
Dakota State University Dakota State University

Beadle Scholar Beadle Scholar

Research & Publications College of Business and Information Systems

2003

Software Project Management: The Role of Modeling Software Project Management: The Role of Modeling

Omar F. El-Gayar

Sreedhar Thota

Follow this and additional works at: https://scholar.dsu.edu/bispapers

https://scholar.dsu.edu/
https://scholar.dsu.edu/bispapers
https://scholar.dsu.edu/biscollege
https://scholar.dsu.edu/bispapers?utm_source=scholar.dsu.edu%2Fbispapers%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages

Software Project Management: The Role of Modeling
Omar F. El-Gayar and Sreedhar Thota

College of Business and Information Systems, Dakota State University,
Madison, South Dakota, U.S.A.

ABSTRACT

With the ubiquity of software and in the quest towards
improving software development activities, the software
engineering research community engaged in an active
research agenda on modeling software processes. The
modeling objectives ranged from process understanding,
improvement, and management, to project management.
In spite of the significant achievements in the field, few
(if any) of the research results are adopted by the
industry.

This paper presents a brief review and a critical
evaluation of the status of software process modeling
practices with particular emphasis on their applications
to project management from a practitioner's point of
view as well as recommendations for future work.

Keywords: Software process modeling, project
management

1. INTRODUCTION

Since its inception in the late 60’s, software engineering
focuses on the improving the quality of software as well
as the software development process. The underlying
premise is that quality processes result in a quality
product. Initial effort relied on informal description of
software processes. Until the late 1980’s when focus
turned to more formal description resulting in a number
of modeling paradigms and numerous modeling
techniques.

Accordingly, software process modeling and in
particular process modeling languages (PML) emerged
as a technique for defining and analyzing significant
aspects of software process with the aim of facilitating
human understanding, process management, process
improvement, process guidance and project management
[1]. However, after more than a decade of active
research in the area, few (if any) of the approaches have
been transferred into industrial practices. [2,3,4]

It is thus the objective of this article to present a brief
review and an evaluation of software modeling practices
with particular emphasis on project management from a
practitioner's point of view as well as recommendations
for future work. The article is organized as follows;
section 2 defines software process modeling and its
objectives as well as a brief review of software modeling

paradigms and techniques. Section 3 defines software
project management and develops an assessment
framework for evaluating different modeling techniques
from a project management perspective. Section 4
reviews a representative set of modeling techniques,
while section 5 highlights recommendations for future
work.

2. SOFTWARE PROCESS MODELING

A software process is comprised of a set of policies,
organizational structure, technologies, procedures, and
artifacts needed to conceive, develop, deploy, and
maintain a software product [2]. As such, software
process modeling seeks to define and analyze significant
aspects of these processes [1]. While there is not a wide-
ranged consensus on the essential constructs of a process
model, most frequently mentioned constructs include
agents, roles and artifacts [5] as well as activities and
tools [2] as shown in Table 1.

Table 1. Software process modeling constructs

Modeling construct Description

Agents An actor who performs an
activity (process element)

Roles Set of responsibilities assigned to
an agent

Artifacts A product created or maintained
by the activities

Activities Steps that need to achieve
process objectives

Tools Are to be utilizes by the process

There are a number of objectives driving software
process modeling, most notably [5,6,7]:

• Facilitating human understanding and
communication

• Supporting process improvement

• Supporting process management

• Automating process guidance and execution

• Supporting project management

• Facilitating training and learning

To that effect, and since the late 1980’s, a number of
process modeling paradigms and numerous techniques
evolved for modeling software processes. Examples of
which include programming language, Petri-net, object-
oriented, and quantitative, e.g., systems dynamics.
Furthermore, most recently, process-centered software
engineering environments (PSEE) have been developed
specifically for supporting software development
activities both as research projects and as commercial
products [4].

