

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of

Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of

this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions

of the major department or university.

Student Name: Student ID: _________________

Dissertation Title:

Graduate Office Verification: ______________________________ Date: _____________

Dissertation Chair/Co-Chair: Date:

Print Name: __________________________

Dissertation Chair/Co-Chair: Date:

Print Name: __________________________

Committee Member: Date:

Print Name: __________________________

Committee Member: Date:

Print Name: __________________________

Committee Member: Date:

Print Name: __________________________

Committee Member: Date:

Print Name: __________________________

Submit Form Through Docusign Only

or to Office of Graduate Studies

Dakota State University

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

101009287

Malware Pattern of Life Analysis

Mar Castro

11/20/2023

Austin O'Brien

11/20/2023

Yong Wang

11/20/2023

11/21/2023

Cherie Noteboom

MALWARE PATTERN OF LIFE ANALYSIS

A dissertation submitted to Dakota State University in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Cyber Operations

Fall 2023

By

Mar Castro

Dissertation Committee:

Dissertation chair: Dr. Austin O'Brien

Committee member: Dr. Cherie Noteboom

Committee member: Dr. Yong Wang

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

 ii

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a candidate for the

Doctor of Philosophy in Cyber Operations degree and is acceptable for meeting the dissertation

requirements for this degree. Acceptance of this dissertation does not imply that the conclusions

reached by the candidate are necessarily the conclusions of the major department or university.

Student Name: Mar Castro

Dissertation Title: Malware Pattern of Life Analysis

Dissertation Chair/Co-Chair: Dr. Austin O'Brien Date:

Committee member: Dr. Cherie Noteboom__ _ Date:

Committee member: Dr. Yong Wang __ Date:

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

 iii

ABSTRACT

Many malware classifications include viruses, worms, trojans, ransomware, bots, adware,

spyware, rootkits, file-less downloaders, malvertising, and many more. Each type may share unique

behavioral characteristics with its methods of operations (MO), a pattern of behavior so distinctive that

it could be recognized as having the same creator. The research shows the extraction of malware

methods of operation using the step-by-step process of Artificial-Based Intelligence (ABI) with built-

in Density-based spatial clustering of applications with noise (DBSCAN) machine learning to quantify

the actions for their similarities, differences, baseline behaviors, and anomalies. The collected data of

the research is from the ransomware sample repositories of Malware Bazaar and Virus Share, totaling

1300 live malicious codes ingested into the CAPEv2 malware sandbox, allowing the capture of traces

of static, dynamic, and network behavior features. The ransomware features have shown significant

activity of varying identified functions used in encryption, file application programming interface

(API), and network function calls. During the machine learning categorization phase, there are eight

identified clusters that have similar and different features regarding function-call sequencing events

and file access manipulation for dropping file notes and writing encryption. Having compared all the

clusters using a “supervenn” pictorial diagram, the characteristics of the static and dynamic behavior

of the ransomware give the initial baselines for comparison with other variants that may have been

added to the collected data for intelligence gathering. The findings provide a novel practical approach

for intelligence gathering to address ransomware or any other malware variants’ activity patterns to

discern similarities, anomalies, and differences between malware actions under study.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

 iv

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language of

others is set forth, quotation marks so indicate, and that appropriate credit is given where I have used

the language, ideas, expressions, or writings of another.

I declare that the dissertation describes original work that has not previously been presented

for the award of any other degree of any institution.

Signed,

Mar Castro

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

 v

TABLE OF CONTENTS

DISSERTATION APPROVAL FORM ..II

ABSTRACT .. III

DECLARATION .. IV

TABLE OF CONTENTS ... V

INTRODUCTION ... 1

A. BACKGROUND OF THE PROBLEM .. 1

B. STATEMENT OF THE PROBLEM AND MOTIVATION .. 2

D. OBJECTIVES .. 5

LITERATURE REVIEW ... 8

CHAPTER 3 ... 13

3.1 INTRODUCTION .. 13

3.2 RESEARCH DESIGN .. 13

3.3 RESEARCH METHODOLOGY ... 16

3.3.0 PHASE 0: DATA COLLECTION .. 16

3.3.1 PHASE I: DISCOVERY .. 24

3.3.2 PHASE II: ASSESSMENT ... 31

3.3.3 PHASE III: EXPLANATION (DESCRIPTIVE DATA ANALYSIS) .. 41

DRILL DOWN DATA: GENERAL FEATURES (COMPARISON OF CAPTURED 27 FEATURES) 42

TABLE 4: GENERAL FEATURES STATISTICAL OCCURENS PER CLUSTER .. 43

DRILL DOWN DATA: ALL INVOKED APIS [GENERAL COMPARISON] BY CLUSTER 44

DRILL DOWN DATA: ENCRYPTION API DRILL DOWN [COMPARISON] .. 46

DRILL DOWN DATA: FILE FUNCTION API USAGE ... 50

DRILL DOWN DATA: DLL USED [STATIC] ... 54

DRILL DOWN DATA: DROPPED FILES .. 55

DRILL DOWN DATA: NETWORK COMMUNICATION PROCESS (DLL) ... 58

DRILL DOWN BACKGROUND EXECUTION .. 60

3.3.4 PHASE IV: ANTICIPATION (RESEARCH QUESTIONS) .. 62

3.4 ETHICAL CONSIDERATIONS.. 74

3.5 RESULTS AND DISCUSSION .. 74

3.6 LIMITATIONS ... 75

3.7 THE RESEARCHER .. 76

CONFLICT OF INTERESTS .. 76

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

 vi

RESULT ... 78

CONTRIBUTION .. 82

CONCLUSIONS .. 83

REFERENCES .. 85

APPENDICES .. 92

APPENDIX A. IDENTIFIED INPUT USED FOR FEATURE ENGINEERING FOR MACHINE LEARNING (ML) ... 92

APPENDIX B: FEATURE ENGINEERING, LEVEL OF SCAN, ALGORITHM USED 93

APPENDIX C: ALL API CALLS ... 96

APPENDIX D: IMPORTED DDL SIMILARITIES ... 97

APPENDIX E: 159 API FILES THAT ARE NOT FOUND IN THE COMMON FEATURES 97

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

1

CHAPTER 1

INTRODUCTION

 Malware has been around for years. Both the industry and research community have developed,

used, and researched different algorithms, including machine learning (ML), for malware detection to

prevent them from being introduced into computer systems. However, they have not delved into their

pattern of life to drill down to dynamic events of malware’s methods of operations (MMO). Exposing

malware's characteristics and habits allows the communities to dissect and discover the specific

behavioral representation of data to its granular event level. Therefore, the study aims to establish the

quantitative analysis of the current baseline, similarities, differences, and anomalies of static and behavior

features to the level of detail in its procedural structural behavior. To accomplish the research, the

Artificial-Based Intelligence (ABI) process and the DBSCAN machine learning (ML) tool, a significant

novel research methodological profiling, paves the way to discover malware operations. The outline for

the chapter provides a discussion of the background of the problem, the statement of the problem,

motivation, research questions, and objectives.

A. Background of the Problem

Malware identification and classification extensively use research on features from static,

dynamic, or heuristic analysis to identify the patterns of whether the malware is either malware or not.

The industry and research community only focus on detection by establishing the pattern. However, the

previous research failed to investigate what makes malware unique and identify its detailed processes and

static and behavioral characteristics. The researchers did not present the malware's drill-down pieces of

evidence or artifacts. Each type of malware family processes, methods, and tools must be examined to

understand the more profound attributes of a particular type of malware. Since malware becomes

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

2

sophisticated year after year from its normal behavioral activities, it is necessary to develop a pattern of

life (PoL) to gather and discover new features. PoL is a set of behavior, activities, habits, and movements

within the network and computing systems associated with particular malware over a given period. It is a

technique to establish an entity's uniqueness if it is similar to other observed entities within the malware

family. This malicious software could be parsed and analyzed by selecting a feature engineering baseline

technique used by machine learning. Because of the technological advancement of the past decades,

multiple sources of data to explore are easy tasks to collect, store, and analyze. This data collection

mimics the Artificial-Based Intelligence (ABI) methodology, where data are compiled, dissected, and

integrated from different sources for intelligence discovery. "Intelligence discovery is the ability to select,

manipulate, and correlate data from multiple sources to identify information relevant to ongoing

operations and requirements. Discovery is about better organizing and using the data that we already

know. It is also about finding previously hidden patterns and anomalies—former Secretary Donald

Rumsfeld's "unknown unknowns" [4]. After the collections, Machine Learning (ML) technique is used to

facilitate the work to identify the level of intrusion of activities into the infective systems that might have

occurred when the malware deviates from its habitual behavior. Therefore, the research establishes the

pattern of life, allowing us to uniformly understand malware static and dynamic activities in the

computing environment for their similarities, differences, variances, and anomalies.

B. Statement of the Problem and Motivation

Malware has its unique way of infiltrating the systems. They continue to evolve or change as our

technology advances and the creativity of the design of the malware improves, rendering them

challenging to detect. Regardless of their evolution to progress into an advanced state of change, each

malware family may share the same baseline characteristics, which describe the effective methods of

operations. Malware is about achieving a malicious goal by exploiting vulnerabilities in computer

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

3

systems. The goals of these attacks can range from stealing confidential data, disrupting the system's

operation, or destroying it. The kind of behavior must be probed and explored in detail to uncover the

manner of its internal working. To discover the behavioral traits, the researcher conducts the pattern of

life’s behavior, the intelligence-gathering technique used by the military or law enforcement, to track the

objects’ behavior regarding their observed frequency and types of activities. The types of information

gathered could indicate threats or criminal activities.

The research malware community has not fully explored the pattern of life events of the malware

family. Therefore, it is a novel research endeavor to establish its standard baselines to discover patterns

and anomalies and see malware's profound details despite its family structure. The density of types of

malware has been increasing since early 2000. Sifting through the malware's frequency of events, event

sequencing, and the Application Programming Interface (API) creates a natural set of patterns. There are

many possibilities for pattern activities in the systems for feature discovery. The general taxonomy below

describes the drill-down specification of the type of malware to its different variants.

Malware
Types of Malware
Family (Trojans,

Virus, etc)

Method of
Operations (MO)

Specific Type
(Ransomware,

Zeus, etc)

Variance
(API Usages)

Figure A. General Malware Taxonomy

Each type of malware differs from one another. However, the research aims to dive into the

specific one-type pattern of life to establish baselines of methods because it is conceptually similar to

malware activities of the same family classification. Figure A depicts the fundamentally hierarchical

structure of malware taxonomy from types to methods to the specific type and its variance. The

ransomware is the target of malware to drill into, providing an in-dept look at the content.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

4

C. Research Questions

The paper intends to reveal patterns and identify a change to establish a decision advantage to

gather intelligence on the activities of the malware creators. Patterns could be perceived by identifying the

pattern of a unit. As described by Platas in this web article [4],

"We need to understand not just the individual elements within this pattern unit but also how the

pattern unit is repeated. If you see only AB, you don't have enough evidence to identify the pattern. But if

you see the AB unit repeating, as in ABABAB, then you can be confident of your judgment [6]".

The pattern repetition concept of malware activities running in the system could be perceived and

reported through extensive analysis of malware features to establish patterns. As indicated by the

Artificial-Based Intelligence (ABI) methodology, data collection derives from many sources [3]. For

example, the research will gather static, behavioral, and network features to be compiled and analyzed.

The use of machine learning analyzes patterns to facilitate and recognize patterns with outliers or

deviations. The method enables a complete picture of family-related malware deployed in the wild west

of the internet to show correlations between two malware's likeness and differences. The multiple sources

of data observation allow the strength of several features to compensate for the lack of strengths of

another feature. The past researchers not only did not delve into the detailed events of the malware

activities but focused on the malware's patterns PE format, string patterns, opcode, memory process,

configuration settings, API system calls, network, and bytecode to determine its likelihood of being

malware. The missing research to pivot into is the distinctness of the features involved depending upon

the malware type. Because of that reason, the three research questions need to address the following

questions to examine the malware in depth from static, dynamic, and network points of view.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

5

1. What are the feature similarities and differences (anomalies) of the malware feature activities

collected over the years?

2. How do we identify the constraints needed to develop a common baseline, a hidden data pattern,

for each malware classification or cluster type?

3. How can we determine if the variant types of malware in the wild were the original copies of

other types of malware?

The questions would unify and improve the correct baseline identification of the clusters of

malware deployed in the wild by studying the differences and similarities from its normal behavior,

providing a basis for an accurate and robust pattern of life (PoL). The research novel endeavor will enable

the formalization of the malware pattern of life of each type of malware classification.

D. Objectives

The research aims to demonstrate the novel idea of quality intelligence gathering on a specific

malware activity by exploring and establishing its natural-occurring pattern of life. The study will sift

through thousands of malware of the same type to extract insights. Capev2, derived from Cuckoo

Sandbox, captures features that collect static, behavior, and network data, making ABI methodology

collection processes easier. ABI would allow the integration of multiple sources to be parsed, examined,

and analyzed for intelligence gathering to discover life patterns. Using the ABI method is not new

because it has been applied in the military intelligence community [3]. The similarities and differences of

the malware features, anomalies, or activities running within the computing systems may make it possible

to give us origins, derivatives, or deviations from other source codes by establishing the baseline for each

type of malware activity. The research drills more profoundly into the micro-level of a specific malware

community; the study compares, contrasts, and understands standard methods of behavior, along with

their variance. " Micro-level theories provide explanations limited to small slices of time, space, or

numbers of people, such as Goffman's theory of facework, which explains how people engage in rituals

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

6

during face-to-face interactions. Meso-level theories link the micro and macro levels. These are theories

of organizations, social movements, or communities, such as Collins's theory of control in organizations.

Macro-level theories explain larger aggregates, such as social institutions, cultural systems, and whole

societies. Macro-level theories explain larger aggregates, such as social institutions, cultural systems, and

whole societies" [7]. The research approach will build up the general pictorial patterns of a specific

malware family and an anomaly. The scope is to see the patterns of malware profile methods and

characteristics' behavior to assess features and determine their capabilities. The process below is the step-

by-step process of the ABI section, which will guide the research to quantify malware traits [4].

1. Discovery (features collected) – the features of malware activities are available in static,

behavioral, and network sources. They are quality selected, manipulated, and correlated to

identify information needed for past operations and future events. In this paper, the initial

research is to compile three sources for study.

2. Assessment (quantification) – examining the aggregated data is essential to discovering

statistical events needed to establish a pattern of activities. Here, data is synthesized to assess

better the existing event pattern of the malware, which has been collected over the years.

3. Explanation (similar events) – the discovered data pattern may relate to other types of

malware; it may signifies other events' discovery to tell us that other malware may exhibit the

same characteristics, rendering possible identical approaches.

4. Anticipation (possible forecast) – the deviation of the malware activities may give future states

of activities of the malware creator. As we gather and compile more data to integrate into the

existing pile from the collected malware, we may discover other actions of malware creators. Has

the malware creator created or modified a form of malware with the same goal of preventing

anti-analysis?

5. Delivery is the final phase for reports that summarize the over activities and patterns of the

type of malware chosen to be analyzed.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

7

These phases provide profiling, identification, and comparison of malware activities statistically and

dynamically that hinge upon the malware sequences, frequencies, and event data parameter activities.

Thus, a feasible fingerprint pattern of life and its anomalous activities is created. The sequence search is

similar to the published research in Finding Patterns in Biological Sequences stating that "Finding

Patterns in Biological Sequences where proteins where all of the sequences are aligned to identify

conserved regions which are used to generate models that represent ancient conserved regions" [2]. This

is called the phylogenetic relationships between entities. However, the paper focuses on several merged

inputs for analysis as part of the ABI approach. The result of the study becomes valuable to the malware

research practitioner, Incident Response Team (IRT) of Defense Industrial Base (DIB) as part of NIST

3.6 and related to software antivirus providing the process and procedural framework intelligence

gathering. Using the ABI object process creates integrated and coherent visualization of the picture

behavioral events of a particular type of malware to provide actional intelligence for the malware analyst

of interested organizations.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

8

CHAPTER 2

LITERATURE REVIEW

The literature review is used to discover other works that might not have been foreseen during the

research in order not to replicate the works of others. It is essential that during the research phase, nothing

on this project has rehashed existing work but instead adds to the existing body of knowledge of malware

research activities. The existence of malware may have been around since the inception of the computer

age. Only now that malware has become either a nuisance or even become destructive. Researchers have

produced many algorithms, from customized novel algorithms to using existing machine learning (ML)

application programming interfaces (API) for detection. No research papers, however, ever introduced the

drill-down detail of what the malware is made from, rendering to be the research gap. Forty-three

published papers have delved into this subject to identify malware using input data, customized

algorithms, and machine learning for detection, as mentioned in Appendix B. The literature focuses on

data patterns using specific input features for machine learning for parsing, scanning, and identifying

whether the malware found is positive or negative. The input data listed in Appendix A are classified as

PE Format, Function Name/String, Bytecode: Input Scale, ASM (OPCODE), Memory/Process,

Log/Config Settings, API: System Calls, and Network Traffic/Packets. The literature research comprises

probing the 11 publishers between 2008 and 2021, including Springer, Science Direct, IEEE, ACM

Digital Library, Academic Conferences International Limited, MDPI, Research Gate, IOScience,

Standford site, ndupress, and Sage Publications. Figure B shows that IEEE has the most extensive peer-

reviewed source for the references. The explored keywords are malware, ransomware, Artificial-Based

Intelligence, density-based spatial clustering of applications with noise, DBSCAN, and machine learning.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

9

Figure B: Reference Source Statistics

Since there is no published research to expose and describe the malware characteristics, the study

demonstrates to the research community a more general review of the drill-down data to its specific forms

and patterns to better identify the type of malware for profiling. It shows the malware's API usage and

sequence of call events to establish baselines, anomalies, similarities, differences, and intentions of the

type of malware. For that reason, Artificial-Based Intelligence (ABI) using DBSCAN machine learning

are used to establish the pattern of life with multiple input. The combination of these tools makes the

research of the paper unique. The scikit-learn library makes the DBSCAN machine-learning algorithm for

use [60]. However, it has never been used to analyze malware to establish the pattern of life. The research

malware community was never practically used in the industry, field, or combination to analyze malware.

