |G| represents the GE candidate sites and |G|+1,
. . . , |G| + |H | represents the GR candidate sites. Integer
variable υq indicates VM q established a wireless con-
nection to GE or GR candidate site. υq=i, if i < |G|,
indicates that VM q is established a wireless connection
to GE candidate site i and now a gateway is installed
on the candidate site GE i. υq=i if i > |G| indicates
that a VM q is established a wireless connection to GR
candidate site i − |G| and GR is installed at the candi-
date site i − |G|. Integer variable �h takes a value in
N ′={0, 1, 2, . . . , |G|, |G| + 1, . . . , |G| + |H |}. Here, �h=0
implies that a GR is not installed in the GR candidate site h.
Moreover, �h=0 also implies that the GR is not connected
to both VMs and (or) a GE. Both the υq and �h are the vari-
ables to decide the installation of a GE at the candidate site
g. Encoding the decision variables implicitly enforces some
constraints of the planning problem, reducing the number
of constraint checks during computer implementation. For
example, no need to explicitly verify constraint in Eq. 11
which states that every VM in the system should not estab-
lish a link to any of the non-deployed GEs or GRs when the
decision variables are encoded as in Eq. 20.

4.2 Proposed scheme

More than one local search method can be used to improve
the computational capability of the swarm intelligence-
based algorithms. An ensemble of three local search
methods is being used to solve the fog-supported healthcare
Internet of Things (IoH) network by incorporating in
discrete fireworks algorithm (DFWA) and discrete artificial
bee colony (DABC) that are taken from [12, 49]. Genetic
algorithm [50, 51] is used as a benchmark to compare
against DFWA-3-LS and DABC-3-LS algorithms. The
defined candidate solutions, as in Eq. 20, can violate
constraints, as defined in Eqs. 5 to 19, due to probabilistic
perturbation during the operation of DFWA-3-LS and
DABC-3-LS, and Genetic algorithms. A heuristic repair
algorithm (HRA) is used to repair candidate solutions for all
the experimented algorithms, as defined in Eq. 20, and the
HRA is taken from [12]. The readers are redirected to [47]
for a detailed discussion on local search methods.

4.2.1 DFWA-3-LS

Algorithm 1 is the pseudo-code for the DFWA-3-LS.
Parameters are initialized, and a population of N fireworks
(i.e., candidate solutions) is randomly generated. After
computing the cost of the N fireworks using Eqs. 4 to 19,
the number of sparks, spi , and the explosion radius, Hi , are
computed using Eq. 20 for each of i = 1, 2, ..., N). The
DFWA-3-LS uses any of the local-search methods insert ,
interchange, and swap—to perturb multiple firework
components. This perturbation process exploits the existing
small region (around a firework) and conducts a thorough
search in a small region to generate sparks. Sparks generated
from N fireworks are evaluated using the cost function
Eq. 4.

Now, the DFWA-3-LS selects a set Z of fireworks to be
mutated from the N fireworks to execute the exploration
process. For each firework, Y i ∈ Z, the mutation
operator Eq. 11 is used to generate mutation sparks with
a user-determined mutP rob probability. After executing
the exploration process on the |Z| fireworks, the mutation
sparks are evaluated using the cost function Eq. 4. After
performing exploitation and exploration for one algorithm
generation, the DFWA-3-LS selects a new population of N

fireworks. First, the solution with the minimum cost value is
selected, then (N −1) fireworks are selected randomly from
the remaining candidate solutions for the next algorithm
generation [12].

5 Results and discussion

Table 3 defines the problem-specific parameters and Table 4
shows the algorithm-specific parameters for power-aware
fog-supported Intent of Things in healthcare (IoH). The
problem configuration and input/parameter are selected
randomly. The problem formulation for the IoH problem
was presented in Section 3. There are three inputs to the
IoH problem: (1) the number of virtual machines (VMs),
(2) gateways with extended computing resources (GE), and
(3) gateways with reduced computing resources (GR). Here,
VMs represent corresponding data traffic from IoHs and
are transmitted directly or indirectly to any of the gateways
directly or indirectly via access points. To ensure unbiased
comparison, each experimented algorithm is terminated
with the number of objective function evaluations as defined
in Eq. 4. We choose performance metrics based on the
objective function of the problem. This experiment defines
the number of configurations as the physical assembly of
IoH, and GE, GR gateways. Further, the arrangement is
a form or combination with a certain path loss among
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Table 3 List of problem instances