 While a number of reviews and evaluations of
modeling techniques and PSEEs exist in the literature
[3,4,5,8,9] these reviews are often general and not
relevant from a project management practitioner’s
perspective. Accordingly, the following section seeks
such classification where the support for project
management activities is emphasized.

3. PROJECT MANAGEMENT

Project management is the “application of knowledge
skills, and techniques to project activities in order to met
project requirements” [11]. In engineering projects,
activities can be characterized along two dimensions.
The first dimension refers to engineering activities that
are performed to build whatever the project aims to
accomplish, i.e., the product. In software engineering,
the product is the software under consideration, and the
engineering processes are carried with the concept of a
system development life cycle (SDLC), which is the
framework for describing the phases involved in
developing and maintaining information systems.
Popular process models for SDLC include the waterfall
model, the spiral model, the incremental release model,
and the prototyping model.

 On the other hand, the second dimension refers
to these activities within project management. In effect,
while the associated engineering activities are executed
by people and are viewed as a product life cycle
processes, the entire project execution can be considered
as a process that is followed to build the software.
Effectively managing the process is paramount to
success [10].

 Accordingly, “the set of activities needed to
manage the process for a project is specified in the
project management process” [10]. The five project
management process groups are [11]:

• Project initiation. This includes actions to
commit or begin a project.

• Project planning. This includes a wide range of
activities including cost and schedule
estimation, work plans, staffing, work break
down structures, quality management planning,
and risk management planning.

• Project execution. This involves coordinating
people and other resources to carry out the plan.

• Project control. This ensures that project
objectives with respect to cost, schedule,
quality, and functionality are met and identifies
corrective measure in case the project deviates
from the established plan.

• Project closure. This includes formalizing
acceptance of the project and the creation of
closing document thereby bringing the project
to an orderly end.

While each company/project may have its own project
management methods, Table 2 identifies a number of
project management activities with respect to each of the
project process groups. A detailed description of these
activities is provided in the PMBOK guide [11].

4. EVALUATION

This section of the paper deals with the evaluation of
software process models and environments with respect
to software project management. Clearly, a detailed
review of all PML, PSEE and other software process
modeling approaches is beyond the scope of any one
article. Accordingly, this article seeks to demonstrate the
applicability of the evaluation grid on a selected subset
of modeling approaches. To that effect, we have
employed the following criteria to limit the scope of the
article:

• A PML has to have a supporting PSEE. The
rationale is that from a project management
perspective, a stand-alone PML can be very
intimidating to use.

• Sufficient background material exists. These
include published articles, reports and reviews
as well as supporting web sites.

• The approach has to have potential for project
management support, as opposed to strict
process guidance (from a product-cycle
perspective).

As a disclaimer, it should be noted that the evaluation is
based on the cited literature and information obtained
from their providers (through their web site).

MILOS

Developed by the University of Calgary and the
University of Kaiserlautern, MILOS (Minimally
Invasive Long-term Organizational Support) is a system
that has both process modeling and project planning and
enactment features [12]. According to Maurer et. al. [13]
MILOS extends MS-Project tool with the means to
describe information flow (a feature supported by
Workflow Systems).

Table 2. Modeling environments and software project
management.

Criteria for Evaluation

M
I
L
O
S

E
n
d
e
a
v
o
r
s

L
i
t
t
l
e
-

J
I
L

S
o
f
t
P
M

S
y
s
t
e
m

D
y
n
a
m
i
c
s

Planning Support

Scope planning and definition X X X X X

Activity Definition X X X X X

Activity Sequencing X X X X X

Activity Duration Estimating X

Schedule Development X X X X

Resource Planning X X X X X

Cost Estimating X

Cost Budgeting

Quality Planning X

Organizational Planning

Communication Planning

Quantitative Risk analysis X

Execution Support

Information Distribution X X X X

Support for Control

Schedule Control X X X

Cost Control

Quality Control X X X

Performance Reporting X

User Interface & Ease of Use X X X X

Integration with Project
Management tools X X

Support over distributed
environments X X X

This is done via definition of task input and output
parameters. The output parameter of a task is mapped to
an input parameter of another task. These mappings
constitute the information flow. It also allows for a
virtual team approach to software development
essentially meaning that the members of a software
project are not confined to one physical location. This is

possible as it is a web based process support system and
thus dynamic coordination of distributed software
development teams is achieved in MILOS.