Under certain circumstances, the research introduces the Pattern of Life (PoL) and Artificial-Based

Intelligence (ABI) to demonstrate the academic aspect of the literature into practice to identify malware

characteristics. The literature review listed in the section Appendices has summarized the related

published papers as follows:

 The pattern of Life (PoL), DBSCAN, and Activity-Based Intelligence (ABI): Gross uses PoL and

ABI extensively to analyze complex behavior as stated," POL analysis methods are particularly

0

5
10

15
20

25
30

Sources

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

10

important to understand when attempting to track complex human" [1]. The research analysis of

Gross is similar to this project in that the end goal is the same. Its task is to detect anomalies that

deviate from normal behavior. However, it has not used DBSCAN machine learning to compare data.

The paper only introduces the theoretical aspect of implementing ABI using the pattern of life for

detection. In another paper published by Atwood from National Defense University Press, ABI has

not been used extensively in practice but only in the theoretical aspect of using the Artificial-Based

(ABI) process in military environmental settings [3]. It is likely that despite ABI’s old concept of

gathering intelligence, its potential applications have not been explored effectively due to its

expensive operations. Nevertheless, it would be used for the research to explore its undeveloped

capabilities.

 Feature Engineering (FE). Appendix A provides the general category of the features used for

feature engineering (FE) by different literature authors. Its purpose is to extract information from

Portable Executable (PE), Strings, Functions, ASM OPCODE, Bytecode, Memory Processes, and

Microarchitectural events (Hardware Level). The features used are further explained in Appendix B

feature engineering column, which derives from references 10 to 43 of the references section. The

research topic under study uses mainly API dynamic behavior, the DLL from static analysis of the

portable executable (PE), and the network behavior of the malware. These are the main features used

by the CAPEv2 malware sandbox being studied and included for behavioral clustering and

comparison analysis.

 Machine Learning/Algorithm: Published literature uses different algorithms or machine learnings,

listed in Appendix B of column Technique (Algorithm/Machine Learning (ML)). DBSCAN has never

been used or applied to cluster malware for its differences, similarities, and outliers in a practical

manner. One mentioned that it had been used only to compare the differences of DBSCAN against

other clustering algorithms [30]. In other words, it has never been used, tested, or tried out by anyone

for actual malware feature analysis in real applications, so there is no way how it performs or even if

it works.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

11

 Tools Used: Appendix B [reference 26, 30, 33] identified three pieces of literature that use Cuckoo

malware sandbox, a baseline software used by CAPEv2, which has more upgraded and improved

malware analysis detection. It allows the researcher to have more accurate results by detecting

granular levels of behavior in smaller quantities than in different conditions than it could before. The

unstructured data, JSON format, the output of the malware static and behavioral analysis are dumped

to a directory where the research project parse and dissect the contents to convert it to a comma

delimited format, the preferred format data for machine learning used by scikit-learn.

 Feature Engineering (FE), Level of Scan (LS), Algorithm: The FE, LS, and Algorithm/Machine

learning (A/ML) are the malware detection summary from references 10 to 43. Feature Engineering

(FE) columns are used as an input with the corresponding algorithm and level of scans to predict

whether the malware is identified as positive or negative. The reviewed literature has not identified

DBSCAN machine learning to classify the positive or negative malware. In other words, DBSCAN

was never put into practice to analyze malware. However, it was used for galaxy clustering by Zhang

as stated, "DBSCAN algorithm is the most effective and accurate algorithm. By comparing with the

correct Figure, we can find that the DBSCAN algorithm can accurately identify all classes and

eliminate noise interference to a certain extent, which is impossible to be achieved by the KMeans

algorithm and the Decision Tree algorithm" [5]. Based on the data results of this article, the data

points are labeled for this type of DBSCAN analysis because it has mentioned the accuracy of the

data. The accuracy estimate is only available if the data is labeled. In addition, Yang has also used

DBSCAN combined with a Genetic Algorithm (GA) for fault detection of gas-insulated switchgear

(GIS) [6]. However, this research project attempts to cluster known malware, such as ransomware, for

its similarities, differences, and outliers analysis. Its intention is not to predict whether the data is

found to be malware or not nor to be used whether the malicious codes are within the range of

possible malware. The research design compares the ransomware belonging to different clusters for

intelligence gathering, as mentioned in the ABI process.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

12

In conclusion, the research literature emphasizes the use of Artificial-Based Intelligence (ABI), the

effectiveness of using Use Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for

clustering, or the pattern of life (PoL) to detect anomalies. Nevertheless, the research gap is that the

combination of ABI and DBSCAN for pattern life drill-down identification behavior was never

emphasized in detail in analyzing the similarities and differences to reveal their character traits of a

specific type of malware, along with the analysis of the sequence of events of the application

programming interface (API). In addition, ABI methodology and DBSCAN, as described by the

literature, only used the technique of using them, but they never used how to apply the concept in a

practical manner. As a result, the research is a novelty attempt to reveal and apply the effectiveness of

using the combination of both ABI and DBSCAN against ransomware to expose its intent behavior as

part of intelligence gathering.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

13

CHAPTER 3

3.1 Introduction

Chapter 3 introduces the research methods to describe the different parts of the study. It provides

information on the malware data downloaded from the community research repository, the use of

observing the malicious code using CAPEv2 malware sandbox, and the techniques and tools for

extracting static, behavioral, and network data. The researcher further describes the chosen research

design using Artificial-Based Intelligence (ABI), the purpose of the study, and the reasons for the design.

In addition, the researcher discusses the methods used in analyzing data, the limitations, further

discussions of the techniques, and the ethical considerations.

3.2 Research Design

Quantitative objective emphasizes measurements and statistical, mathematical, or numerical

analysis of the collected data. Its goal is to collect information from an existing source, in this case, the

malware source from an open or commercial malware provider, such as Malware Bazaar or VirusShare.

The analysis results are transformed into numerical data, visualization of graphs, table data, and suitable

charts corresponding to the measured quantity under study, which determines the relationships between

two or more variables and features of the malware under study to establish baselines, similarities,

differences, and anomalies. The study undergoes several phases of tasks to explain and drill down into the

malware variant of the same malware type, such as ransomware, as the target samples. The Figure C

diagram, the methodology, gives the groundwork for five-stepped from the collection, data analysis,

feature extraction, and running machine learning using Artificial-Based Intelligence (ABI) methodology

data that shows the step-by-phased analysis to establish and discover the pattern of life, along with the

deviation and anomalies.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

14

2.
Assessment

(Analyze
Events)

3.
Explanation
 Compare &

Contrast
 Clustering

4.
Anticipation/

Analyze Baselines
 Deviation

5.
Delivery

Overall summary of
the type of malware

analyzed
 Baseline Final

Patterns

1.
Discovery

Static/Dynamic/
Network Tabulated

Features
 Feature

Engineering

0.
Data Collection

(Malware
Source)

 Raw Data

Figure C. ABI Methodology Life Cycle

0. Collect malware data – all malware belongs to the same type of classification. It is the critical

phase of any research project because it involves data gathering from the respective sources;

in this case, it is from a scientific malware research repository. It does not involve Personal

Identifiable Information (PII) or Personal Health Information (PHI). Therefore, there are no

privacy issues that were impacted during the research study.

1. Feature extraction of features – the characteristic of each malware is stored in the central

database or comma-delimited format to get ingested into machine learning. The important

features are identified and meaning to be used as input for machine learning. A subject matter

expert (SME) or knowledgeable of the sample target is an essential ingredient to

understanding the characteristical features to improve the models' accuracy, reduce the

problem's complexity, and make the model more interpretable.

2. Feature analysis – the collected features are converted into a comma-delimited format, which

is ingested into the chosen machine learning. Each data point sample is grouped or

categorized into its own cluster that has similar features. Identifying the clustered data points

gives the patterns of data that give way to predict how similar the malware is.

3. Descriptive analysis – the data is compared and differentiated, showing the summarized

points. One of the most important sections of the research phase is statistical analysis, which

is the foundation of answering the research questions. It helps to detect similarities among

features, making it further to run other statistical analyses.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

15

4. Anticipation phase – provides direction and narrows down the scope of data investigation

after the malware clustering that helps to establish answering the three research questions.

5. It is an overall summary of the findings that conclude the results.

There is a lack of practical research on using this process. Each successive event phase is a form

of data filtering and massaging to get the finalized results of the pattern of life. Each phase is a modular

design with a plugged-play process or algorithm to improve intelligence gathering. The quantitative

analysis approach of post-positivism, as stated by Crestwell," This worldview is sometimes called

positivist/postpositivist research, empirical research science, and postpositivism. This last term is called

post-positivism because it represents the thinking after positivism and recognizing that we cannot be

positive about our claims of knowledge when studying the behavior and actions of humans" [7]. For that

reason, the knowledge observed from the extracted malware features can be objective without absolute

certainty. The quantitative analysis uses the idea of post-positivism and by merging into the Artificial-

Based Intelligence (ABI) methodology process using the DBSCAN machine learning tool.

An ABI plus the use of DBSCAN is the process to quantify the research study and is appropriate

since the study aims to examine the multisource feature collections of static, behavioral, and network data

malware activities to quantify the malware features. As stated by Atwood, " Today's focus on single-

source exploitation in an environment of multisource data availability clearly hinders analysts from

understanding and conveying the overall meaning of the integrated results" [3]. The tasks analyze the

activity of multiple occurrences of essential characteristics of malware to explain the event frequencies,

event sequences, and other possible data event activities in the Windows operating systems in their

natural settings. The overall results give the results of descriptive and correlational designs of the

variables that measure different types of malware variables describing frequencies and events, along with

correlations.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

16

3.3 Research Methodology

 The type of data to collect for this method is an observational method where ransomware is

individually run into Windows 10 Operating System (OS) and is observed by the CAPEv2 malware

sandbox. The operating system is rebuilt and purged automatically for each ransomware to run by itself to

prevent interference from other malicious code in the system. In addition, the system's default security

baselines set by Microsoft were turned off, for example, Antivirus (AV), memory integrity, and Windows

Firewall (F/W) to allow the malware to communicate externally. The required settings would allow the

malware behavioral data to run as part of the collection process and be able to objectively, logically,

statistically, and unbiased measurements. The following section will follow the framework of the research

design using the Artificial-Based Intelligence methodology for data collection, feature discovery,

assessment of data, explanation, possible Anticipation, and the delivery of the final reports.

3.3.0 Phase 0: Data Collection

There is over 21k population collected from

authoritative data sources, 1781 of which are

scanned with YARA scripts, which consists of 510

confirmed ransomware from Malware Bazaar [52]

and 1271 confirmed ransomware from Virus Share [53] repositories. The ransomware samples

were ingested into the CAPEv2 sandbox to capture the activities of the process of the malicious

software. The rest of the ransomware that failed to identify by Yara scripts was still tested to run

into the malware sandbox. However, these portable executables (PE) failed to run because the

error states that it is Russian, Chinese, Spanish, Iran, or other languages quoting “Unconventional

language used in binary resources.” As a result, they were excluded from the study because the

main goal of the data is to collect confirmed reliable ransomware data as input parameters for

machine learning clustering.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

17

3.3.0.1 Instrument (Hardware/Software)

Since malware is dangerous, it tends to compromise the network and the connected

machines, and the lab environment is isolated from the rest of the systems. As a result, the

architectural design diagram described in Figure D shows the general overview of the lab

environment from collection data, analyzation, feature engineering, descriptive analysis, and the

final results. The primary concern with component functionality is to ensure its structurally sound

environmental laboratory accomplishes the goals of parsing and dissecting all the features of a

specific type of study malware without affecting and infecting essential files.

Preprocess Sample:
Unpack/unencrypt
Tested on Cape2

(Behaviorally capture
runtime process)

Density-based
spatial clustering of

applications with
noise (DBSCAN)

BareMetal/VM (Sandbox Box)

OPCODE/ASM (Static)
API System Calls (Static)
String
Logs (Dynamic)
Memory/Process (Dynamic)
Etc. more features
Etc. etc.

Malware By Type
Collection

Portable File 32-bit
Windows PE 3.

Default DB
Of CAPEv2

Tcpdump
(network)

Volatality
(memory)

PRINCIPAL
COMPONENT

ANALYSIS (PCA)

FEATURE
ENGINEERING

1.

2.

5.

4.

ANOMOLY (Outlier)
(Changes, Similarities,

Differences)

ABI Pattern Of Life (PoL)
Baselines

(Static
Baseline)

(Network
Baseline)

(Behavioral
Baseline)

Cape2 ->
Windows KVM

Life Cycle Repeats for
Performance/Feature Selection
Reason

Figure D: Malware Extraction Life Cycle

The diagram starts with the data collection, mainly portable executable (PE) file samples from

Virus Share and Malware Bazaar malware repositories. The Sandbox, CAPEv2, analyzes the

ransomware after the completed run and extracts the static, network, and behavioral processes.

The following steps show the detailed settings and configurations:

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

18

Step 1: Yara Scripts (Confirmed Ransomware Data)

The YARA scripts are used to filter out malicious portable executable data by searching

for patterns within the malware data. It allows identifying of quick, suspicious data

requiring investigation of ransomware, the target samples. Under certain circumstances,

they are used to isolate data that is deemed to be ransomware. The YARA scripts being

used are from different sources, namely 3vangel1st, bartblaze, BinaryAlert, f0wl, Open-

Source-YARA-rules, Neo23x0, Petya, Reversing labs, TJN yara repo, crime_wannacry,

and Yara rules project [54-65]. They are combined into one, removing duplicates. After

running the ransomware in the malware sandbox labs, there are roughly 1300 unlabeled

rows of data that run successfully with static, dynamic, and network with fewer null

values. As a result, 1300 will be used for this research giving us the completed run on the

CAPEv2, an in-house installed malware sandbox used as an instrument for data

extraction.

Step 2: Virtual Machine Configuration

A virtual machine (VM) is a safer way to analyze and study malware behavior than

running in a virtual machine because it enables wiping and recreating the VM at any

time. It can provide an isolated environment for the malware to trigger their behavioral

actions within the isolated systems that can be controlled and intercepted. The processor's

configuration must be set with the virtualization engine enabled for Virtualize Intel VT-

x/EPT or AMD-V/RVI to enable the Windows 10 Virtual Machine (VM) to run inside of

the VMWare virtual machine. The Hard Disk is set to 200 GB to accommodate 2000 live

viruses for processing, parsing, and collection. Figure E shows the virtual machine's

configuration for the lab.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

19

Figure E: VMware Workstation Configuration Settings

Step 3: CAPEv2 Malware Sandbox

The sandbox software is downloaded from the CAPEv2 website [51] and

installed on Ubuntu Linux version 20.04 using VMware Workstation 16 with the

configuration diagram below in Figure F. The malware sandbox deploys ransomware one

at a time to Windows 10 running in Kernel-based Virtual Machine (KVM). After each

deployment, the ransomware's collection processes and other dynamic behavior are

collected to a temporary directory where the output JSON files are stored. To ensure that

malware runs without any restrictions or blockage, the security settings of the Windows

10 running in KVM, such as Windows Defender, Anti-Virus, Firewall (F/W), and device

security, are disabled.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

20

Ubuntu Linux version 20.04

Windows 10
(KVM)

<scripts log process
extractor in c:/temp>

VMWare

CAPEv2
Malware Sandbox

Send Malware for Observation
(Static IP)

cape@ubuntu:/opt/CAPEv2/storage/
analyses$

JSON Logs

Deployed 1700
Ransomware

Figure F: VMWare Malware Sandbox Setup

Figure F is the general high-level diagram of the malware sandbox configuration.

Windows 10 is configured to have 8 GB RAM with at least 80 GB allocated space to

trick the malware as if it were running on a real machine. That is, the environmental

design setup should appear to be a natural environment making the malware believe it is

a physical machine.

Step 4: Extraction and Conversion

The raw data output of the malware run within the sandbox, CAPEv2, is in JSON

format. Using the domain knowledge of the malware characteristics, several categories

can be parsed or to conduct data mining, namely Static, Behavioral, Network, Dropped

Files, Process Dumps, and Payloads. Behavioral data is the application programming

interface (API) that manipulates the files written to the systems, including the dropped

files and the process of the executable running. Static is the executable portal mapping of

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

21

the malware. It contains the name generic name of the malware, the Dynamic Link

Library (DLL), object code, and other data structures that encapsulate Windows portable

executable (PE) information. Finally, the network is a means to communicate using

HTTP requests. Figure E is the snapshot of the menu in which ransomware runs

successfully. The "Dropped Files", "Process Dumps", and "Payloads" are populated with

the indication of number one (1). Having 1700 malicious software to ingest in the

CAPEv2 malware sandbox takes at least 10 to 11 weeks.

Figure G: CAPEv2 Menu Malware Sandbox Sample # 388

The data representation of each report is stored in JSON format, which is named

report.json by the CAPEv2 malware sandbox. It is stored in the default installation,

usually in /opt/CAPEv2/storage/analyses/reports directory. The portion of the JSON

output is formatted to comma-delimited files format, which is required for the machine

learning to ingest. The JSON formatting is written in a customized Python program, as

shown in Figure H Unified Modeling Language (UML) Diagram. The 1700 ransomware

of JSON extracting and formatting takes three weeks for conversation to comma-

delimited files. The Python program reads the location of the JSON logs output by the

malware sandbox one at a time. It converts it to a Python dictionary and dumps the file

comma-delimited to an external file using append mode.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

22

main.py class DataFeatureEng (DataFE.py)class JsonParser (Parser.py)

I/O JSON to comma-delimited
format and output to a folder

Stores array of data
elements

Converts JSON to dict() and extract
keys/values. Any null is discarded

Figure H: Modularized/Customized Python Program UML Design

Figure H shows the primary function controlling the JsonParser class object to

parse and formats the JSON format. Each JSON output is stored in a Python dictionary to

probe the contents to prepare for skipping nulls and to extract meaningful data, such as

static, dynamic, and network data. The final output is stored in a comma-delimited

format.