Problem Number of function
evaluations

Number of physical
setting of VMs

Number of VMs per
physical setting

Number of physical
locations for GRs

Number of physical
locations for GEs

1 2500 2 30 08 06

2 30 08 08

1 30 06 04

Total 5 150 22 18

2 4000 3 60 16 06

1 60 12 06

1 60 20 08

Total 5 300 48 20

3 6000 1 120 14 10

3 120 16 10

1 120 18 10

Total 5 600 48 30

4 8000 2 130 18 12

2 140 18 12

2 150 36 24

Total 6 840 72 48

5 5000 2 100 36 18

2 100 26 20

1 100 22 10

Total 5 500 84 40

6 10000 3 180 30 16

1 180 40 14

1 180 36 18

Total 5 900 106 48

7 16000 1 200 36 20

2 250 40 22

Total 3 700 76 42

8 18000 3 210 100 60

2 230 120 80

Total 5 1090 220 140

grouped/clustered nodes. Each configuration is simulated
separately due to high computational requirements, and
aggregated result of all configurations is presented against
a problem. The computer used for the simulation has the
following configuration - Software: MATLAB 2019, RAM:
32 GB, Processor i7 Series. The VMs traffic was randomly
generated as a real vector in the interval [0.01 4.0]. The
hardware cost for each deployed GE candidate site (CS) and
GR CS is set as GE = 50 and GR = 10. Algorithm-specific
parameters for the experimented algorithm are taken from
[12]. A repair algorithm in [12] is used to fix the out-of-
bounds candidate solutions.

In this paper, three local search methods are used for the
discrete fireworks (DFWA-3-LS) and discrete artificial bee
colony (DABC-3-LS) algorithms and the performance of
these algorithms is compared against a genetic algorithm.

Table 4 Algorithm specific parameters

Algorithms Algorithm parameters

GA Mutation Prob. = 0.01,

Probability of crossover = 0.9,

Probability of selection = 0.5.

Pop. size = 100

DABC-3-LS Pop. size = 100

Limit trial γ = 1.2 × Pop. size

DFWA-3-LS Si × LS methods are applied on

each firework, Pop. of fireworks: 10

no. of mutation fireworks = 5,

Maximum no. of sparks = 40,

Minimum no. of sparks = 2
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Algorithm 1 DFWA-3-LS pseudo code for IoH network planning.

In this work, performance measures are average cost: first
both hardware, installation, and maintenance as defined
in Eq. 2, second average transmission power consump-
tion among all communication nodes as defined in Eq. 3,
whereas average transmission power consumption among
all communication nodes as mathematically in Eq. 3, third
standard deviation, and fourth Average CPU time in sec-
onds. The system’s average cost of the power-aware fog-
supported IoT healthcare (IoH) is plotted for the exper-
imented algorithms in Fig. 3a. Note that the system’s
average cost includes both hardware infrastructure cost
and the cost of power transmission among the commu-
nicating nodes. The algorithm DFWA-3-LS outperformed

Fig. 3 Costs comparisons for experimented algorithms

833Mobile Networks and Applications  (2023) 28:824–838

1 3



Fig. 4 Standard deviation comparisons for experimented algorithms

the DABC-3-LS, and the genetic algorithm in terms of
average cost. On the other hand, the DABC-3-LS algo-
rithm performs better in terms of average cost against the
genetic algorithm, as shown in Fig. 3a. In Fig. 3b system’s
transmission power (dBm) has been plotted for the exper-
imented algorithms. The DFWA-3-LS algorithm outper-
forms DABC-3-LS and GA in terms of transmission power
(dBm). However, the genetic algorithm is way behind both
the experimented algorithms in terms of minimizing both
the average cost and operational cost (transmission power
(dBm). The average cost standard deviation (STD) for the
DFWA-3-LS algorithm is larger than the STD of the DABC-
3-LS and genetic algorithm for most of the problems as

Fig. 5 Average CPU time (sec.) for experimented algorithms

listed in Table 3. This indicates in Fig. 4a that the DFWA-
3-LS has a better search mechanism for the target problem.
However, the STD of the DABC-3-LS algorithm for average
power (dBm) consumption is relatively small than the stan-
dard deviation of the DFWA-3-LS, and GA for most of the
problems as listed in Table 3. This indicates in Fig 4b that
the DABC-3-LS doesn’t have a better search mechanism
for the target problem. Figure 6 shows that the DFWA-3-
LS algorithm saves more transmission power (dBm) when

Fig. 6 Percentage of DFWA-3-LS’s avg. power (dBm) saved against
experimented algorithms
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Table 5 t-Test for experimented problem instances

Problem Number p-value for
DFWA-3-LS vs.
DABC-3-LSM

p-value for
DFWA-3-LS vs.
GA

1 1.580517e-92 1.050522e-135

2 3.141922e-03 1.273667e-60

3 2.337438e-45 2.799863e-43

4 1.042809e-52 2.657625e-57

5 1.124081e-15 1.737351e-58

6 8.447759e-40 4.532445e-62

7 3.439810e-49 5.354576e-59

8 4.050356e-62 1.309904e-81

Fig. 7 Boxplots graphically demonstrate performance of DFWA-3-LS, DABC-3-LS, and GA algorithms

compared against GA than the DABC-3-LS algorithm. This
also confirms comparatively the best performance of the
DFWA-3-LS in terms of saving transmission power (dBm).
Figure 5 shows that the DFWA-3-LS algorithm consumed
more average MATLAB CPU time (in seconds) when com-
pared with the average MATLAB CPU time (in seconds)
consumed by the DABC-3-LS, and GA for most of the prob-
lems listed in the Table 3. However, careful observation
shows that both the DABC-3-LS and GA consumed compa-
rable average MATLAB CPU time (in seconds). The sum-
mary of the performance of the experimented algorithms is
as follows:

– DFWA-3-LS is the best performer in term of avg. cost.
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– DFWA-3-LS shows the lowest average transmission
power (dBm) consumption.