To support project management MILOS has three
components namely a resource pool component, a
project plan management component and a workflow
management component. The resource pool component
helps managing the agents, roles and agent properties.
Scheduling of tasks is possible by querying this
component for agents that meet certain criteria.

The project manager can plan and customize the project
using the Project Plan Management component. This is
done through an interface with COTS tools like MS-
Project [14]. The initial project plan is developed in MS-
Project that has the start and end dates. The project
planner imports the project plan into MILOS. MILOS
then helps in the enactment of the plan and during
execution the project plan can be refined.

Finally the Workflow management component executes
the project plan and manages the products. It can react
dynamically to the project plan changes during
execution. The three components thus help in project
planning, plan enactment and dynamically react to a plan
change. Using a connection to other metric tools,
MILOS can also achieve quality management.

Endeavors

Endeavors, developed at the University of California,
Irvine is a part of a larger scale project on open
technology for system evaluation. To that effect,
Endeavors is an open, distributed (web-based)
environment that builds on the Teamware process
modeling language to provide process modeling and
execution infrastructure that addresses communication,
coordination and control issues. Process modeling
capabilities are provided through visual implementation
of process constructs (activities, artifacts and resources).
On the other hand, support for process execution is
supported by providing the team members with summary
of assignments, coordinating the creation of artifacts, and
tracking execution progress [15].

While Endeavors provide strong process support from a
product-cycle (engineering) perspective, there is no
explicit support for project management aside from
allowing managers (and team members) to track
execution progress through information distribution.
Alternatively, project management support is indirectly
provided through interfacing with project management
software, e.g., MS-Project. In that regard, Endeavor,
through process modeling, provides for scope planning
and definition, activity definition, and activity
sequencing. Scope planning and definition is supported
through the identification of process artifacts. Explicit
representation of process artifacts in the form of work
breakdown structure is not provided. Activity sequencing
is supported through activity networks that define the

inter-relationship between activities, artifacts and
resources.

Endeavors supports user interfaces for visually creating
activity networks, assigning resources, attaching
artifacts, and browsing, creating, and changing category
objects and their attributes.

Little-JIL/Juliette:

Little-JIL, developed at The Laboratory for Advanced
Software Engineering Research (LASER), University of
Massachusetts Amherst, is a process language focusing
on the coordination aspects of processes. Little-JIL is
deeply rooted in earlier work on process programming,
namely APPL/A [16] and JIL [17]. The primary feature
differentiating Little-JIL from earlier research at LASER
is that Little-JIL is a graphical language [19]. In this
language, the central abstraction is the “step”. Steps are
organized into a static hierarchy with a dynamic
execution structure (defined through control and
exception flow mechanisms). Each step is assigned to an
agent and is attached to a list of resources required to
(human or machine) for execution. When an agent starts
executing a step, resource binding in which specific
resource instances managed by the resource manager are
reserved for the step [18]. It should be noted, however,
that the resource manager while a separate entity, is
integrated into Little-JIL [19]. This follows one of two
underlying hypothesis stating that the coordination
structure is separate from other process language issue.
The driving motivation is to support and promote
process reuse. The second hypothesis emphasizes Little-
JIL’s focus on coordination as “processes are executed
by agents that know how o perform their tasks but
benefit from coordination support [19]. While Little-JIL
is used to specify step coordination, Juliette, a runtime
environment based on Little-JIL provides
implementation support to allow for execution of process
programs [19].