Step 4: Results of Conversion

Snippet A snapshot shows the snippets of the code of “Jupyter Notebook,” showing the

input of the CSV file as an input for the machine learning. It displays the raw data of

comma-delimited columns extracted from JSON files outputted from the CAPEv2

malware sandbox. The 1351 out of 1700 result is the total number of ransomware

eliminating “null” row data, capturing relevant features based on the domain knowledge,

and capturing with low missing data. The DELI* columns are designed to separate

malware features from static, dynamic, and network behavior, as described in the column

section, which needed to be further analyzed for feature engineering. Some column

features identified in Figure I have textual descriptions captured during the observation

and may require to be further broken down into more feature extraction.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

23

Snippet A: Jupyter Notebook Displaying Raw Column Data

Column Sections:

o Network feature: Malware tends to communicate using the Windows network

services to send or receive data off the internet. The feature is essential to provide

descriptive analysis. The column is named the “network” feature. It describes the

network traffic behavior of malware in terms of application programming interfaces

(API) that attempt to open sockets to connect to the network.

o Static Features. The static analysis of the portable executable involves the code of a

malicious program without being executed. It can be used to identify imported

dynamic link library (DLL) being used, encrypted strings, and codes being used. The

research attempts to gain preliminary insight into the behavior of malicious

programs. The following features are as follows:

- process_name_exe, process_names_exe_parameters, param_hashvalue,

peid_signatures, imagebase, entrypoint, pdbpath, actual_checksum,

reported_checksum, osversion, exported_dll_name, exported_dll_name_hash,

dllfiles, dllfiles_hash, dllfiles_sorted, dll_sorted_hash, imported_dll

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

24

o Dynamic Features: Dynamic analysis is the behavioral process or application

programming interfaces (API) captured while observing system malware. Its

characteristics can dynamically change without the user’s knowledge by interacting

with the victims’ computer systems. The following features are captured as follows:

namely, exe_cmcsUnique, procTreeUniqueHash, procTreeUniqueNoneHash,

procAPIUnique_hash, procAPIUnique, proc_API_hash, sumFilesUniqueHash,

sumFilesUniqueNoDeli2, sumUniqueReadFileStringHash,

sumReadFilesStringNoDeli, sumUniqueWriteFilesHash, sumUniqueWriteFiles,

sumUniqueDeletedSHash, sumUniqueDeletedS,dropped_files, dropped_files_hash

In conclusion, the data collection takes an extensive period for analysis. It

requires domain knowledge of the malware characteristics to represent the data set better.

The first step of the evaluation stage is understanding the data before getting ingested into

machine learning. The collection phase, in summary, has gone through finding specific

malware repositories for samples, ingesting into the CAPEv2 malware sandbox, and

converting the JSON output format into comma-delimited files. During the conversation,

some features with fewer null values are extracted to represent the data model.

3.3.1 Phase I: Discovery

 The collection of data by the CAPEv2 malware sandbox targets static, dynamic, and

network run-time output. These are the general categories of multiple data sources during the

observation phase that are filtered, parsed, and included in the samples. ABI states, "Intelligence

discovery is the ability to select, manipulate, and correlate data from multiple sources to identify

information relevant to ongoing operations and requirements "[3]. As a result, the objective is to

perform feature engineering, a process to filter data through feature selection, transformation,

construction, and extraction. It is vital and the first step to select relevant features of interest from

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

25

the dataset. The selections portray strongly related features; any weak relations are discarded.

Having quality data to analyze gives easy quantification of data patterns and tests the research

questions. The following steps of discovery are performed by using feature engineering used for

this research project.

Step 1: Data Cleanup: The data source from phase one is the first exploratory selection process to

be parsed using cleaned data and extensive feature engineering. Feature engineering (FE) requires

the selection and manipulation of the raw data to be transformed into features that need to be

ingested into machine learning. The Python DataFrame is a two-dimensional data structure that

stores data. It has an extensive library of functions to drop or add column features which are used

for data cleanup, which is essential before loading into the machine learning.

- Unique Feature: Any columns with unique features, for example, the generic name

“process_name_exe” of the malware, are dropped. The malware repository generates the

ransomware being used. It does not specify what type of ransomware.

- Dropped Null Values: Null values are designated as unknown or missing data. They are

only bits and pieces of information. Several features that were extracted from the raw

data have null values. The column features of the sample data are dropped if they have at

least 50% of missing values. As part of the domain knowledge required for the project,

the belief is that some ransomware features may not have used the features due to

changes in functionalities. There are no imputation techniques used to fill in the null data,

except having to mark it as zero to indicate that feature is not used.

Step 2: Feature Extraction: The process takes the extracts of features from the current data that

are useful, and in turn, another feature is created. As shown below in Table X, the query

containing the keyword, for example, ‘Crypt’ on DLL columns, the feature is created having each

row whether with the designation of 1(true) or 0 (false). The resulting feature is listed in Table 1.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

26

DLL Columns

DataFrame['dllfiles'].str.contains('Crypt', case=False, regex=True)

DataFrame['dllfiles'].str.contains('SHELL', case=False, regex=True)

DataFrame['dllfiles'].str.contains('wsock|WS2_32|MSWSOCK|WININET|netapi32|WINHTTP|

Mswsock', case=False, regex=True)

DataFrame['dllfiles'].str.contains('sohutool', case=False, regex=True)

Executable

DataFrame ['exe_cmcsUnique'].str.contains('crypt', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('Install', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('update', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('batch', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('cmd', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('iexplore', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('123|321', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('bot', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('virus', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('host', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('task', case=False, regex=True)

DataFrame ['exe_cmcsUnique'].str.contains('exe', case=False, regex=True)

Dropped Files

DataFrame['dropped_files'].str.contains('lock', case=False, regex=True)

DataFrame['dropped_files'].str.contains('text|files', case=False, regex=True)

DataFrame['dropped_files'].str.contains('read', case=False, regex=True)

DataFrame

['sumUniqueWriteFiles'].str.contains('msg|hack|crypt|hello|notice|readme|news|EnCiPhErEd|En

CrYpTeD|ENCODED|lock|password', case=False, regex=True)

API Files

DataFrame ['procAPIUnique'].str.contains('write', case=False, regex=True)

DataFrame ['procAPIUnique'].str.contains('read', case=False, regex=True)

DataFrame ['procAPIUnique'].str.contains('open', case=False, regex=True)

DataFrame ['procAPIUnique'].str.contains('delete', case=False, regex=True)

DataFrame ['procAPIUnique'].str.contains('crypt', case=False, regex=True)

DataFrame

['procAPIUnique'].str.contains('http|socket|connect|send|recv|GetAdaptersAddresses|bind',

case=False, regex=True)

Table 1: Feature Creation/Engineering by Feature Extraction

Step 4: After the exploratory data research, the identified features from the original features and

created features with the least number of null values on each column are included as the final

features as shown in Table 2.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

27

Table 2: Feature Selection Output

Column definitions identify the usefulness of the data. They would be used as the

parameter input for clustering because they are deemed to be meaningful data related to

ransomware's general characteristics. Most of the data does not have null values and is mostly

related to ransomware's general characteristics. The identified data is the essential and the most

granular piece of static, behavioral, and network parameters. They are chosen because of their

knowledge of ransomware. As a result, the recognized data are to be included in the process,

such as the data described in Table 2.

 Process names with parameters (process_names_exe_parameters) are parameters

being passed to the malware before they are set to run in the Windows environment.

Many programs run differently with different parameters. One must run the Windows

DOS command prompt window to accomplish this. Each observation has shown

using different parameters.

 Imagebase (imagebase) – is the portable executable (PE) hash identifier of the

malware to ensure that the collected malware is unique. The value of the variable

specifies the preferred address where the Windows executable should be mapped to

memory.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

28

 Entry Point (entry_point) is the starting point memory address where malware

attempts to execute. For example, the malware starts with 0x004ee3c0 memory to

execute. It is relative to the “Imagebase” address. The address of the entry point is the

address where the portable executable loader will start its execution.

 Execute Unique Commands (exe_cmcsUnique) – the different executable files or

commands the malware launches (i.e., update.bat, fondue.exe). These are the

executable files run by the malware. An executable file (EXE file) contains an

encoded sequence of instructions that computer systems can execute, whether by user

clicks or called by the other program.

 File Manipulation (sumUniqueWriteFiles, sumUniqueDeletedS) shows files created

(written) or deleted by the malware.

 DLL (Dynamic Link Library) – the columns DLL_Encryption_Feature,

DLL_FileAccess_Feature, DLL_Network_Feature, and DLL_Custom_Feature are

the libraries used and shared by many applications running in the Windows systems.

 Execution Files (Execute_Commands_crypt,Execute_Commands_flash,

Execute_Commands_update, Execute_Commands_batch,

Execute_Commands_cmd, Execute_Commands_iexplore,

Execute_Commands_123, Execute_Commands_bot, Execute_Commands_virus,

Execute_Commands_host, Execute_Commands_taskmanager,

Execute_Commands_exe) are the processes executable features as part of feature

engineering. These are the most common executable features captured during the

observation.

 Dropped Files (FileDrop_lock, FileDrop_text, FileDrop_readme,

Feature_DropWriteFiles) are the files dropped by the malware in different file

extensions. It is either in *.lock, *.text, or *.readme file extensions)

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

29

Step 5: Heatmap Correlation

Heatmap correlation, a form of a graphical two-dimensional representation of data,

displays between variables as a color-code matrix. The chart shows how the variables are closely

related to visualize the strength of relationships between two variables and excluding the

variables with low correlation.

Using a Spearman correlation coefficient shows the correlations of each feature in the

dataset. Each feature is listed on both axes, and the relationships with other variables are

displayed from blue to red color. The correlation ranges from -1.0 (blue) to +1.0 (red). It

determines whether there is a linear or nonlinear relationship between variables. In this research,

features with more than 50% (.50), from moderate to strong positive correlation, will be the target

variables as feature selections. There are 1300 observations (samples) with twenty-seven

identified features, the data variables from each sample. Figure I, the Heatmap, displays the value

in each cell used to gauge the strength of the relationship and the direction of the relationship

between the two variables. That is, each feature is listed on both axes. The correlation could be

positive or negative (Weak +/-0.0-0.40, Moderate +/-0.40-0.70, Strong +/-0.70-1.0). As the color

becomes darker in red, they are more highly correlated. The heatmap values are changed to the

standard scale from -1 to 1.

The closer to the 1.00 value, the higher the correlation; it is said to have a positive

relationship between the two variables. Any value with -1.00 is said to have a negative

relationship, and any values with 0 are said not to correlate. The matrix's diagonal elements

contain the variables' variances, while the off-diagonal elements contain the covariances between

all possible variables. The covariances shown in Figure I indicate the correlations between

variables. The figure has also demonstrated the existence of multicollinearity. That is

when features, the input variables, correlate highly with one or more of the other features.

Having a high correlation affects the performance of any classification or regression

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

30

model because it skews the output, but the research uses clustering modeling. The dataset

is ingested into Principal Component Analysis (PCA) to combine all the highly correlated

variables into an uncorrelated variable. Then, the PCA output is used as input for

DBSCAN. Theoretically, one could apply PCA to the samples or the features

(dimensions). This research uses features because they are smaller than the samples.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

31

Figure I: Heatmap (Multicollinearity)

In conclusion, Figure I displays the summary of all correlations between all the possible

pairs of variables. It has shown many multi-collinearity. Any paired variables (positive or

negative pairs) that decrease or increase together are identified as correlated. The heatmap

shown under study is the primary variable of interest across two axes. The closer the value to 1.0,

the higher the correlation. Since the heat map contains multiple dimensions, Principal

Component Analysis (PCA) is used to reduce the dimensionality of column features to the next

phase of ABI.

3.3.2 Phase II: Assessment

 The assessment starts with categorizing the target data by focusing on and drilling down each

malware, the ransomware in question, by examining its capabilities and features. It detects any

modifications and groups all the malware similar to the other malware. As stated by Atwood,

"Intelligence assessment is the ability to provide a focused examination of data and information about an

object or an event, to classify and categorize it, and to assess its reliability and credibility in order to

create estimates of capabilities and impacts." [3]. Examining data requires looking into the purpose of

each feature to be included in the study as part of the feature engineering phase. There are many features

to sift through, with at least 27 features or dimensions. Consequently, a Principal Component Analysis

(PCA) is used to reduce the dimensions followed by Unsupervised Density-based spatial clustering of

application with noise (DBSCAN), which is precomputed by running a Silhouette Score.

3.3.2.1 Principal Component Analysis [Step 1]

The first step requires studying and parsing the combined three sources (static, behavioral,

network) for feature engineering. CAPEv2 Sandbox provided data set behaviors after ingesting a large

malware sample. The associated datasets (selected 27 features) are reduced or condensed while preserving

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

32

meaningful data. Principal Component Analysis (PCA), an unsupervised learning method, is one

technique used to reduce the features into a smaller set of new composite dimensions. PCA is used to

explore data for analysis, giving us an excellent data summary using a limited number of principal

components. Reducing our dataset dimensions can find new variables from the original datasets and solve

eigenvalue and eigenvector problems. From Figure, I, any identified features with 0.50 correlations are

included. Having to analyze 27 variables is too large for helpful analysis; anything beyond the three

dimensions is difficult to understand. As a result, the principal component analysis is configured to output

from 27 original features to a reduced three feature variables of a data set while preserving as much

information as possible.

Using the Scikit-learn PCA(), part of the machine learning library for Python programming

language, there is a way to project the best number of principal components; it is a type of

hyperparameter tuning process selecting the optimal value for the hyperparameter n_components variable.

In other words, we select the smallest number of components that hold at least 80% of the total variance,

the recommended value Watkins [8]. In addition, based on the interpretation of Cangelosi, PCA should

keep the most variance between 80% and 90% for straightforward interpretation [61]. Figure I, a scree

plot useful visual aid representation for determining the number of principal components, shows

"explained variance" across components and informs about an individual and cumulative explained

variance for each component. It is a graphical representation of the variation of each principal component.

The explained variance ratio is the percentage of variance explained by each selected component. The

number of components to include in the model is adding the explained variance ratio of each component

until we reach at least 80% percent to avoid overfitting.

Number of Features: 27

How many components algorithm has selected: 5

Total Variance for each bar: [0.52294824 0.20165593 0.09273911 0.05369307 0.02995287]

Cumulated In Progression: [0.52294824 0.72460417 0.81734328 0.87103635 0.90098922]

Total Variance Explained: 90.1

(1147, 5)

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

33

Figure J: 81.73 Cumulative Variance

The first three bar graphs, the eigenvalues, shows PCA 1 [red], PCA 2 [orange], and PCA 3 [blue]) are

added to 81.73%. Added all the projected PCAs, the Total variance is the sum of all variances of

individual principal components. The values, 0.52294824 0.20165593 0.09273911], equal the eigenvalues

of the covariance; it's stored in "PCA.explained_variance_." These 3 PCAs are used as the cut-off value

for the 80% threshold as shown in the curved line (a cumulative explained variance) – the dimensionality

reduction applications represent all the data features. PCA 1 has the most considerable explained

variance. It is the most significant absolute value contributing to more specific features; it accounts for

50% of the variation. As a result, we have twenty-seven features reduced to 3, the PCA(s); they would be

used to represent the data accurately. An alternative method of showing Figure J is the Scree Plot Figure

K. It shows the explained variance ratio plot. The screen plot below shows the eigenvalues from the

largest to the smallest. The ideal or acceptable pattern for PCA is the steeped curve, followed by a bend

and straight line. In this case, PCA 3 is chosen.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

34

Figure K: Project Principal Component Analysis Alternative View

3.2.2.2 Silhouette Scoring and DBSCAN [Step 2]

The purpose of this phase is to categorize the data using the PCA as the input. It is ingested by the

Unsupervised Density-based spatial clustering of application with noise (DBSCAN) clustering algorithm.

The collected ransomware data is unlabeled data clustering using the Euclidean distance measurement.

The DBSCAN has to make up new labels for the data based on what it sees. The clusters give the

baselines to show similarities among malware of the same type deployed by different authors. Finding

clusters of data signifies an association of the malware that most likely comes from the exact origin of the

source code, which the malware author may share. The more they are similar, the more they belong to a

group or a cluster. "Clustering is partitioning the data into groups that are similar as possible given a set

of data Objects," as stated by Bushra and G. Yi [9]. It would be highly effective and beneficial to use

DBSCAN to improve clustering quality. With thousands of malware samples collected, it would tell us

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

35

the number of baselines or commonalities, giving us a possible clue that they may have derived from the

source code origin.

The graph in Figure L, the Image before applying DBSCAN, derives from Figure K Principal

Component Analysis (PCA), where feature engineering was used to reduce the 27 features. Section

3.2.2.2.1 shows to calculate the silhouette scoring, which would be applied to DBSCAN as shown in

Figure K of section 3.2.2.2.2.

Figure L: PCA Graph Feature Engineering

3.2.2.2.1 Calculating Silhouette Score Technique (Internal Measures)

Two measuring methods are introduced to validate the accuracy of Silhouette scoring

techniques, which are used to find the maximum number of clusters in the dataset under

study. The first is the Silhouette Scoring technique, a graphical representation technique to

measure cluster separability. It is a metric for how good the clustering or how well each

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

36

object has been classified. It indicates how many clusters are in a given dataset. The scoring

value ranges from -1 (low value) to 1 (high value), as shown in Table 3 Silhouette Score

column. It demonstrates that the high value indicates how similar or cohesive an object is to

its own cluster compared to other separated clusters. The second one is the elbow technique

used to determine the appropriate epsilon. They are used side by side to find and compare the

optimal clusters.

Seeing Table 3 shows the iteration of epsilon values ranging. The scoring metrics below

determine the appropriate epsilon level and the minimum number of points to get the correct

clusters. The epsilon values are iterated, ranging from 0.10 to 0.89. Looking at the table

below, the best epsilon value and the minimum are 0.89 and 4, respectively; it generates 8

clusters plus outliers totaling 9. The data came from line # 239 below, showing one of the

optimal numbers of clusters; it is the simulated precomputed value of distance metrics;

it gives the least number of outliers. Only Silhouette Score is used for measurement because

Inertia Score is only to be used with DBSCAN with a spherical shape; it is not applicable at

this point.

Score between -1 and 1

Highest Score chosen for DBSCAN parameters. It produces 9 clusters total.

Table 3: Silhouette Score

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

37

There are several approaches or techniques to visualize Silhouette Scoring to determine the

appropriate epsilon values and minimum points by using the elbow approach. The research found

0.89 epsilon values and four minimum points is a table representation to the graphical Figure M

as shown below (8|4), using different level hyperparameters. The silhouette score is 0.790138

meaning the clusters are well apart from each other as the silhouette scoring is closer to 1.