– DFWA-3-LS used the highest average MATLAB CPU
time (in seconds).

The t-Test showed a significant difference between the
performance of the DFWA-3-LS against the performance
of each of the DABC-3-LS and the genetic algorithm. The
statistical test is based on the following null hypothesis:
either compared algorithms produce the same average
transmission power (dBm) or alternatively, the DFWA-3-
LS computes with a lower average transmission power
(dBm). The p-values for the compared algorithms are listed
in Table 5, for the problems listed in Table 3, against
each compared algorithm. The p-values can be recorded
based on the desired significance level, which is α =
0.05 for this work. The significance of the performance
of the compared algorithm can be gauged based on two
conditions. First, the average transmission power (dBm) by
the DFWA-3-LS is lower than any compared algorithm, and
(2) the associated p ≤ α, then it can be safely concluded
that there is a statistically significant difference between
the performance of the DFWA-3-LS against any other
experimented algorithms. Alternatively, it can be concluded
that the observed difference is not statistically significant.
The performance of the DFWA-3-LS is comparatively
the best in terms of average power transmission power
(dBm) as shown in Fig. 3b; therefore, we conduct a
students’ t-Test of the DFWA-3-LS against the other
two experimented algorithms to check the significance
level of it’s performance. The DFWA-3-LS showed a
lower average transmission power (dBm) as compared
to the other experimented algorithms, and the p-value
was also lower than 0.05 as shown the Table 5. This
statistical test concludes that the DFWA-3-LS algorithm
outperforms both the DABC-3-LS and the genetic algorithm
significantly (Fig. 6).

Figure 7 showed box plots (a-d) which demonstrate the
comparative performance of the experimented algorithms
for the fog-supported IoT infrastructure in healthcare (IoH).
Variability and consistency can be observed among the
experimented algorithms, but the DFWA-3-LS algorithm
reaches a high variability and improved consistency when
compared to the DABC-3-LS, and the genetic algorithm.
In addition to average lower power (dBm) transmission,
significance t-Test, and high variability, the DFWA-3-
LS can be judged as a better alternative to solve this
complex power-aware fog-supported IoH. Data for the
DFWA-3-LS is symmetric in characteristics, for most of
the problems. While the data for the DABC-3-LS and the
genetic algorithm is skewed in some problems as listed in
Table 3.

6 Conclusion and future work

This paper proposed a healthcare infrastructure that was
comprised of three wirelessly connected communication
nodes: virtual machines (VMs), gateways with reduced
computing resources (GR) and gateways with extended
computing resources (GE). Here, VMs were representing
the data traffic transmitted to a GE or GR. This data traffic
either came from the Healthcare Internet of Things (IoH) or
fromWi-Fi access points (APs). The proposed problem was
formulated as an integer programming problem which was
about deciding the deployment of GEs and GRs gateways in
a critical healthcare infrastructure on their candidate sites.
The target of the mathematically formulated problem was
to minimize the infrastructure/hardware cost and its power
transmission.

Two newly developed swarm intelligence-based algo-
rithms were used to find a high-quality sub-optimal solution
to the formulated integer programming problem. An ensem-
ble of three local search methods was incorporated in the
Discrete fireworks algorithm (DFWA) and discrete artificial
bee colony (DABC) algorithm to solve the IoH network.
The performance of the proposed DFWA was compared
against the DABC, and the genetic algorithm (GA). Exper-
imental results and statistical tests reveal that the DFWA
with the ensemble of local searches can provide a relatively
better solution. DFWA and DABC are better in balancing
exploitation and exploration by using an ensemble of local
search methods as compared to GA using only a single local
search method.

The proposed mathematical model using Swarm intelli-
gence-based algorithms plans a power-aware infrastructure
for delay-sensitive applications in healthcare. This model
can be further extended to lay down infrastructure for
several delay-sensitive applications like online gaming,
smart cities, autonomous vehicles, etc.

This work can be extended in future as follows: (1)
Prove/disprove NP-completeness of this mathematical prob-
lem. (2) extend this work to implement some exact algo-
rithms and their performance would be compared with the
current approximate algorithms. (3) Experiment with exist-
ing swarm-intelligence algorithms with various local search
methods individually as well as also try to expand the
ensemble size.
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