From a project management perspective, Little-
JIL/Juliette provides strong process modeling support for
scope definition, activity definition, sequencing and
planning, as well as schedule development and resource
planning. Scope definition is provided through modeling
of artifacts, albeit through a separate artifact
management system. On the other hand, activity
definition and sequencing is provided through Little-JIL
hierarchical modeling structure in which each activity is
modeled as a step that is decomposed into sub-steps in a
tree like structure. Sequencing, although not provided in
the form of network diagrams is embedded in the form
of rich control structures provided by Little-JIL. By
providing activity duration and estimates and resource
requirements and availability, Little-JIL/Juliette with its
integrated resource manager provides decision support
for a variety of resource planning, coordination and
scheduling issues. Examples of which include
identifying resource contention issues, as well as

evaluating various schedule reduction alternatives. While
Little-JIL provides some project management
functionality as indicated, the current version does not
integrate with existing project management tools.
However, the environment is supported by a GUI visual
editor thereby facilitating its use.

SoftPM

Developed by the Korea Advanced Institute of Science
and Technology, SoftPM (Software Process
Management System) is a software process design and
management system. The system supports modeling,
analyzing and enacting processes [20].

The SoftPM toolset consists of three subsystems. The
main system supports process modeling, which is based
on the Petri-net paradigm, while the enactment system
executes the process and monitors its progress.
Enactment of a particular process activity include
signaling the agent responsible for carrying the activity,
allowing the agent to access the activity applet using a
web-browser, allowing the user to download the input
artifacts, and uploading the output artifacts. The client
system provides agents with the functionality required
for artifact exchange through a java-based web interface.

From a project management perspective, the system
provides various analysis techniques to aid managerial
decision-making in efficiently conducting process
activities. Specifically, SoftPM can aid in schedule
development and resource planning through calculating
the cumulative time consumption for each process
activity, spotting agent conflicts, identifying concurrent
process activities, and calculating minimum manpower
requirements. Other facilities include evaluating the
influence of agent conflicts, calculating agent utilization
and artifact idle time.

System Dynamics

System dynamics, pioneered by Jay Forrester in the late
fifties, refers to a simulation methodology in which
elements of control theory are applied to model complex
continuous system in social and industrial setting. The
emphasis is on capturing information feedback and
circular causality among key variables. Such variables
are represented as stocks (levels), flows (rates) and the
links among variables representing feedback loops.

In project management, system dynamics models are
used in domains including large-scale projects in
shipbuilding, defense, aerospace, civil construction,
power plants, as well as software development [21].
Abdel-Hamid and Madnick [22] pioneered the
application of system dynamics to software process
modeling in general, and to software project
management in particular. They present a generic model
of software development and use the model to
demonstrate various phenomena encountered in software

projects, e.g., the 90% syndrome and Brooks’ Law. The
model also illustrates the potential for cost and schedule
estimation under different management scenarios as well
as the economics of quality assurance.

The use of system dynamics in software project
management has also been applied to quality, risk and
human resource management. Madachy [23] used system
dynamics to evaluate the impact of performing formal
inspections on project cost, schedule and quality. The
model captured interrelated flows of tasks, errors
inspection activities and personnel through the
development process and was calibrated to industrial
data. Rus et.al. [24] also used system dynamics to quality
planning by evaluating various software reliability
engineering strategies. In contrast to static reliability
models, the model presented can be used to track the
quality and reliability of the software throughout the
development process by tracking project metrics and
adjusts the model accordingly. Another example for the
quality planning is a model developed by Tvedt [25] for
an incremental software development process. The
objective of the model is to evaluate the impact of
various process improvement initiatives on development
cycle time.

With respect to human resource project management,
Collofello et al. [26] uses a system dynamics model to
assess the effect of managerial staffing decision on
project’s budget, schedule and quality. Particular
attention is paid to evaluating process to integrate the
effects of staff attrition. Abdel-Hamid [27] also used
system dynamics to answer “what-if” questions
regarding various staffing practices with particular
emphasis on the interchangeability of persons and
months in a software project.