Figure M: Silhouette Scoring using Hyperparameters

Finally, Silhouette scoring is compared to the elbow method, as shown in Figure N. The

goal is to find the elbow in the plot, which shows the point where the number of clusters

increases, shown in a circle. Comparing this to the Silhoutette scoring, it is determined that the

epsilon is around .80. That entails that the scoring is measurably accurate.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

38

Figure N: Elbow Technique To Find Optimum Epsilon

3.2.2.2.2 Applying Silhouette Scoring to DBSCAN

DBSCAN is a density-based clustering algorithm in which dense regions in space are

separated from other regions by lower density. Using the clusters would show some degrees

of similarities among ransomware or any malware. The advantage of the DBSCAN machine

learning algorithm is that it does not require specifying the number of clusters in the dataset.

Using this algorithm requires two parameters, namely epsilon (eps) and minimum points

(minPoints), which could be calculated from Figure M and Table 3 Silhouette scoring.

Epsilon is the radius of the circle, a close point that should be considered as part of the

cluster. The minimum (minPoints) is the number of data points required inside of the circle to

form a dense region; for instance, if the parameter of the minPoints is set to 4, then the

algorithm needs at least 4 points to form a dense region.

Before applying the clustering algorithm, one has to determine the correct epsilon level

and minimum points. Using Table 3 shows the simulated combination of it, resulting in the

number of clustering output results. Since the project requires three principal components,

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

39

Figure O, the DBSCAN results, shows that after running DBSCAN using epsilon .89 and a

minimum of 4 points precomputed values with the default metric parameter of "Euclidean,"

which calculates the distance between instances in a feature array. Each object clustered

within the same group is more similar than those in the other groups. The diagram below

shows eight clustered groups; there are 14 individual outliers, data points that do not belong

to any groups. The resulting clusters are calculated using Silhouette Coefficient only because

the malware data [ransomware] are not labeled data. Note that the collected malware is

unlabeled, rendering the truth labels unknown. As a result, the only evaluation for DBSCAN

is the model results; in this case, the Silhouette Coefficient is the only metric to use, which

works well in classifying clusters resulting in globular clusters. The typical metrics identified

by sci-kit-learn DBSCAN, such as Homogeneity, Completeness, V-measure, Adjusted Rand

Index, and Adjusted Mutual Information, could only be used if the DBSCAN is used with

"true labels." In addition, Density-based Clustering Validation (DBCV) is unnecessary

because it only applies to non-globular clusters.

Figure O: DBSCAN using Silhouette Coefficient

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

40

The clustering results portrayed in Figure N (Cluster Cardinality) have followed the segmentation

process of using Silhouette scoring metrics as the input data for DBSCAN, which uses Euclidean

distance metrics. Choosing the correct features with the correct number of PCAs resulted in

showing no overlapping clusters with the least number of outliers, which is 8 (-1 label on the x-

axis). The clustering data shows the similarities of the internal characteristics. According to Li,

“Clustering analysis refers to the analysis process of grouping a set of physical or abstract

objects into multiple classes composed of similar objects. Its goal is to classify the data

according to the similarity of the data's internal characteristics and reveal the data's

internal natural structure. In short, clustering refers to grouping abstract objects or

physical object sets so that the similarity of objects in a group is large. In contrast, the

difference between different groups is large “[63]. Under certain circumstances, Figure P

shows the cardinality where each cluster shows a degree of similarity compared to other

ransomware belonging to other clusters.

Figure P: Clustering Cardinality

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

41

3.3.3 Phase III: Explanation (Descriptive Data Analysis)

 The descriptive analysis investigates or describes the summary of the data points in such a way as

to show patterns and insights into the static, behavioral, and network data. It is one of the essential steps

before conducting statistical because it substantially affects data analysis or predictive analysis for their

completeness. It gives the insight distribution of data to detect similarities, differences, or outliers to

identify associations among the features captured during the observation phase of the malware behavior.

Under certain circumstances, bar graphs, table data, line graphs, or supervene diagrams will be used to

represent the collective statistics for comparison.

Using the results of the DBSCAN, where eight (8) clustered observations are identified, this

phase's task is to drill down the examinations of each cluster by identifying the baselines of each

significant feature. It includes the similarities, differences, and anomalies of the ransomware features

using descriptive statistics regarding its frequencies, percentage, and mode summary. They are essential

because they provide absolute numbers that map to the Charts and Graphs of our analysis for the

intelligence explanation as stated, "Intelligence explanation is the ability to examine events and derive

knowledge and insights from interrelated data in order to create causal descriptions and propose

significance in greater contexts" [3]. The data provides a descriptive broader narrative for the research

questions.

 Ransomware is a kind of malware that is designed to deny users or organizations access to files

on their computer systems. It encrypts files and demands a ransom payment for the decryption keys. The

known domain knowledge of ransomware characteristics is essential to target the statistical analysis of

Windows Portable Executable (PE) encryption, file application programming interface (API), and

dropped files. Thus, the description of the research focuses on profiling these features to provide

descriptive statistics, precise API frequencies, and sequence API analyses to answer the research

questions quantitatively. Below are the descriptive statistical data gathered from the ransomware traits,

along with the interpretations of each line graph and by using a supervenn diagram [66]. Line graphs for

each cluster are used to compare trends and patterns of the features used by the ransomware author. It

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

42

helps to decipher connections between clusters. The statistical descriptions show the step of the drill-

down data that makes up the APIs responsible for file access, like dropping and deleting files and data

encryption usage. The following drill-down data delves into different categories of ransomware

characteristics from static, dynamic, and network behavior that reveals its method of operations for

statistical usage, plus a short summary of the directional data results.

Drill Down Data: General Features (Comparison of captured 27 features)

Application Programming Interfaces (API), text documents, and command executions are the most

prevalent behaviors captured during the observation phase during ransomware runs. These features are

extracted and transformed from raw data in JSON format of CAPEv2 malware sandbox. The chosen

observations derive from the feature discovery process of using domain knowledge. All these features are

used to improve the quality of the results from data analysis as the result of machine learning. Figure O

describes the up and down slopes of the line segments of each cluster; it shows the ransomware features'

changes, trends, and patterns. The line graphs describe the number of elements (static, dynamic, and

network categories) that are mainly used for all the ransomware. The label features derive from Figure I

of Feature Engineering (FE), showing the general trend differences and similarities.

Figure Q: Processes/Files/Static/Dynamic Features

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

43

As defined by the Artificial-Based Intelligence (ABI) quantitative analysis, Cluster 0 (zero) deleted

"API" functions that are less used than the rest of the clusters. It does not conform to the pattern set forth

by other groups. This research discovered that all the samples might have been derived from an identical

source copy of the malware. Figure M line graph derives from the statistical number of occurrences from

Table 3. Lines 1, 3, 4, and 5 have the most events signifying that most activities of reading, opening,

encrypting, and writing files.

 General Features Cl0 CL1 CL2 CL3 CL4 CL5 CL6 CL7 Outlier

0 http 157 352 406 73 46 91 7 7 3

1 encrypt_api 157 352 406 73 46 91 7 7 3

2 delete_api 98 352 406 73 46 91 7 7 0

3 open_api 157 352 406 73 46 91 7 7 8

4 read_api 157 352 406 73 46 91 7 7 8

5 write_api 157 352 406 73 46 91 7 7 8

6 drop_api 126 298 333 55 41 76 5 6 5

7 file_drop_readme 73 184 192 40 27 51 4 4 2

8 file_drop_text 74 186 192 38 26 51 4 4 2

9 file_drop_lock 75 184 194 39 26 51 4 4 2

10 exe_commands 143 314 364 70 40 82 7 6 8

11 taskmanager.exe 114 229 283 47 28 59 4 4 4

12 host.exe 114 236 287 49 29 60 4 4 4

13 virus.exe 119 239 301 53 32 64 5 4 5

14 bot.exe 112 228 283 47 28 59 4 4 4

15 123.exe 113 227 284 48 28 59 4 4 4

16 iexplore.exe 112 230 284 47 28 59 4 4 4

17 cmd.exe 113 229 285 47 28 59 4 4 4

18 Dll Encryption Usage 24 86 88 15 10 22 3 1 3

19 Dll FileAccess Usage 99 222 269 39 28 53 4 4 5

20 Dll Network Usage 39 118 127 21 13 26 3 1 1

21 Dll Custom Usage 39 118 127 21 13 26 3 1 1

22 crypt.exe 113 228 286 47 28 59 4 4 4

23 flash.exe 114 233 292 51 30 62 5 4 5

24 update.exe 112 235 287 47 29 59 4 5 4

25 batch.exe 112 227 283 47 28 59 4 4 0

Table 4: General Features Statistical Occurens Per Cluster

Table 5 shows the definitions and description of the malware activities and the executive summary of the

static, network, and dynamic processes captured during the observation. It emphasizes executable, HTTP,

file API, DLL, and dropped files.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

44

Label Description

EXE The features with *.exe are the system's captured processes. They are

the most common portable executables launched by the ransomware

after they are deployed in Windows 10 environment.

HTTP A hypertext transfer protocol captures features during the scan;

however, there is hardly any Internet Protocol (IP). The network

column was excluded from further analysis due to 90% of the null

values.

STATIC

ENCRYPTION/FILE

Encryption and file access are the most used DLL features in static

analysis.

DYNAMIC

ENCRYPTION/FILE

There are several APIs captured by CAPEv2 virtual machine; there are

delete, encrypt, read, write, and drop Application Programming

Interface (API). "crypt" is a utility program used for encryption. Notice

that encrypts_api is a calling function that the utility program might

have called.

DROPPED FILES The most common dropped files have an extension of *.txt, *. readme,

and *.lock. They carry messages for the victims to read and

instructions.

Table 5: Figure O Label Executive Summary

Drill Down Data: All Invoked APIs [General Comparison] By Cluster

One of the most representative characteristics of malware behavior in detecting malware is the

Application Programming Interface (API). It reveals the most intrinsic behavior of the malware motive of

operations and its sequence behavior. It’s the way a program interacts with one another, either with the

built-in Windows API or the customized API. API calls for a message sent to service the request asking

other APIs to provide any services or information. Figure N depicts a general overview of all API calls.

Since it is impossible to create more than three sets of Venn diagrams, "supervenn" is used to depict the

general relationship of each cluster. The orange color is the "Intersection between clusters 4 and 7", which

is the final baseline for all ransomware API calls currently; they have identical unique API calls. Cluster

zero to cluster three differs from clusters 4 to 7, the total baseline calls, some of which do not exist in

some clusters. There are multiple calls, yet the diagram represents only the class APIs; they do not convey

the number of calls because it would not fit into the diagram. Reading the "supervenn" diagram, all the

white spaces are APIs not included in the baseline APIs. For example, "Cluster 1" has 15 API calls not

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

45

included in the baseline. This diagram will not be discussed in detail, but we will drill down on it in the

following section. Figure R shows individuals that have similar characteristics. "True" means the rows are

the same, while the "False" findings have no matching rows. It could be inferred that cluster 0 has the

least API calls, which might have been the initial baseline.

Cluster 3: 2
{'RegDeleteV
alueA',
'FindResourc
eExW'}

Cluster 2: 7
{'PStoreCreateInstance'
, 'FindResourceExW',
'RegDeleteKeyA',
'recvfrom',
'OutputDebugStringW',
'RegDeleteValueA',
'HTTPSFinalProv'}

Cluster 1: 15
{'PStoreCreateInstance',
'NetUserGetInfo',
'FindWindowExA',
'CopyFileExW',
'FindResourceExW',
'RegDeleteKeyA', 'accept',
'InternetGetConnectedState',
'recvfrom',
'OutputDebugStringW',
'RegDeleteValueA',
'Module32NextW',
'DnsQuery_A',
'HTTPSFinalProv', 'listen'} Cluster 0: 44 {'NtDeleteFile', 'PStoreCreateInstance', 'NetUserGetInfo',

'FindResourceExW', 'RegEnumValueA', 'GetDiskFreeSpaceExA',
'CreateProcessInternalW', 'RegEnumKeyExA', 'NtRaiseHardError',
'BCryptEncrypt', 'DnsQuery_A', 'WSAConnect', 'NtCreateThreadEx',
'InternetCrackUrlA', 'Module32FirstW', 'RemoveDirectoryW',
'InternetGetConnectedState', 'ObtainUserAgentString',
'InternetCrackUrlW', 'OutputDebugStringW', 'Module32NextW',
'NetGetJoinInformation', 'CryptImportPublicKeyInfo', 'accept', 'listen',
'CryptDecrypt', 'DeleteFileA', 'FindWindowExA',
'COleScript_ParseScriptText', 'HTTPSCertificateTrust',
'HttpQueryInfoW', 'WaitForDebugEvent', 'InternetReadFile',
'GetAsyncKeyState', 'CopyFileExW', 'HttpAddRequestHeadersA',
'RegDeleteKeyA', 'NtLoadKeyEx', 'recvfrom', 'InternetSetOptionA',
'CryptDeriveKey', 'RegDeleteValueA', 'HTTPSFinalProv',
'SetupDiGetClassDevsA'}

Intersection
between
cluster 0 to 7
including
outliers
[BASELINE] Intersection

between
cluster 4 to 7

Note that
blank spaces
represent
missing APIs
not part of
the baseline.

Number of
clustered
malware

Figure 1.3: Individual Malware Row
API Row Sequence Call/cluster. Each
API sequence calls are compared
against other clusters on Figure 1.
cluster: 0 {False: 30, True: 127}
cluster:1 {True: 332, False: 20}
cluster:2{True: 399, False: 7}
cluster:3 {True: 68, False: 5}
cluster: 4 {True: 44, False: 2} cluster:5
{True: 90, False: 1}
cluster:6 {True: 5, False: 2}
cluster:7 {True: 6, False: 1}
cluster:-1 {False: 6, True: 2}

Separate the sequence API
function calls on each row for comparison

Figure R: Application Programming Interface (API) Comparison

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

46

Drill Down Data: Encryption API Drill Down [Comparison]

Encryption is the process of converting original data, known as plaintext, into another format,

which is known as ciphertext. Individuals and companies protect sensitive data by encryption at rest and

in transit from hacking. To encrypt a unique encryption key is needed to decrypt the encrypted data. It is

essential for organizations or any entities to protect their data. However, bad actors who are either one

person, a group, or an organized crime, could use encryption to encrypt files or the whole systems’

victims to prevent access to their computer systems or important files and demand ransom for their return.

Ransomware, malicious software, is a form of malware used by bad actors. They encrypt victims' system

files to lock by making them unreadable or by locking the computer system directly. As part of the ABI

profiling process, it is essential to identify all the most common methods used for encryption. For the

study, the dynamic application programming interfaces (API) usages for encryption are collected for

visualization. Figure S displays 20 dynamic API encryptions that are identified on all 8 clusters during the

observation phase.

Figure S: API Encryption Names

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

47

The most notable and commonly used are "CrypExportKey" and "CrypImpKey." The pattern

dictates that they are the primary API tool to lock files or the systems. In addition, based on Figure P,

there are 20 identified unique encryption API functions used in clusters 1 to 7. Cluster 0 is the difference

between 4 APIs missing from the rest of the clusters. In other words, individual malware uses all API

encryption baselines, the identified unique ransomware signatures, to lock the victims' machines. Finally,

the outliers only use two encryption APIs, namely CryptAcquireContextW and CryptGenRandom, as

shown in Table 6.

 Encryption API Cl0 CL1 CL2 CL3 CL4 CL5 CL6 CL7 Outlier

0 BCryptEncrypt 0 263 406 73 46 91 7 7 0

1 BCryptImportKey 121 352 406 73 46 91 7 7 0

2 CryptAcquireContextA 127 352 406 73 46 91 7 7 0

3 CryptAcquireContextW 157 352 406 73 46 91 7 7 3

4 CryptCreateHash 128 352 406 73 46 91 7 7 0

5 CryptDecodeObjectEx 121 352 406 73 46 91 7 7 0

6 CryptDecrypt 0 284 406 73 46 91 7 7 0

7 CryptDeriveKey 0 284 406 73 46 91 7 7 0

8 CryptDestroyHash 128 352 406 73 46 91 7 7 0

9 CryptDestroyKey 150 352 406 73 46 91 7 7 0

10 CryptEncrypt 139 615 812 146 92 182 14 14 0

11 CryptExportKey 150 352 406 73 46 91 7 7 0

12 CryptGenKey 150 352 406 73 46 91 7 7 0

13 CryptGenRandom 157 352 406 73 46 91 7 7 3

14 CryptHashData 128 352 406 73 46 91 7 7 0

15 CryptImportKey 260 704 812 146 92 182 14 14 0

16 CryptImportPublicKeyInfo 0 263 406 73 46 91 7 7 0

17 CryptRetrieveObjectByUrlW 45 352 406 73 46 91 7 7 0

18 SslDecryptPacket 121 352 406 73 46 91 7 7 0

19 SslEncryptPacket 121 352 406 73 46 91 7 7 0

 Table 6. Encryption API Statistics Per Cluster

Comparing each cluster's unique encryption API features, it is discovered that cluster 1 to cluster

seven demonstrate they have utilized the same encryption API as shown in Figure T. It indicates the

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

48

general API baseline source code used for ransomware. The outlier of the supervene diagram shows some

similarities among the clusters with some key differences; it has missing APIs from the baseline indicated

in Figure R number 4. Based on ABI, It is the starting point for comparisons among different ransomware

deployed in the wild.

4 {'CryptDecrypt',
'BCryptEncrypt',

'CryptImportPublicKeyInf
o', 'CryptDeriveKey'}

20 {'CryptAcquireContextA', 'BCryptEncrypt', 'SslDecryptPacket', 'CryptImportKey',
'CryptDestroyKey', 'CryptEncrypt', 'BCryptImportKey', 'CryptDestroyHash',

'CryptImportPublicKeyInfo', 'CryptExportKey', 'CryptDecrypt', 'CryptCreateHash',
'CryptRetrieveObjectByUrlW', 'CryptGenRandom', 'CryptGenKey', 'SslEncryptPacket',
'CryptDecodeObjectEx', 'CryptAcquireContextW', 'CryptHashData', 'CryptDeriveKey'}

 2
['CryptAcquireContextW',

'CryptGenRandom']

Figure T: Dynamic API Encryption Comparison

 The Dynamic Link Library (DLL) static portable executable analysis on Bar Chart 1 shows the

clusters used by CRYPT32.DLL. The DLL is a Microsoft module of the Windows Operating System

(OS) implementing certificate and cryptographic messaging functions. Different versions of MS Windows

come with different capabilities, but the research uses Windows 10. CRYPT32.DLL is in the

C:\Windows\SysWOW64\crypt32.dll file, and there are 207 other DLL files in the system32 directory

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

49

that are statically linked to this file. In those words, the ransomware is a 32-bit system running in the

subsystem of the 64-bit Window environment that uses the DLL.

Bar Chart 1: Static Analysis Dynamic Link Library (DLL)

Finally, Bar Chart 2 shows the number of dynamically invoked cryptographic function processes

for each cluster, uniquely identified in Figure T, showing the unique baselines for each cluster.

This chart shows the number of times the encryption APIs were called, indicating the change in

the program of the ransomware functionality.

Bar Chart 2: Dynamic Encryption API Class Per Cluster

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

50

Drill Down Data: File Function API Usage

Microsoft Windows comes with API file and directory management, an input/output device that

can delete, move, create, download, and drop files or directories. They are heavily used by ransomware,

which can create files to encrypt victims' files, and dropped files contain messages for the victims to read.

That is why the malware needs access to the file DLL functions to perform its destructive tasks. Figure U,

derived from Table 7, identifies all API file functions on each cluster for file window manipulation

regarding reading, creating, copying, moving, and writing files or directories. These are ransomware's

main file function characteristics to create or drop files. Cluster 2 does not conform to the pattern of the

rest of the clusters, with minimal slope changes; however, the CopyFileExW function, which copies an

existing file to a new one, has dipped sharply.

Figure U: API File Names

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

51

 API_FILENAMES 0 1 2 3 4 5 6 7 Outlier

0 CopyFileA 157 352 406 73 46 91 7 7 1

1 CopyFileExW 0 0 279 73 46 91 7 7 0

2 CopyFileW 139 352 406 73 46 91 7 7 0

3 DeleteFileA 0 272 406 73 46 91 7 7 0

4 DeleteFileW 98 352 406 73 46 91 7 7 0

5 FindFirstFileExW 157 352 406 73 46 91 7 7 0

6 GetFileVersionInfoSizeW 157 352 406 73 46 91 7 7 8

7 GetFileVersionInfoW 157 352 406 73 46 91 7 7 8

8 GetSystemTimeAsFileTime 157 352 406 73 46 91 7 7 8

9 InternetReadFile 0 144 406 73 46 91 7 7 0

10 MoveFileWithProgressTransactedW 157 352 406 73 46 91 7 7 1

11 NtCreateFile 157 352 406 73 46 91 7 7 8

12 NtCreateNamedPipeFile 150 352 406 73 46 91 7 7 0

13 NtDeleteFile 0 172 406 73 46 91 7 7 0

14 NtDeviceIoControlFile 157 352 406 73 46 91 7 7 8

15 NtOpenFile 157 352 406 73 46 91 7 7 8

16 NtQueryAttributesFile 157 352 406 73 46 91 7 7 8

17 NtQueryDirectoryFile 157 352 406 73 46 91 7 7 8

18 NtQueryFullAttributesFile 157 352 406 73 46 91 7 7 8

19 NtQueryInformationFile 157 352 406 73 46 91 7 7 8

20 NtReadFile 157 352 406 73 46 91 7 7 8

21 NtSetInformationFile 157 352 406 73 46 91 7 7 8

22 NtWriteFile 157 352 406 73 46 91 7 7 8

23 SHGetFileInfoW 127 352 406 73 46 91 7 7 0

24 URLDownloadToCacheFileW 98 352 406 73 46 91 7 7 0

Table 7: File Usage Number of Occurences

Figure V displays the unique features identified on each cluster. Cluster 1 and Cluster 0 have missing

functions not identified in clusters 2-7; however, they have similarities with other clusters, establishing it

to be the current baselines of the ransomware usage of file and directory manipulation functions. The

outlier has more function file APIs not identified in the main clusters. The most common file

manipulation characteristics are from cluster 1 to cluster 7.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

52

Similarities Cluster 0-7: {'CopyFileW', 'NtCreateFile', 'FindFirstFileExW',
'NtQueryAttributesFile', 'NtQueryInformationFile', 'GetCurrentHwProfileW',

'NtOpenFile', 'SHGetFileInfoW', 'URLDownloadToCacheFileW',
'MoveFileWithProgressTransactedW', 'GetFileVersionInfoW', 'DeleteFileW',
'NtCreateNamedPipeFile', 'CopyFileA', 'NtQueryDirectoryFile', 'NtReadFile',

'NtQueryFullAttributesFile', 'NtDeviceIoControlFile', 'GetFileVersionInfoSizeW',
'GetSystemTimeAsFileTime', 'NtSetInformationFile', 'NtWriteFile'}

CopyFileExW

{'CopyFileExW', 'DeleteFileA',
'InternetReadFile',

'NtDeleteFile'}

{'NtDeleteFile', 'NtCreateNamedPipeFile', 'GetCurrentHwProfileW', 'DeleteFileW', 'InternetReadFile',
'CopyFileExW', 'FindFirstFileExW', 'DeleteFileA', 'SHGetFileInfoW', 'URLDownloadToCacheFileW', 'CopyFileW'}

Figure V: File Similarities and Differences of each cluster and outlier

Figure V shows the uniqueness of the functions being used per cluster, which gives the maximum number

of 26 unique functions ransomware uses. It coincides with Bar Chart 3 below, showing the total number

of processes running per cluster. The activities show several closely related patterns, signifying that the

ransomware is the collection of malware from the same source deployed in the wild.

Reading File Deleting File

Writing File Opening File

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

53

Bar Chart 3: Total Number of Dynamic File Activities

For the static analysis of the portable executable (PE), the dynamic link library of the Shell.dll

shows on Bar Chart 4 that the pattern shows the statically imported DLL into the malware. Shell32.dll,

located in C:\WINDOWS\system32\shell32.dll of Windows 10, is generally part of the Windows DLL that

could be used for opening web pages and files. However, it could also be used to replace the Windows

shell file to infect the victim’s computer.

Bar Chart 4: PE Import Shell32.dll

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

54

Drill Down Data: DLL Used [Static]

 Portable Executable (PE) files use Dynamic Link Library (DLL) functions, the imported files that

contain code and data. They are used by more than one program at the same time: it is a shared program

library in the Windows environment. Figure W shows all the cumulative DLLs used by the ransomware.

Seven clusters are identified. Notice that kernel32 and User32 are the most commonly used DLLs.

Kernel32.dll is one of the significant findings for this research because it is responsible for other file

functions than ransomware requires. The other DLLs pay attention to the "Crypt32" and "Cryptnet,"

which are used for cryptographic messaging and Microsoft's crypto network-related API. Figure W below

describes the lined pattern's similarities, differences, and outliers identified in Figure X. Notice that

clusters 2 to cluster 7 have very similar characteristics as compared to cluster 0 and cluster 1.

Figure W: Portable Executable DLL Names

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

55

Similarities: 49 {'WININET', 'NDDEAPI', 'WINMM', 'CRYPT32', 'MSACM32', 'IPHLPAPI', 'MODEMUI', 'COMDLG32',
'DINPUT8', 'COMCTL32', 'NT', 'ACTIVEDS', 'PDH', 'DBGHELP', 'GDIPLUS', 'RSTRTMGR', 'USERENV', 'WS2_32', 'OLE32',

'WSOCK32', 'URLMON', 'VERSION', 'KERNEL32', 'PSAPI', 'IMPORTS NT', 'WTSAPI32', 'OLEAUT32', 'MSVCRT',
'ADVAPI32', 'UXTHEME', 'NETAPI32', 'SECUR32', 'IMM32', 'GLU32', 'USER32', 'MPR', 'CERTCLI', 'SETUPAPI',

'WINSPOOL', 'NTDSAPI', 'OLEACC', 'BCRYPT', 'OLEDLG', 'MSIMG32', 'IMPORTSKERNEL32', 'SHELL32', 'GDI32',
'OPENGL32', 'SHLWAPI'}

22 {'CRYPTUI',
'CREDUI',

'IMAGEHLP',
'AUTHZ',

'WINHTTP',
'SHFOLDER',

'DNSAPI',
'WSNMP32',

'MSVBVM60',
'WINSCARD',

'IMPORTSNETAPI32'
, 'POWRPROF',

'AVIFIL32',
'ODBC32', 'USP10',

'MSWSOCK',
'COMSVCS',
'AVICAP32',
'RPCNS4',

'CRYPTNET',
'RPCRT4',

'MSVFW32'}

13 {'WINSPOOL', 'CRYPT32', 'MSVCRT', 'OLEAUT32',
'COMDLG32', 'ADVAPI32', 'OLE32', 'KERNEL32',

'COMCTL32', 'SHELL32', 'USER32', 'GDI32', 'SHLWAPI'}

Figure X: DLL Similarities and Differences

Drill Down Data: Dropped Files

Malware dropped files are files of different formats that are written to disk victims during the

malware execution phase. They are dropped during the execution in the victims' system or in the malware

sandbox anywhere in the Windows directories. Files could be dropped via the creation of the file or

downloaded via the network of the malware. The files may contain codes to install a second file called

Payload. They may also create readable log files; for example, in a Windows environment *.log, *.txt, *.

readme, etc, are the most common files generated by ransomware. Figure W shows the similarities and

differences between the files downloaded per cluster. In the line pattern of Figure Y, there are hardly any

intersections, meaning file names do not seem to have exact similarities; they are randomly generated.

However, using the Python intersection command of all the clusters, except the outlier, has shown one

notable similarity, as shown below in the code snippet 1 “Similar Dropped File” label.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

56

 Code Snippet 1: Similar Dropped File of All 8 clusters.

Figure Y: Files Dropped by Ransomware Per Cluster

In addition to observing the dropped files, one of the notable characteristics of ransomware is data

corruption and file encryption with randomized and generated files. In sections A, B, and C of Figure Z,

the executable is similar to randomly generated string filenames. Section B shows *.chk is windows

corrupted file isolated by Windows. Section A shows the *.tmp and *.txt extensions with the most

generated files. Section C shows some *.txt and *.logs extensions randomly generated files containing

content messages.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

57

Section C

Section A

Section B

Figure Z: All Dropped Files Pattern Magnified by Section

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

58

Drill Down Data: Network Communication Process (DLL)

Network sockets are used as the bidirectional communication channel of the endpoints.

They communicate within the Operating System (OS) processes, between processes on the same

machine, or between processes on different machines located within the intranet or the internet

on different continents. It could be implemented on different types of channels, such as

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). There is malware that

needs to communicate with the internet to perform some functions.

The diagram below, Figure AA, shows two identified application programming interfaces

(API), WSOCK32 and MSWSOCK. Microsoft Build description states, “Windows Sockets 2

(Winsock) enables programmers to create advanced Internet, intranet, and other network-capable

applications to transmit application data across the wire, independent of the network protocol

being used. With Winsock, programmers are provided access to advanced Microsoft®

Windows® networking capabilities such as multicast and Quality of Service (QoS) “ [63].

Winsock is a form of API communication between the network software and the network

services running in Windows operating systems (OS). Its protocol uses Transmission Control

Protocol/Internet Protocol (TCP/IP) to convert the request from the software. Mswsock is a

dynamic link library invoked dynamically from the Windows operating system (OS) software

applications. Windows sockets (Winsock) is a traditional network programming that is

implemented in a Windows environment. It is implemented and compiled using Visual C++.

Figure Y shows the related clusters that mostly used WSOCK32 dynamic link library.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

59

 WSOCK32MSWSOCK WSOCK32

 WSOCK32
 WSOCK32

 Figure AA: DLL Import Network

Scanning the dynamic API call processes, there are several methods called using HTTP, socket,

connect, send, recv, GetAdaptersAddresses, and bind functions. They all exist in all the clusters rendering

to be some of the socket connections not using Windows API sockets. They could be using independent

API not related to Windows Sockets. Bar Chart 5 shows the socket process connections for each cluster.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

60

Bar Chart 5: Network Communication Process (Socket API) - Dynamic

 In conclusion, Figure AA of the Windows socket of the first three clusters has been used

more often than the rest because Bar Chart 5 clusters 0, 1, and 2 have the most function calls

since the research observation lab runs on Windows 10 environment. Cluster 3 to 7, which may

have used different independent network communication libraries, displays fewer activities than

clusters 0 to 2.

Drill Down Background Execution

The default command-line interpreter is the Windows disk operating system (DOS)

“Command Prompt”, such as cmd.exe or cmd command. It has existed since the inception of the

Windows Operating System (OS). It is mainly used to execute command lines of code to get

information or fulfill a user's task. During malware operations, users or systems experience these

command prompt windows that appear and disappear automatically. The command executions

get executed in the background and appear to execute without the victims' knowledge. They are

typically executed to modify the computer configuration settings without the consent of the

computer users.

Bar Chart 6 displays some of the common usages of execution on a command prompt

after the deployment of the ransomware malware per cluster – flash.exe, update.exe, cmd.exe,

iexplore.exe, 123.exe, bot, exe, virus.exe, and taskmanager.exe. The identified names would

have been customized to mimic the operating system's commonly used files to masquerade itself

to appear as a legitimate software execution.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

61

A. Flash B. Update

C. Cmd.exe D. Iexplore.exe

E. 123.exe F. Bot.exe

G. Virus.exe H. Host.exe

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

62

I. Taskmanager.exe

Bar Chart 6. Common Captured Execution Command

3.3.4 Phase IV: Anticipation (Research Questions)

Answering the research questions of the study requires descriptive data analysis and quantitative

statistical data captured during the observation phase from section 3.3.3 of the ABI process, which has the

collection of the static, dynamic, and network behavior of the ransomware. The research questions

undergone to several phases to discover patterns created by the DBSCAN, which generated 8 clusters,

including outliers. Each cluster signifies similarities, and the outliers are the data points that do not belong

to any clusters. The closer the data points to the cluster group it belongs to, the more similar ransomware

is. ABI states," Intelligence anticipation is the ability to warn and describe future states of the

environment based on the manipulation and synthesis of past and present data. Anticipation includes near-

term warning and longer-term forecasting to alert and prepare decision makers to events relevant to their

responsibilities." [3]. The data ingested into the DBSCAN were ransomware collected over the years to

study its behavior quantitatively. It identifies baselines of the current process and behavior of the malware

under study. It also identifies events that are not naturally regular or the course of action when the

ransomware was released. As a result, identifying the similarities, differences, and outliers or anomalies

of the ransomware among the group answers the research questions as follows under study.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

63

3.3.4.1 Research Question 1 (Similarities/Differences): What are the feature similarities and differences

(anomalies) of the malware feature activities collected over the years?

There are 1300 uniquely identified ransomware collected from Virus Share and Malware

Bazaar website repositories, which have been collected for years. The features of malware have

significant similarities and slight differences, along with anomalies or outliers. Tables 3, 4, and 5

summarize the outcome of the descriptive analysis derived from Figures N (All API Calls), P

(Encryption Calls), R (File APIs), T (DLLs), and U (Dropped Files). The assessment concludes

that the sample profiles of the ransomware in each cluster show significant similarities. It proves

that the drill-down investigation of the ransomware static, dynamic, and network analysis

demonstrates the object behavior of the ransomware. The same clusters are more similar to each

other than to objects in other clusters.

Table 8 describes the anomalies where fewer APIs are used regarding encryption, API

events, and DLL files. It does not conform to the rest of the clusters. Each data point belonging to

a cluster group shares significant similarities. Given the table data, all ransomware deployed in

the wild share similarities where it could be concluded that they all came from the same source.

Features No Similar Features

Encryption

(Figure P)

20 CryptGenKey, CryptDecodeObjectEx, CryptExportKey, CryptGenRan

dom, CryptImportKey, CryptCreateHash, CryptHashData, CryptDestro

yKey, CryptDeriveKey, CryptAcquireContextW, SslEncryptPacket, Ssl

DecryptPacket, CryptDestroyHash, BCryptImportKey, CryptImportPub

licKeyInfo, BCryptEncrypt, CryptRetrieveObjectByUrlW, CryptAcquir

eContextA, CryptDecrypt, CryptEncrypt

API Calls

(Figure N)

240 See Appendix C

File API

(Figure R)

22 DeleteFileW, NtQueryInformationFile, NtQueryFullAttributesFile, NtC

reateNamedPipeFile, NtQueryAttributesFile, NtSetInformationFile, Get

SystemTimeAsFileTime, NtWriteFile, NtOpenFile, FindFirstFileExW,

URLDownloadToCacheFileW, GetCurrentHwProfileW, SHGetFileInfo

W, GetFileVersionInfoW, NtReadFile, NtDeviceIoControlFile, NtCreat

eFile, MoveFileWithProgressTransactedW, NtQueryDirectoryFile, Get

FileVersionInfoSizeW, CopyFileW, CopyFileA

DDL Files

(Figure T)

49 See Appendix D

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

64

Dropped Files

(Figure U)

0 Unknown. The files that are dropped are randomly generated. Figure R

displays no pattern, and they have a tiny percentage of similarities.

Network Calls

(Figure X)

2 MSWSOCK, WSOCK32 (Cluster 0 to 2)

Table 8: Captured Similar Features

The descriptive analysis has shown similarities between all the clusters; however, they

have distinct differences, as shown in Table 4. The table displays the features that are not in Table

3 by Clusters. The identified minor differences are the deviations or changes that do not conform

to the current state of APIs mainly used by each cluster. As the ABI stated, it is a warning sign

that something has changed [3]. It demonstrated that there are added or reduced functionalities of

the ransomware, rendering this malicious software continually evolving or changing by the

malware's author.

Features Cluster No Differences in Features

Encryption

(Figure P)

0 4 CryptDeriveKey, CryptDecrypt, BCryptEncrypt, CryptImpo

rtPublicKeyInfo

API Calls

(Figure N)

0 44 See Appendix E

 1 18 recvfrom, InternetGetConnectedState, HTTPSFinalProv,

PStoreCreateInstance, listen, CopyFileExW,

NetUserGetInfo, RegDeleteValueA, accept,

OutputDebugStringW, DnsQuery_A, FindWindowExA,

RegDeleteKeyA, FindResourceExW, Module32NextW

2 7 FindResourceExW,HTTPSFinalProv,OutputDebugStringW,

PStoreCreateInstance,RegDeleteKeyA,RegDeleteValueA,

recvfrom

3 2 FindResourceExW,RegDeleteValueA

4 1 RegDeleteValueA

5 1 RegDeleteValueA

File API

(Figure R)

1 1 CopyFileExW

 0 3 CopyFileExW, DeleteFileA, InternetReadFile, NtDeleteFile

DDL Files

(Figure T)

0 22 POWRPROF, AUTHZ, MSVFW32, RPCRT4, USP10,

IMPORTSNETAPI32, WINSCARD, MSWSOCK,

AVICAP32, MSVBVM60, ODBC32, CRYPTUI,

AVIFIL32, WSNMP32, SHFOLDER, CRYPTNET,

CREDUI, WINHTTP, IMAGEHLP, RPCNS4, COMSVCS,

DNSAPI

 1 22

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

65

Dropped Files

(Figure U)

0 0 Unknown. The files that are dropped are randomly

generated. Figure R displays no pattern, and they have a tiny

percentage of similarities.