On project risk management, system dynamics, as a
simulation methodology and as presented earlier, is
particularly valuable for quantitative risk analysis. In
summary, evaluating the impact of various management
policies on project cost, schedule and quality.

5. CONCLUSIONS AND RECOMMENDATIONS

The ubiquity of software in our everyday life coupled
with its growing complexity is a driving force for
software engineering research, in general, and software
process research in particular. Nowadays, and after more
than two decades of active research resulting in
numerous modeling languages and paradigms, few (if
any) of these approaches have been adopted by the
industry. Moreover, in so far, the focus of existing PML
and PSEE is on engineering processes, in particular,
providing guidance and process support.

On the other hand, aside from activity coordination and
sequencing, this paper indicates little (if any) support is
provided to project management processes. In that

regard, we note that a project is a temporary endeavor
undertaken to accomplish a unique purpose. A project is
also characterized as requiring resources, involving
uncertainty, and having stakeholders. Incidentally,
executing (enacting) a software process (or part thereof)
have identical characteristics and thus are projects that
need to be managed subject to the triple constraint, i.e.,
scope, time, and cost. In other words, executing software
process is supported by (and thus intricately related to)
project management processes.

While integration with existing project management
tools is a first step in that direction, the nature of the
software development process may require a tighter
integration, or even complete assimilation of project
management functionality into the PSEE. Specifically,
software development is characterized as a creative
activity where inconsistency is the rule rather than the
exception [28]. While such characteristics impose
requirements on PSEE to tolerate and manage
inconsistencies and deviations [2], it also emphasizes the
need for tight integration (possibly to the extent of
complete assimilation) of project management
functionality into PSEE. From a software project
manager perspective, this alleviates the need to manage
two environments, namely, the project management and
the PSEE, thereby facilitating adoption. In conclusion,
while the literature [2,3,4] identifies several reasons for
such slow (or even lack) of adoption, most notably,
complexity and inflexibility, we argue that lack of
explicit and integrated project management functionality
is also a contributing factor.

6. REFERENCES

[1] H. Krasner, J. Terrel, A. Linehan, P. Arnold, and
W.H. Ett, Lessons learned from a software process
modeling system, Communications of the ACM,
Vol. 35, No. 9, September 1992, pp. 91- 100.

[2] A. Fuggetta, Software Process: A Roadmap,
Proceedings of the conference on the future of
software engineering, Limerick, Ireland, 2000.

[3] G. Cugola and C. Ghezzi , Software Processes:a
retrospective and a Path to the Future, Software
Process- Improvement and Practice, Vol. 4, June
1998 , pp. 101-123.

[4] V. Ambriola, R. Conradi, and A. Fuggetta, Assesing
Process-Centered Software Engineering
Environments, ACM Transactions on Software
Engineering and Methodology, Vol. 6, No. 3, July
1997, pp. 283-328.

[5] B.Curtis, M.I. Kellner, and J.Over, Process
Modeling, Communications of the ACM, Vol. 35,
No. 9, September 1992, pp. 73-90.

[6] M.M. Lehman and Department of Computing,
Imperial College of Science and Technology,
London, England, IEEE, 1990, pp. 91- 94.

[7] M. Kellner, R.J. Madachy, and D.M. Raffo,
Software Process Simulation Modeling: Why?
What? How?, Journal of Systems and Software, Vol.
46, No. 2/3 , April 1999, pp.1-18.

[8] K. Huff, Software process modeling, In Trends in
Software: Software Process, A. Fuggetta and W.
Wolf, Eds. John Wiley and Sons, New York, 1996.

[9] P, Garg and M. Jazajeri, PSEEs: A grand tour, In
Trends in Software: Software Process, A Fuggetta
and W. Wolf, Eds. John Wiley and Sons, New York,
1996.

[10] P. Jalote, CMM in Practice: Processes for executing
software projects in InfoSys, Massachusetts:
Addison-Wesley, 2000.

[11] Project Management Institute (PMI), A Guide to the
Project Management Body of Knowledge, PMI:
Pennsylvania, 2000.

[12] F. Maurer, G. Succi, H. Holz, B. Kötting, S.
Goldmann, B. Dellen, Software Process Support
over the Internet, ICSE 1999,pp. 642-645.

[13] F. Maurer, B. Dellen, F. Bendeck, S. Goldmann, H.
Holz, B. Kotting, and M. Schaaf, Merging Project
Planning and Web-Enabled Dynamic Workflow
Technologies, IEEE Internet Computing, May/June
2000, pp. 65-74.

[14] F. Maurer, H. Holz, Process-Oriented Knowledge
Management For Learning Software Organizations,
Proceedings of the 12th Knowledge Acquisition
Workshop (KAW '99), Banff, Canada, 1999.

[15] G. Bolcer and R. Taylor, Endeavors: A Process
System Integration Infrastructure, International
Conference on Software Process (ICSP4), Brighton,
U.K, December 1996.

[16] S.M. Sutton, Jr., P.L. Tarr, L.J. Osterweil, An
Analysis of Process Languages, Department of
Computer Science, University of Massachusetts,
Amherst, MA 01003, August 1995.

[17] S. M. Sutton, Jr., L. J. Osterweil, The Design of a
Next-Generation Process Language, In Proceedings
of the Sixth European Software Engineering
Conference held jointly with the Fifth ACM
SIGSOFT Symposium on the Foundations of
Software Engineering, Springer-Verlag, 1997
Zurich, Switzerland, pp. 142-158.

[18] B. S. Lerner, A. G. Ninan, L. J. Osterweil, R. M.
Podorozhny, Modeling and Managing Resource
Utilization in Process, Workflow, and Activity
Coordination, Department of Computer Science,

University of Massachusetts, Amherst, MA 01003,
August 2000.

[19] A.G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, S. M. Sutton, Jr., A. Wise, Little-
JIL/Juliette: A Process Definition Language and
Interpreter, Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000),
June 2000, Limerick, Ireland, pp. 754-757.

[20] S.Min, H.Lee, and D. Bae, SoftPM: A Software
Process Management System Reconciling
Formalism with Easiness, Information and Software
Technology, 42(1), 2000, pp. 1-16.

[21] J. Sterman, System dynamics modeling for project
management, 1992
http://web.mit.edu/jsterman/www/SDG/project.html

[22] T. Abdel-Hamid and S. Madnick, Software Project
Dynamics: An Integrated Approach, New Jersey:
Prentice Hall, 1991.

[23] R. Madachy, System Dynamics Modeling of an
Inspection-based Process, Proc. ICSE 96, Berlin,
Germany, March 25 - 29, 1996, pp 376 – 386.

[24] I. Rus, J. Collofello, A Decision Support System for
Software Reliability Strategy Selection , submitted
to the 13th International Conference on Automated
Software Engineering, ASE98, 1998.

[25] J.D. Tvedt and J.S. Collofello, Evaluating the
Effectiveness of Process Improvements on Software
Development Cycle Time via System Dynamics
Modeling, Computer Software and Applications
Conference (CompSAC'95), 1995.

[26] J. Collofello, I. Rus, A. Chauhan, D. Houston, D.
Sycamore and D. Smith-Daniels, A System
Dynamics Process Simulator for Staffing Policies
Decision Support, Hawaii International Conference
on System Sciences (HICSS), January 1998.

[27] T.K. Abdel-Hamid, The dynamics of software
project staffing: A system dynamics based
simulation approach. IEEE Trans. Software
Engineering. 15, 2, 1989.

[28] B. Balzer, "Tolerating inconsistencies," presented at
International Conference on Software Engineering
(ICSE 13), Austin (TX), 1991.

View publication stats

https://www.researchgate.net/publication/266137281

	Software Project Management: The Role of Modeling
	Untitled