Network Calls 3-7 0 There are no network calls found

Table 9: Captured Differences of File API Calls.

Finally, DBSCAN describes anomalies that are not part of the clustered data. It is

interchangeable with the word outlier. Typically, a group of clusters bands together to show their

similarities. However, some minority data points do not fit the rest of the clustered data well. The

results use fewer API calls than the rest of the clusters. Table 10 shows the anomalies. Outliers or

anomalies are often described as abnormal observations or erroneous data entry. However, in

terms of ABI, they are significant enough to define unusual activity or suspicious data that do not

conform to the rest of the data, which uses more API functionalities. The malware's author could

have created or formed another group of ransomware with minimal functions to avoid being

detected.

Features No Outliers

Encryption (Figure P) 2 CryptAcquireContextW, CryptGenRandom

API Calls

(Figure N)

159 See Appendix E

File API

(Figure R)

15 NtOpenFile, NtQueryDirectoryFile,

NtQueryFullAttributesFile,

MoveFileWithProgressTransactedW, NtSetInformationFile,

NtCreateFile, GetSystemTimeAsFileTime, NtReadFile,

NtWriteFile, NtDeviceIoControlFile, CopyFileA,

NtQueryAttributesFile, GetFileVersionInfoW,

GetFileVersionInfoSizeW, NtQueryInformationFile

DDL Files

(Figure T)

13 MSVCRT, KERNEL32, COMCTL32, ADVAPI32,

SHLWAPI, OLE32, WINSPOOL, SHELL32, GDI32,

COMDLG32, OLEAUT32, USER32, CRYPT32

Dropped Files (Figure U) 0 Unknown. The files that are dropped are randomly

generated. Figure R displays no pattern, and they have a

very small percentage of similarities.

Network 0 There are no network calls.

Table 10: The Outliers/Anomalies

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

66

 In conclusion, all the identified clusters indicate a degree of similarities from encryption

calls, general API calls, API calls, DLL import, and some minor dropped files and network files. As part

of the ABI process and profiling of the target malware, the differences among all these clusters are either

added or excluded from the existing ransomware. Ultimately, all the 1300 ransomware came from the

same source because they display likeness not only in their static behavior but also in their static

characteristics.

3.3.4.2 Research Question 2 (Baselines): How do we identify the constraints to develop a common

baseline, a hidden data pattern, for each malware classification or cluster type?

A baseline is a minimum or reference point of comparison in the timeline for future

measurements of the malware feature behaviors. It provides a starting point if there has been

progress since the initial baseline estimation that quantifies the difference between two points in

time. During the study, ransomware behavior was quantified into three different behavior sets:

static, dynamic, and network. The quantification of the measures is discussed in the descriptive

analysis section of the paper. Based on the 1300 input, there are currently eight identified clusters,

meaning that each cluster is similar or closely related, rendering them one form of a ransomware

variant.

In addition, the ransomware from features generated from the descriptive analysis of

3.3.3 gives a conclusion from the line graphs in Figures Q, S, U, W, and Z that all ransomware

deployed in the wild have a high degree of similarities. The line patterns, along with the

description results, would be used as a basis for the current ransomware behavior trend. In

addition to the line graphs’ trends and patterns have identified unique characteristics for each

cluster. The similarity at this point is not precisely the baseline of the ransomware behavior.

However, they would be used as the starting point of measurement. The captured similar behavior

gives the research the standard current behavior of all 1300 ransomware. Having the baselines at

this point would give us the traits or characteristics that may differ from the future samples. It can

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

67

provide helpful information about the changes or improvements over time. Figure BB, the

combined line graphs from different static and behavioral displays the trends that each cluster has

similar patterns, described in detail from the descriptive analysis. The patterns demonstrate the

number of occurrences of clusters that the up and own lines have similar directions among the

clusters.

Encryption Calls
DLL Imports

All API CallsAll API Calls

File API Calls

Figure BB: Combined Ransomware Features Pattern Summary

The unique behavioral characteristics define the current APIs used for each cluster, which

identifies the baseline process API calls the ransomware. Figure CC describes the summary of the

unique clusters with similar characteristics. The API calls from the file, encryption, and general

API, as shown in the supervenn diagram, indicate an equal number of unique behaviors,

indicating that all the clusters have a significantly high degree of homogeneousness.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

68

Unique

Encryption

Used

Unique # of

DLL Imports

Dropped

Files

Unique All

API

Calls

API Call

Encryption

File Names

API Calls

Figure CC. Summary Unique Features

In conclusion, comparing the baseline differences helps monitor changes and provides

precious information for decision-makers. In conclusion, Table 3 is the starting point of a baseline

of the research. Any future ransomware deployed in the wild could be compared against the

similarities to track the differences.

3.3.4.3 Research Question 3 (Source): How can we determine if the variant types of malware in the wild

were the original copies of other types of malware?

 Ransomware has generated several interesting features, namely the usage of encryption

function, the file manipulation application programming interface, API Calls, the dynamic

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

69

link library (DLL), and the sequence of API events. The answer to our research questions is

that all ransomware. However, they belong to different clusters and portray similarities of

calls of events to a high degree. The following five categories are described in detail about

their significant similarities. What sets them apart are their behavioral and static differences

making them slightly different.

1. Encryption Function

Figure R, the API encryption comparison, shows that cluster 1 (one) to cluster 7 (seven) have

the same number of unique encryption API(s) being used. Cluster 0 has four encryption APIs

not used in the clusters between 1 and 7. The Figure shows that they are similar enough to

come from the same source, rending them to be originated from the exact copy.

2. File API Function

Figure V, the file API function calls, identifies that all clusters use 26 unique API calls with

four differences, which are identified as CopyFileExW, DeleteFileA, InternetReadFile, and

NtDeleteFile. The Figure concludes that all file access of the ransomware has been

significantly used by all malware rending, making them derived from the same source with

slight modification.

3. Dynamic Link Library (DLL(s))

Figure V, the DLL comparison, shows that there are 171 imported DLL(s), as it is shown

from cluster 2 to cluster 7. Cluster 0 and Cluster 1 have 22 similar DLL(s) that are not

identified between Cluster 2 and Cluster 7. Overall, cluster 0 to cluster 8 have 41 similar DLL

imported values. It is consequential enough that all the sample ransomware have similar

values in this category.

4. All API Calls

All ransomware API calls have been collected and compared against each cluster. Based on

Figure P, there are 240 identified event calls from each cluster from cluster 0 to cluster 7. It

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

70

signifies the similarities of all ransomware regardless of their location in the clusters; they are

generally similar. The differences between the clusters are from 1 to 15 API calls in general.

240 SIMILAR API CALLS

5. API Sequence of Events

As part of the ABI methodology, one should compare each row's differences and why

they differ. What essential points to capture here as part of ABI methodology is to understand

the added features of each malware sample since all these samples are ransomware. The

sample below, Sample A, is cluster 0, compares the difference between the False and True

comparisons. Note that "True" means they have identical sequence calls.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

71

Sample A: Comparison of row-by-row similarities of API Calls

Taking two samples of rows from Figure T, the following comparison is from Cluster 0. It is

concluded that this malware is almost identical because there is only one added feature

at the bottom of the API calls. The left column of the sequence of the events has one

missing object call called "CoGetClassObject." This can infer that this malware is either

upgraded from the original version created by the malware author.

…

Sample B: Comparison of row 10 and row 11 from Sample A

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

72

Reviewing the Sample C and Sample D comparison of different clusters, the difference

between the data points belonging to different clusters has significantly increased.

Although Sample C and Sample D are identified as True, they are very similar because

they belong to different clusters.

…

…

Sample C: Comparison of row 11 (cluster 0) and row 195 (cluster 1)

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

73

…

…

…

Sample D: Comparison of row 11 (cluster 0) and row 200 (cluster 1)

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

74

3.4 Ethical Considerations

The undertaken research study does not involve people, medical records, anonymized tissues, or

data collection, rendering to be not a violation of the Committee on Publication Ethics (COPE)

guidelines, the Institutional Review Board (IRB), or the Ethics Committee of any organization. The

malware-shared community repository sources are the only ones that have been measured, analyzed, and

published. This study has no conflicts of interest, including personal, political, academic, or financial

interests. As a result, it has no bearing on the study's methodology or results. The appendix and reference

section contains all of the references and statistical summaries for the sources used in this paper.

3.5 Results and Discussion

Artificial-Based Intelligence (ABI) pattern of life techniques is not new because they have been

theoretically discussed in military research organizations. It has not been fully developed or applied to its

full potential. As a result, this research uses the ABI methodology process using quantitative analysis

using DBSCAN machine learning to establish a pattern of life. This quantitative analysis demonstrated

the full potential in identifying the similarities, differences, and anomalies of a single type of malware

collected over the years from the research repository. The result of the study identified 8 clusters of

ransomware. Each group of clusters is closely similar in terms of API function usages, encryption calls,

and sequence API calls. Despite having 8 clusters and outliers, they all have a degree of similarity,

leading to the conclusion that they derived from the same source. This research is crucial because it leads

us to understand the primary behavior of ransomware. The methodology could be used on other malware

types to find the patterns. Previous research has never applied the pattern of life using DBSCAN with

unlabeled data, so performing this research is a novel approach to identifying specific malware behavior.

In this case, the encryption function, file manipulation, and random files generated are created during the

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

75

malware run. The literature collected in this research has only applied the identification of true or false

malware signatures based on the behavior. However, they have not drilled down to the core of differences

and similarities. The specific behavior of the network activities, DLL usages, and any behavioral analysis

were never included in any of the studies.

In addition, network analyses are not discussed extensively due to the limited data collection

running in the sandbox malware lab. In other words, ransomware rarely uses network communication

with the malware creator. Ransomware primarily uses the encryption of files and file API(s) to

manipulate files and directories. The research has undergone several iterative processes where other

researchers could return to the raw data collected and identify new features to get a new set of clusters.

3.6 Limitations

A quantitative Artificial-Based Intelligence (ABI) methodology framework provides a technique

for analyzing various data sources to integrate them into meaningful and coherent insights. Since the world

of malware creators is complex and riddled with human and unpredictable behavior with different

geographic locations, histories, and cultures, this paper will only partially or entirely predict the goals and

intentions of the creators. It can only be deduced from the captured portable executable (PE) malware from

the research community, such as MalwareBazaar.com and VirusShare.com. This research only focuses on

several sources (static, behavioral, and network data) where future research could add more data sources

for more accurate descriptions of events for intelligence gathering. In addition, since the data being used is

not labeled, the target class does not require to have to match the ratio of observations in each cluster,

homogeneity score, Rand Index (RI), Completeness, Precision & Accuracy, V-measure, and Adjusted

Mutual Information (AMI). The only validation used in this research is the Silhouette metric, which

combines ideas of cohesion and separation of the clusters.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

76

3.7 The Researcher

The researcher was trained in conducting technical analysis, feature engineering, machine

learning, and analysis. The proposed scheduled timeline gives ample time to build the researcher's skills,

familiarity, and knowledge of the application of Machine Learning (ML), Feature Engineering, and

Architectural Setup and conduct more research to make the work efficient and accurate during the

lifetime of research. In addition, for the last 20 years, the researcher has worked as a programmer,

software engineer, database administrator, system administrator, technical analyst, and network

administrator in the private and public sectors. To this date, he works with the Department of Defense

(DoD) as a Cybersecurity IT Specialist and Assessor. The researcher's task is to conduct Cybersecurity

Assessments tasking on Defense Industrial Base (DIB) to assess their compliance with NIST SP 800-

171A and Cybersecurity Maturity Model Certification (CMMC), a mandated DFARS contract with the

DoD. The researcher holds a BS in Computer Science, BS in Criminal Justice, and a Minor in

Mathematics. In addition to the undergraduate degree, the researcher has MS in Software Engineering and

MS in Database Management and Administration, along with professional industry certifications in

Oracle DB Processional, MS SQL Professional, Security+, SANS GSLC, Red Hat Linux Professional

certificate, and Defense Acquisition Workforce Improvement Act (DAWIA III). The researcher acquired

training to conduct technical research and documentation on different technologies in different platforms

necessary before deployment and implementation into the company's Information Technology

infrastructure.

CONFLICT OF INTERESTS

Because the study does not involve people, medical records, or anonymized tissues, the data

collected for this study does not violate the Committee on Publication Ethics (COPE) guidelines, the

Institutional Review Board (IRB), or the Ethics Committee of any organization. The malware-shared

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

77

community repository sources are the only ones that have been measured, analyzed, and published. This

study has no conflicts of interest, including personal, political, academic, or financial interests. As a

result, it has no bearing on the study's methodology or results. The appendix and reference section

contains all of the references and statistical summaries for the sources used in this paper.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

78

CHAPTER 4

RESULT

The research has explored several phases of the ABI methodology process in depth, from data

collection, discovery, assessment, explanation, anticipation, and report delivery, as described in Figure C.

The sample data, a 1300 ransomware, has been placed in different clusters, where each group of clusters

has significant similarities in terms of method of operations statically and dynamically. It was found that

it there are identified eight clusters that answer the research questions being sought. The statistical

similarities, differences, anomalies, and baselines of detailed outcomes are listed in the Anticipation

Phase, where each research question is narrated in detail to address the descriptive analysis from the

Explanation Phase, the statistical feature analysis. The explanation phase, the fourth phase, of the ABI

methodology describes the malware behavior patterns, which derives from the Assessment Phase, where

Principal Component Analysis (PCA) and Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) are tools to parse the ransomware feature data from CAPEv2 malware sandbox. The

following summary statement below describes the accomplishments of the research questions using the

tools and methodology process.

 Phase 0: All the collected data over the years did not have a specific date when they were

collected and integrated into MalwareBazaar.com or VirusShare.com. The 1700 ransomware

ingested into the CAPEv2 malware sandbox output static, dynamic, and network behavioral data.

During data analysis preparing for feature engineering, several hundred rows were deemed not

helpful to go through the process because of missing or null values. Some data did not produce

dynamic behavioral results, rendering it not running successfully. The output JSON format is

extracted and converted into comma-delimited files for machine-learning processing.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

79

 Phase 1: The Discovery Phase is the engineering phase of the features. The malware features are

correlated using Heatmap, which is used to derive the Principal Component Analysis (PCA).

There are 27 features extracted as part of feature engineering drawn into the heatmap and reduced

to 3-column features.

 Phase 2: The Assessment Phase tool uses the three features to create patterns. There are eight

discovered patterns, which are clusters. Clusters indicate that the ransomware belonging to the

group is more similar to the other ransomware from the other group. The significance of the

clusters is that having 1300 ransomware collected from the wild produces eight variations of

ransomware, endangering the Information Technology (IT) industry from being locked out of the

computer systems.

 Phase 3: The Explanation Phase gives a descriptive statistical ransomware analysis. The patterns

of the line graphs show the similarities, differences, and outliers described in detail using a

supervenn diagram indicating their unique behavior, table columns description of each result, and

bar charts of statistical occurrences. Based on the patterns and trends, all eight clusters show

similar significant patterns indicating that they came from the same source. The 1300 ransomware

are variants modification with several updates.

 Phase 4. The Anticipation Phase answers each research question in detail. Summarizing all three

questions concludes that ransomware has significantly similar characteristics compared to the

difference and the outliers, rendering them to be copied from the same source. The encryption,

API file manipulation function, sequence of API calls, and the DLL file used to indicate their

similar behavior pattern using the line graphs and supervenn diagram.

 Phase 5. The Delivery Phase addresses the conclusion or outcome of the research. Out of 1300

ransomware samples from Malware Bazaar and Virus Share repository sites, eight variants are

clustered into groups using the combinational of Principal Component Analysis (PCA) and

DBSCAN. Drilling into the detail of each cluster shows the significant similarities of all the

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

80

clusters in the behavioral and static analysis. They share unique usage of application

programming interfaces from encryption, file management, and dynamic link library. In addition,

the research was able to isolate outliers that are remotely different from the rests of the groups.

In conclusion, out of 1300 ransomware samples, eight possible variants need to be recognized by

research communities using the Artificial-Based Intelligence methodological process with DBSCAN

machine learning analysis. Based on static, dynamic behavior, and network analysis, there are four

overall captured common data occurences of ransomware characteristics: encryption, API usages, file

manipulation, and dropped files. They represent the most significant similarities rendering them to

have come from the same source of malware author, as shown in Table 4 below.

Profile Total API Call Unique

Encryption

[Figure Q]

 0 2203 16

 1 7341 20

 2 8932 20

 3 1606 20

 4 1012 20

 5 2002 20

 6 154 20

 7 154 20

 -1 6 2

Overall API Usages

[Figure P]

 0 32182 240

 1 90144 269

 2 111204 277

 3 20444 282

 4 13006 283

 5 25753 283

 6 1986 284

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

81

 7 1988 284

 -1 805 125

File Manipulation

[Figure S]

 0 3162 26

 1 8332 26

 2 10429 26

 3 1898 26

 4 1196 26

 5 2366 26

 6 182 26

 7 182 26

 -1 106 15

DLL

[Figure U]

 0 1124 49

 1 2334 49

 2 2908 71

 3 486 71

 4 324 71

 5 610 71

 6 32 71

 7 38 71

 -1 26 13

Dropped Files

[Figure W]

Files are randomly dropped.

Table 4: Concluded summary of ABI profile tracking

Having Table 4 showing the final output data findings, which can be synthesized to develop

reports of possible changes in the behavior of the ransomware target malware. From the initial

process to the report, fact-finding gives the ability to drill down into bits and pieces of the behavior of

the target entity. With the current finding, Aritificial-Based Intelligence could be used as a practical

fact-finding approach for intelligence gathering, as stated,” Intelligence delivery is the ability to

develop, tailor, and present intelligence products and services according to customer requirements

and preferences [3]“. The requirement for the research is to target specific malware. However,

regardless of the type of malware, the process is the same.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

82

Contribution

 Artificial-Based Intelligence (ABI) has conceptually and theoretically demonstrated the

process in journals and articles about intelligence gathering to identify anomaly behavior.

However, it has never been used extensively in applying malware classification to identify

similarities and differences. As a result, the main contribution is that the research uses the

process in practice and application of identifying the malware pattern of life of all the

samples that can differentiate how closely related samples are. The usefulness of the process

and methodology of ABI gives deep insight into the malware being studied.

 DBSCAN is a machine learning that has been taught in an academic paper, but it has never

been used in practice. The paper uses the DBSCAN to apply malware behavior to identify the

clusters of the ransomware. It demonstrates the effectiveness of using silhouette scoring,

where it is able to isolate samples into clusters that are closely related.

 The study has undergone to identify the baselines, similarities, differences, and anomalies of

the ransomware as the target malware. It could be used similarly to the same framework

analysis of the paper for other researchers. In conclusion, the ransomware, using DBSCAN,

shows three concrete methods of operations being used – encryptions described in Figure S,

Figure T for file usages, Figure V for DLL most commonly used, and finally, the random

usage of the dropped files.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

83

CHAPTER 5

CONCLUSIONS

The research has undergone several phases using Artificial-Based Intelligence (ABI)

methodology from data collection and analyzing events of each malware's static, network, and dynamic

behavior. The research fulfilled the strategy model to flesh out research activities, giving a methodology

of intelligence gathering of malware-type behavior. The research has recognized the usefulness of the

practical application of the ABI. Based on the descriptive analysis derived from the clustered data shows

the profile data differences and similarities. The data was parsed, interrogated, and discovered for their

meaning, where the decisions on the ransomware display the differences and similarities and

communicate the findings. There is good reason to believe that although ransomware belongs to different

cluster groups, they are derived from the same copy source. Each event was analyzed to discover patterns'

similarities and differences, outliers, and baseline behaviors. There are several static and behavioral

baseline functions that the target malware (ransomware) identified – the encryption API function, the file

library function, DDL, the sequence of call events of each malware, and random-generated files dropped

during the malware run. However, the network analysis data did not give enough values to be included in

the descriptive analysis, rendering it to be excluded. The research applies machine learning called

DBSCAN using Silhouette scoring as the input variable for epsilon and a minimum number of points. The

clustering technique is identified as sound segmentation rendering the clustered data more similar than the

other cluster belonging to another group. It has been concluded that the research has identified the

ransomware's general baselines using the malware's initial similarity features. In short, the significant

similarities of all the clusters give the highest possible reason that they came from the same source. The

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

84

code modifications, mostly in their behavioral application programming, set the malware apart because of

the upgrades on the part of the malware author. Other researchers could collect future data related to

ransomware and compare the results if the trends' API mode of operation continues to be used and may

try to identify other functions besides the established baselines. There may be a myriad of malware

behavioral threats that can interrupt the function of the systems with the organizational software systems

that have not been discovered when new samples run through the ABI processes.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

85

REFERENCES

REASON FOR RESEARCH REFERENCE

[1] Gross, Geoff A et al. "Application of Multi-Level Fusion for Pattern of Life Analysis." 2015 18th

International Conference on Information Fusion (Fusion). ISIF, 2015. 2009–2016. Print.

[2] Brejova, Brona & Dimarco, Chrysanne & Vinar, Tomas & Romero-Hidalgo, Sandra & Holguin, Gina

& Patten, Cheryl. (2001). Finding Patterns in Biological Sequences. In: Technical Report CS-2000-22,

University of Waterloo.

[3] Atwood, Chandler P. "Activity-Based Intelligence Revolutionizing Military Intelligence Analysis":

Forum JFQ 77, 2nd Quarter 2015.

[4] Platas, Linda M. "The Mathematics of Patterns and Algebra." The Mathematics of Patterns and

Algebra | DREME TE, This Website Is a Project of the Development and Research in Early Math

Education (DREME) Network, 2022, https://prek-math-te.stanford.edu/patterns-algebra/mathematics-

patterns-and-algebra.

[5] Zhang, Mingrui. "Use Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Algorithm to Identify Galaxy Cluster Members." IOP conference series. Earth and environmental science

252.4 (2019): 42033–. Web.

[6] Yang, Yuan et al. "Fault Diagnosis in Gas Insulated Switchgear Based on Genetic Algorithm and

Density- Based Spatial Clustering of Applications With Noise." IEEE sensors journal 21.2 (2021): 965–

973. Web.

[7] Creswell, John W.; J. David Creswell. Research Design Qualitative, Quantitative, and Mixed Methods

Approaches. Independently. Kindle Edition.

[8] Watkins, Marley. (2018). Exploratory Factor Analysis: A Guide to Best Practice. Journal of Black Psy

chology. 44. 009579841877180. 10.1177/0095798418771807.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

86

[9] A. A. Bushra and G. Yi, "Comparative Analysis Review of Pioneering DBSCAN and Successive Den

sity-Based Clustering Algorithms," in IEEE Access, vol. 9, pp. 87918-87935, 2021, doi: 10.1109/ACCES

S.2021.3089036.

MALWARE ALGORITHM AND FEATURE ENGINEERING REFERENCES

[10] Gao, Yifeng et al. "Adaptive-HMD: Accurate and Cost-Efficient Machine Learning-Driven Malware

Detection Using Microarchitectural Events." 2021 IEEE 27th International Symposium on On-Line

Testing and Robust System Design (IOLTS). IEEE, 2021. 1–7. Web.

[11] Binglin Zhao, Jin Han, and Xi Meng. "A Malware Detection System Based on Intermediate

Language." 2017 4th International Conference on Systems and Informatics (ICSAI). IEEE, 2017. 824–

830. Web.

[12] Liu, Ya-shu et al. "A New Learning Approach to Malware Classification Using Discriminative

Feature Extraction." IEEE access 7 (2019): 13015–13023. Web

[13] Aparicio-Navarro, Francisco J, Jonathon A Chambers, Konstantinos Kyriakopoulos, Yu Gong, and

David Parish. "Using the Pattern-of-life in Networks to Improve the Effectiveness of Intrusion Detection

Systems." 2017 IEEE International Conference on Communications (ICC) (2017): 1-7. Web.

[14] Happa, Jassim, Thomas Bashford-Rogers, Ioannis Agrafiotis, Michael Goldsmith, and Sadie Creese.

"Anomaly Detection Using Pattern-of-Life Visual Metaphors." IEEE Access 7 (2019): 154018-54034.

Web

[15] Islam, R et al. "Classification of Malware Based on String and Function Feature Selection." 2010

Second Cybercrime and Trustworthy Computing Workshop. IEEE, 2010. 9–17. Web.

[16] Khan, Muhammad Salman, Sana Siddiqui, and Ken Ferens. "Cognitive Modeling of Polymorphic

Malware Using Fractal Based Semantic Characterization." 2017 IEEE International Symposium on

Technologies for Homeland Security (HST). IEEE, 2017. 1–7. Web

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

87

[17] Daly, T, and L Burns. "Concurrent Architecture for Automated Malware Classification." 2010 43rd

Hawaii International Conference on System Sciences. IEEE, 2010. 1–8. Web.

[18] Ye, Yanfang et al. "DeepAM: a Heterogeneous Deep Learning Framework for Intelligent Malware

Detection." Knowledge and information systems 54.2 (2017): 265–285. Web.

[19] Tuncer, Turker, Fatih Ertam, and Sengul Dogan. "Automated Malware Recognition Method Based

on Local Neighborhood Binary Pattern." Multimedia Tools and Applications 79.37-38 (2020): 27815-

7832. Web.

[20] Hellal, Aya, and Lotfi Ben Romdhane. "Minimal Contrast Frequent Pattern Mining for Malware

Detection." Computers & Security 62 (2016): 19-32. Web.

[21] Kohout, Jan, Tomáš Komárek, Přemysl Čech, Jan Bodnár, and Jakub Lokoč. "Learning

Communication Patterns for Malware Discovery in HTTPs Data." Expert Systems with Applications 101

(2018): 129-42. Web.

[22] Banin, Sergii, and Geir Olav Dyrkolbotn. Detection of Previously Unseen Malware Using Memory

Access Patterns Recorded Before the Entry Point. Institute of Electrical and Electronics Engineers

(IEEE), 2021. Web.

[23] Fan, Yujie, Yanfang Ye, and Lifei Chen. "Malicious Sequential Pattern Mining for Automatic

Malware Detection." Expert Systems with Applications 52 (2016): 16-25. Web.

[24] Li, Hongcheng et al. "Identifying Parasitic Malware as Outliers by Code Clustering." Journal of

computer security 28.2 (2020): 157–189. Web.

[25] Yu, Ken F, and Richard E Harang. "Machine Learning in Malware Traffic Classifications."

MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). IEEE, 2017. 6–10. Web.

[26] Ficco, Massimo. "Malware Analysis By Combining Multiple Detectors and Observation Windows."

IEEE Transactions on Computers (2021): 1. Web

[27] Ronghua Tian et al. "Differentiating Malware from Cleanware Using Behavioural Analysis." 2010

5th International Conference on Malicious and Unwanted Software. IEEE, 2010. 23–30. Web.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

88

[28] Ghiasi, M, A Sami, and Z Salehi. "Dynamic Malware Detection Using Registers Values Set

Analysis." 2012 9th International ISC Conference on Information Security and Cryptology. IEEE, 2012.

54–59. Web.

[29] Ren, Zhuojun, Guang Chen, and Wenke Lu. "Malware Visualization Methods Based on Deep

Convolution Neural Networks." Multimedia tools and applications 79.15-16 (2019): 10975–10993. Web

[30] Cordeiro de Amorim, Renato, and Carlos David Lopez Ruiz. "Identifying Meaningful Clusters in

Malware Data." Expert systems with applications 177 (2021): 114971–. Web.

[31] Tyng Ling, Yeong et al. "Structural Features with Nonnegative Matrix Factorization for

Metamorphic Malware Detection." Computers & security 104 (2021): 102216–. Web.

[32] Pektaş, Abdurrahman, and Tankut Acarman. "Malware Classification Based on API Calls and

Behaviour Analysis." IET information security 12.2 (2018): 107–117. Web.

[33] Black, Paul, Iqbal Gondal, Adil Bagirov, and Md Moniruzzaman. "Malware Variant Identification

Using Incremental Clustering." Electronics (Basel) 10.14 (2021): 1628. Web.

[34] Yuxin, Ding, and Zhu Siyi. "Malware Detection Based on Deep Learning Algorithm." Neural

computing & applications 31.2 (2017): 461–472. Web.

[35] Bai, Jinrong, Junfeng Wang, and Guozhong Zou. "A Malware Detection Scheme Based on Mining

Format Information." TheScientificWorld 2014 (2014): 260905-11. Web

[36] Zhang, Hao, Danfeng Yao, Naren Ramakrishnan, and Zhibin Zhang. "Causality Reasoning about

Network Events for Detecting Stealthy Malware Activities." Computers & Security 58 (2016): 180-98.

Web.

[37] McLaren, Peter, Gordon Russell, and Bill Buchanan. "Mining Malware Command and Control

Traces." 2017 Computing Conference. IEEE, 2017. 788–794. Web.

[38] Musgrave, John et al. "Semantic Feature Discovery of Trojan Malware Using Vector Space Kernels."

2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2020.

494–499. Web.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

89

[39] Zhang, Yongchao, Zhe Liu, and Yu Jiang. "The Classification and Detection of Malware Using Soft

Relevance Evaluation." IEEE transactions on reliability (2020): 1–12. Web.

[40] Naval, Smita et al. "Employing Program Semantics for Malware Detection." IEEE transactions on

information forensics and security 10.12 (2015): 2591–2604. Web.

[41] Liu, Zhicheng et al. "Efficient Malware Originated Traffic Classification by Using Generative

Adversarial Networks." 2020 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2020.

1–7. Web.

[42] Kornish, David et al. "Malware Classification Using Deep Convolutional Neural Networks." 2018

IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2018. 1–6. Web.

[43] Ki, Youngjoon, Eunjin Kim, and Huy Kang Kim. "A Novel Approach to Detect Malware Based on

API Call Sequence Analysis." International Journal of Distributed Sensor Networks 2015.6 (2015):

659101. Web.

DATA SOURCE AND YARA SCRIPTS USED

[44] Kevoreilly. (n.d.). Kevoreilly/CAPEV2: Malware configuration and Payload Extraction. GitHub.

Retrieved March 4, 2023, from https://github.com/kevoreilly/CAPEv2

[45] Malware Sample Exchange. MalwareBazaar. (n.d.). Retrieved March 4, 2023, from

https://bazaar.abuse.ch/

[46] VirusShare.com. (n.d.). Retrieved March 4, 2023, from https://virusshare.com/

[47] 3vangel1st. (n.d.). 3vangel1st/yara: Yara rules. GitHub. Retrieved March 4, 2023, from

https://github.com/3vangel1st/Yara

[48] bartblaze - Overview. (n.d.). GitHub. Retrieved March 5, 2023, from https://github.com/bartblaze

[49] Yara-rules/rules/ransomware at master · bartblaze/Yara-rules. (n.d.). GitHub. Retrieved March 5,

2023, from https://github.com/bartblaze/Yara-rules/tree/master/rules/ransomware

[50] BinaryAlert: Serverless, Real-Time & Retroactive Malware Detection. (2023, March 1). GitHub.

https://github.com/airbnb/binaryalert

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

90

[51] Genheimer, M. (2023, January 13). yara_rules. GitHub. https://github.com/f0wl/yara_rules

Boldewin, F. (2023, February 17). YARA-rules. GitHub. https://github.com/fboldewin/YARA-rules

[52] Worth, M. (2023, March 5). mikesxrs/Open-Source-YARA-rules. GitHub.

https://github.com/mikesxrs/Open-Source-YARA-rules

[53] Roth, F. (2023, March 5). Signature-Base. GitHub. https://github.com/Neo23x0/signature-base

[54] Project. (2023, March 5). GitHub. https://github.com/Yara

Rules/rules/blob/master/malware/RANSOM_Petya.yar

[55] ReversingLabs YARA Rules. (2023, March 4). GitHub.

https://github.com/reversinglabs/reversinglabs-yara-rules

yara-rules/malware at master · tenable/yara-rules. (n.d.). GitHub. Retrieved March 5, 2023, from

https://github.com/tenable/yara-rules/tree/master/malware

[56] TJN. (2022, August 19). yara_repo. GitHub. https://github.com/tjnel/yara_repo

[57] Roth, F. (2023, March 5). Signature-Base. GitHub. https://github.com/Neo23x0/signature-

base/blob/master/yara/crime_wannacry.yar

[58] Yara Rules Project. (n.d.). GitHub. Retrieved March 5, 2023, from https://github.com/Yara-Rules

advanced-threat-research/Yara-Rules. (2023, March 3). GitHub. https://github.com/advanced-threat-

research/Yara-Rules

[59] gecko984. (n.d.). Gecko984/supervenn: Supervenn: Precise and easy-to-read multiple sets

visualization in Python. GitHub. Retrieved March 5, 2023, from https://github.com/gecko984/supervenn

[60] Sklearn.cluster.DBSCAN. scikit. (n.d.). Retrieved March 5, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

[61] Cangelosi, Richard & Goriely, Alain. (2007). Component retention in principal component analysis

with application to cDNA microarray data. Biology direct. 2. 2. 10.1186/1745-6150-2-2.

[62] S. -S. Li, "An Improved DBSCAN Algorithm Based on the Neighbor Similarity and Fast Nearest

Neighbor Query," in IEEE Access, vol. 8, pp. 47468-47476, 2020, doi: 10.1109/ACCESS.2020.2972034.

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

91

[63] Stevewhims, S.W. (no date) Windows sockets 2 - win32 apps, Win32 apps | Microsoft Learn.

Microsoft Documentation. Available at: https://learn.microsoft.com/en-

us/windows/win32/winsock/windows-sockets-start-page-2 (Accessed: April 16, 2023).

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

92

APPENDICES

Appendix A. Identified input used for feature engineering for Machine Learning (ML)

Activity-Based

Intelligence(AB) :

Pattern of Life (2012-

Current)

Features: Input Data

Memory/

Process

Log/

Config

Settings

API:System

Calls

[20] Title Journal: Minimal contrast frequent pattern

mining for malware detection

[22] Detection of Previously Unseen Malware using Memory

Access Patterns Recorded Before the Entry Point[23] Pattern Mining: Malicious sequential

pattern mining for automatic malware detection

[24] Identifying parasitic malware as outliers by

code clustering

[25] Machine Learning in Malware Traffic

Classifications

[41] Efficient Malware Originated Traffic Classification

by Using Generative Adversarial Networks

[34] Malware detection based on deep learning

algorithm
[30] Identifying meaningful clusters in malware

data

Bytecode:

Input Scale

Image

High-Accuracy Malware Classification with a

Malware-Optimized Deep Learning Model

[29] Byte Sequence: Malware visualization methods based on

deep convolution neural networks

[33] MVIIC: Dynamic: Title-> Malware Variant Identification

Using Incremental Clustering

Network

Traffic/

Packets

[37] Mining Malware Command and Control Traces

[38] Semantic Feature Discovery of Trojan Malware

using Vector Space Kernels

[39] The Classification and Detection of

Malware Using Soft Relevance Evaluation

ASM

(OPCODE

Level)

Function

Name/

String

[31] Quantized Byte: Structural features with nonnegative

matrix factorization for metamorphic malware detection

[32] Malware classification based on API calls and

behaviour analysis

[26] Malware Analysis By Combining Multiple Detectors and

Observation Windows

[21] Learning communication patterns for

malware discovery in HTTPs data

[30] Identifying meaningful clusters in malware data

[40] Employing Program Semantics for

Malware Detection

[41] Efficient Malware Originated Traffic Classification

by Using Generative Adversarial Networks

[28] Dynamic Malware Detection Using Registers

Values Set Analysis

[27] Differentiating Malware from Cleanware Using

Behavioural Analysis

[18] DeepAM: a heterogeneous deep learning framework

for intelligent malware detection

[17] Concurrent Architecture for

Automated Malware Classification

[16] Cognitive Modeling of Polymorphic Malware Using

Fractal Based Semantic Characterization

[15] Classification of Malware Based on

String and Function Feature Selection

[36] Causality reasoning about network events for

detecting stealthy malware activities

[19] Automated malware recognition method based on local

neighborhood binary pattern

[43] A Novel Approach to Detect Malware Based on

API Call Sequence Analysis

[12] A New Learning Approach to Malware Classification Using

Discriminative: Feature Extraction: gray-scale

[11] A Malware Detection System Based

on Intermediate Language

Intermediate

Lanuguage

[35] A Malware Detection Scheme Based on

Mining Format Information

PE Format

Information

[10] Adaptive-HMD: Accurate and Cost-Efficient

Machine Learning-Driven Malware Detection Using

Microarchitectural Events

Microarchitectural

Events

[42] Malware Classification Using Deep Convolutional

Neural Networks

[13] Using the Pattern-of-life in Networks to

Improve the Effectiveness of Intrusion Detection

Systems

[14] Anomaly Detection Using Pattern-of-

Life Visual Metaphors

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

93

Appendix B: Feature Engineering, Level of Scan, Algorithm Used

Reference column maps to the "References" section of MALWARE ALGORITHM AND

FEATURE ENGINEERING REFERENCES. Feature engineering is a technique to select the right

features for the model. The "Level of Scan" is where the malware is running, from which features of the

malware are being extracted. The technique column describes whether machine learning (ML) or other

algorithms are used to detect malware.

REF Feature Engineering Scan Level/Data

Conversion

Technique

(Algorithm/Machine

Learning (ML))

Task

[Dynamic/Static]

10 Monitor HPC (Hight

Performance Counter)

HPC registers

Monitor

microarchitectural

events by built-in

Hardware

Performance

Counter (HPC)

Adaptive-HMD

(Hardware Malware

Detection)

Malware

Detector/Dynamic

11 API CALLS/OPCODE LSTM (Long Sort

Term Memory)

MDIL (Malware

Detection Using

Intermediate Language)

Malware

Detector/Dynamic

12 Image-based

descriptors

Binary Images Bag of Visual Words

(BoVM) model

Malware

Detector/Static

13 Network Traffic

Packets

Port Scans, HTTP

streaming

Robust PCA Malware

Detector/Static

14 Output/log patterns Patterns of raw

logs, or to

visualize the

output of detection

systems

Visualization Techniques

(color & position on the

screen). Pattern-of-Life

Visual Metaphors

Malware

Detector/Dynamic

15 Full-Length Frequency

(FLF) Printable String

Information (PSI)

Functional

Length/String

Methods

Classification Algorithm

(Pattern Recognition

Algorithm) - k-fold cross

validation

Malware

Detector/Dynamic

16 Edge Graph Process

Monitoring:

process tree-based

temporal directed

graph.

Fractals and

Correlation/Dimension

Malware

Detector/Dynamic

17 Code Structure

LOOPS/Ifs

Loop constructs Classification Algorithm

(Uses Concordia)

Malware

Detector/Dynamic

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

94

18 Programming interface

(API) calls extracted

from the portable

executable (PE) files.

API CALLS DeepAM: heterogeneous

deep learning framework

for intelligent malware

detection

Malware

Detector/Dynamic

19 3×3, 5 × 5, and 7 × 7

sized blocks - feature

concatenation

Bytecode Local Neighborhood

Binary Pattern (LNBP),

Neighborhood

component Analysis

(NCA), Principal

Component Analysis

(PCA)

Malware

Detector/Static

20 API Calls Symantec

Signature

MCFSM (Minimal

contrast frequent pattern

mining for

malware detection)

Malware

Detector/Static

21 Timestamp, Username,

URL

Referer, User-Agent,

Duration

Bytes up, Bytes down

MIME-type

HTTP Logs Random Forests

Neural Networks

Gradient tree boosting

Malware

Detector/Dynamic

22 1M of memory access

operations. Each

sequence is later split

into the set of

overlapping n-grams of

the size n=96: memory

access patterns

Memory Traces

Before Entry Point

(BEP)

Random Forest and k-

nearest Neighbors

Malware

Detector/Dynamic

23 micro-level features Instruction

Sequence

MSPMD algorithm to get

the sequential pattern and

classify it using ANN

(All-Nearest-Neighbor

classifier - failed.

Malware

Detector/Dynamic

24 Firmware GUIDs Unified Extensible

Firmware Interface

(UEFI)

Code Clustering Malware

Detector/Static

25 HTTP Traffic Network Traffic extremely lightweight

intrusion detection

(ELIDe) system

Malware

Detector/Dynamic

26 Combination of generic

and specialized Deep

Neural Networks

(DNNs).

 Cuckoo Sandbox

– API Sequences,

Virtual Address of

Monitored Process

Ensemble Approach –

API Call Sequence, API

Sequence Alignment

Detector (ASD), Markov

chain detector (MCD) –

Multiple Detectors

Malware

Detector/Dynamic

27 API Calls API Calls

(Dynamic

Behavior)

HCL Technologies –

Trace Tool Hooking API

Intercepts API Call

28 API Calls Memory Contents Value Set Analysis

(VSA)

Malware

Detector/Dynamic

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

95

29 Uses fractal

curves to visualize the

one-gram features of

byte sequences, i.e.

malware files

themselves, and

distinguishes the

printable characters

from non-printable

ones by different colors

Byte Sequence Byte Sequence Filling

Curve Mapping (SFCM)/

Markov Dot Plot (MDP)

Method

Malware

Detector/Static

30 Cuckoo extracted

number of features

from PE

Drive by malware

generated features

from Cuckoo

Sandbox (used

Drive-by

download

malware)

Iterative cluster-

dependent feature

rescaling (k-means,

Ward's method

clustering, and DBSCAN

clustering comparison.

Malware

Detector/Dynamic

31 N-vector Structure

Features with

Nonnegative Matrix

Factorization

Quantize byte data Nonnegative Matrix

Factorization (NMF)

Algorithms

Malware

Detector/Dynamic

32 API call sequencing

mining

API System

Calls/Behavioral

Analysis (network,

files, memories)

Voting Experts

Algorithm/Online

Learning Algorithm

Malware

Detector/Dynamic

33 Network packet, CPU,

Process, Ram LOGS –

Extracted from Cuckoo

Box

API Call Names,

Sequences, DNS

Record Lookup

Malware Variant

Identification Using

Incremental Clustering

(MVIIC) Yara Pattern

Matching Technique

Malware

Detector/Dynamic

34 Opcode Sequences Opcode Deep Belief Network

(DBN)

Malware

Detector/Static

35 DLL Function Calls Mining PE format

formation

J48/Random Forest,

Adaboost, Bagging

Malware

Detector/Static

36 Pairwise features

(Relation between

nodes)

HTTP Traffic/User

Inputs

Triggering Relation

Graph (TRG)

Malware

Detector/Dynamic

37 Network Traffic

header, Payload, data

flow

Network Level C2

Traffic

 Rapid Miner Malware

Detector/Dynamic

38 Opcode ASM Vector Space Model and

Kernel Methods

Malware

Detector/Static

39 FileProps (Size of each

ASM), ASM Contents,

ASM Statistics, Block

Size Distribution,

OldNgram, FullineByte

(frequency

Distribution)

S-Value Soft Reference Value (s-

value)

Malware

Detector/Static

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

96

40 API System Call

Sequence

Semantically

Relevant Path

Asymptotic Equipartition

Property (AEP)

Malware

Detector/Static

41 Normal vs Abnormal

Traffic

HTTP Traffic Traffic Generative

Adversarial Network

(GAN)/Deep

convolutional Neural

Network

Malware

Detector/Dynamic

42 Visualization Image

Similarities

Convert Binary

Hex Files

Malware Classification

using Deep

Convolutional Neural

Networks (CNN)

Malware

Detector/Static

43 API Call Sequence API Calls APIMDS - API Malware

Detection System

Malware

Detector/Dynamic

Appendix C: All API Calls

There are 240 identified features that show similarities among the 8 clustered groups. The table below

displays all API Calls.

WSARecv, NtOpenKeyEx, NtDeleteAtom, OpenServiceA, RegDeleteKeyW, NtQueryInformationThre

ad, OpenServiceW, SHGetFileInfoW, NtDelayExecution, WinHttpSendRequest, LdrLoadDll, SslDecry

ptPacket, SetWindowsHookExW, gethostname, NtQueryDirectoryFile, IsDebuggerPresent, InternetOpe

nUrlA, RegQueryValueExA, GetDiskFreeSpaceExW, GetSystemTimeAsFileTime, NtProtectVirtualM

emory, NtQuerySystemInformation, NtQueryFullAttributesFile, NtSetInformationFile, WSASendTo, C

opyFileA, GetSystemTime, MoveFileWithProgressTransactedW, RegCreateKeyExW, GlobalMemoryS

tatusEx, InternetCloseHandle, NtDeleteValueKey, BCryptImportKey, RegDeleteValueW, CreateDirect

oryW, NtSetInformationThread, NtTerminateThread, WSASend, HttpQueryInfoA, SetupDiGetClassDe

vsW, RegEnumValueW, GetKeyboardLayout, RtlAddVectoredExceptionHandler, FindResourceExA, R

egQueryValueExW, WinHttpSetOption, GetComputerNameA, RegEnumKeyW, WinHttpReceiveResp

onse, CryptDecodeObjectEx, NtSetValueKey, ChangeWindowMessageFilter, InternetOpenW, OutputD

ebugStringA, InternetOpenUrlW, bind, NtReadVirtualMemory, NtCreateTransaction, HttpSendRequest

A, SHGetKnownFolderPath, NtCreateFile, NtFreeVirtualMemory, shutdown, CryptHashData, NtOpen

Mutant, DbgUiWaitStateChange, SystemTimeToTzSpecificLocalTime, FindWindowA, GetSystemInfo

, NtClose, HttpOpenRequestW, WinHttpOpenRequest, NtAllocateVirtualMemoryEx, NtTerminateProc

ess, CryptImportKey, ioctlsocket, NtOpenEvent, FindFirstFileExW, UrlCanonicalizeW, CreateTimerQ

ueueTimer, SHGetFolderPathW, CLSIDFromProgID, WSARecvFrom, getaddrinfo, GetLocalTime, Ge

tVolumeNameForVolumeMountPointW, GetSystemMetrics, ShellExecuteExW, WSASocketW, RegO

penKeyExA, GetUserNameA, LsaOpenPolicy, CryptRetrieveObjectByUrlW, RtlDosPathNameToNtPa

thName_U, GetAddrInfoW, WSAStartup, NtQueryLicenseValue, LockResource, memcpy, GetCurrent

HwProfileW, WinHttpOpen, recv, CryptCreateHash, GetAdaptersInfo, CreateToolhelp32Snapshot, Nt

QueryMultipleValueKey, RtlDecompressBuffer, NtUnmapViewOfSection, WriteProcessMemory, Cry

ptAcquireContextW, Process32FirstW, NSPStartup, connect, NtCreateUserProcess, NtSetContextThrea

d, setsockopt, LdrGetDllHandle, NtQueryAttributesFile, NtOpenDirectoryObject, Process32NextW, Re

gEnumKeyExW, OpenSCManagerW, GetAdaptersAddresses, RegOpenKeyExW, srand, WinHttpGetP

roxyForUrl, CoCreateInstance, GetLastInputInfo, NtQueryKey, SetWindowsHookExA, SystemParame

tersInfoA, CoCreateInstanceEx, WinHttpGetIEProxyConfigForCurrentUser, LdrGetProcedureAddress,

NtGetContextThread, NtWriteFile, NtWow64WriteVirtualMemory64, NtOpenKey, GetFileVersionInfo

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

97

SizeW, CreateRemoteThread, UnhookWindowsHookEx, CoGetClassObject, InternetOpenA, NtReadFi

le, HeapCreate, NtOpenFile, ReadProcessMemory, RtlSetCurrentTransaction, closesocket, VarBstrCat,

RegQueryInfoKeyW, sendto, WinHttpSetTimeouts, CryptDestroyKey, NtCreateSection, RegSetValueE

xA, PostMessageW, WinHttpConnect, SaferIdentifyLevel, WriteConsoleW, WinHttpQueryHeaders, Nt

QuerySystemTime, MsgWaitForMultipleObjectsEx, FindWindowExW, SetUnhandledExceptionFilter,

NtOpenSection, socket, GetDiskFreeSpaceW, NtResumeThread, HttpOpenRequestA, NtCreateMutant,

select, NtCreateEvent, NtWaitForSingleObject, RasConnectionNotificationW, ControlService, RtlCreat

eUserThread, SendNotifyMessageW, ConnectEx, CryptDestroyHash, NtDeviceIoControlFile, InternetC

onnectA, NtEnumerateKey, PostMessageA, DeleteFileW, NtFindAtom, NtQueryInformationFile, Find

WindowW, DeviceIoControl, gethostbyname, SizeofResource, NtSetInformationProcess, NtWriteVirtu

alMemory, NtQueueApcThread, URLDownloadToCacheFileW, NtWow64ReadVirtualMemory64, sen

d, HttpAddRequestHeadersW, LookupPrivilegeValueW, OpenSCManagerA, CryptAcquireContextA, V

irtualProtectEx, GetUserNameW, CreateThread, HttpSendRequestW, CopyFileW, RegSetValueExW, G

lobalMemoryStatus, GetCursorPos, InternetConnectW, NtCreateKey, LoadResource, NtEnumerateVal

ueKey, NtSetTimerEx, CryptEncrypt, SslEncryptPacket, RegCloseKey, NtAllocateVirtualMemory, Get

ComputerNameW, NtReleaseMutant, CryptGenRandom, NtQueryInformationAtom, SystemParameters

InfoW, NtOpenThread, NtYieldExecution, NtCreateNamedPipeFile, RegNotifyChangeKeyValue, Cryp

tGenKey, CryptExportKey, NtMapViewOfSection, NtUnmapViewOfSectionEx, NtDuplicateObject, __

anomaly__, NtAddAtomEx, NtQueryValueKey, NtOpenProcess, NtDeleteKey, GetFileVersionInfoW,

NtSuspendThread, RegCreateKeyExA

Appendix D: Imported DDL Similarities

There are 49 Dynamic Link Libraries (DDL) that share similarities of all 8 clusters.

OLEAUT32, DBGHELP, MSACM32, DINPUT8, WININET, UXTHEME, SHELL32, IMM32, NET

API32, SECUR32, NTDSAPI, WSOCK32, CRYPT32, WINMM, NDDEAPI, ACTIVEDS, COMDLG

32, USERENV, MSVCRT, IPHLPAPI, IMPORTS NT, URLMON, OLEACC, ADVAPI32, NT, WS2_

32, MSIMG32, COMCTL32, PDH, SHLWAPI, OLE32, SETUPAPI, VERSION, MODEMUI, KERN

EL32, USER32, MPR, OLEDLG, RSTRTMGR, WINSPOOL, WTSAPI32, GDI32, PSAPI, GDIPLUS

, BCRYPT, OPENGL32, IMPORTSKERNEL32, GLU32, CERTCLI

Appendix E: 159 API files that are not found in the common features

WSARecv, NtDeleteAtom, OpenServiceA, RegDeleteKeyW, OpenServiceW, SHGetFileInfoW, PStor

eCreateInstance, WinHttpSendRequest, DeleteFileA, SslDecryptPacket, SetWindowsHookExW, getho

stname, InternetOpenUrlA, NtLoadKeyEx, RegQueryValueExA, GetDiskFreeSpaceExW, NetUserGetI

nfo, GlobalMemoryStatusEx, InternetCloseHandle, NtDeleteValueKey, BCryptImportKey, RegDelete

ValueW, NtSetInformationThread, NetGetJoinInformation, WSASend, HttpQueryInfoA, SetupDiGetC

lassDevsW, RtlAddVectoredExceptionHandler, FindWindowExA, WinHttpSetOption, WinHttpReceiv

eResponse, GetComputerNameA, HttpQueryInfoW, CryptDecodeObjectEx, ChangeWindowMessageF

ilter, InternetOpenW, OutputDebugStringA, InternetSetOptionA, InternetOpenUrlW, NtCreateTransact

ion, HttpSendRequestA, accept, WSAConnect, shutdown, CryptHashData, CryptImportPublicKeyInfo,

HTTPSFinalProv, SystemTimeToTzSpecificLocalTime, FindWindowA, HttpOpenRequestW, CryptDe

crypt, WinHttpOpenRequest, NtAllocateVirtualMemoryEx, GetAsyncKeyState, CryptImportKey, ioctl

socket, FindFirstFileExW, DnsQuery_A, UrlCanonicalizeW, CopyFileExW, CLSIDFromProgID, geta

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

98

ddrinfo, GetLocalTime, RegOpenKeyExA, GetUserNameA, LsaOpenPolicy, CryptRetrieveObjectByU

rlW, GetAddrInfoW, InternetCrackUrlW, HttpAddRequestHeadersA, GetCurrentHwProfileW, WinHtt

pOpen, recv, CryptCreateHash, GetAdaptersInfo, NtQueryMultipleValueKey, NSPStartup, InternetGet

ConnectedState, Module32NextW, CryptDeriveKey, connect, NtDeleteFile, NtSetContextThread, Ope

nSCManagerW, GetAdaptersAddresses, RegDeleteKeyA, srand, WinHttpGetProxyForUrl, SetupDiGet

ClassDevsA, RemoveDirectoryW, COleScript_ParseScriptText, SetWindowsHookExA, SystemParam

etersInfoA, WinHttpGetIEProxyConfigForCurrentUser, NtRaiseHardError, NtGetContextThread, Unh

ookWindowsHookEx, InternetOpenA, CoGetClassObject, VarBstrCat, WinHttpSetTimeouts, sendto, C

ryptDestroyKey, OutputDebugStringW, WinHttpConnect, SaferIdentifyLevel, WriteConsoleW, WinHt

tpQueryHeaders, MsgWaitForMultipleObjectsEx, FindWindowExW, socket, GetDiskFreeSpaceW, Htt

pOpenRequestA, select, RasConnectionNotificationW, ControlService, SendNotifyMessageW, CryptD

estroyHash, InternetConnectA, RegEnumKeyExA, PostMessageA, DeleteFileW, FindWindowW, geth

ostbyname, CreateProcessInternalW, NtQueueApcThread, URLDownloadToCacheFileW, HTTPSCerti

ficateTrust, ObtainUserAgentString, recvfrom, NtWow64ReadVirtualMemory64, send, FindResourceE

xW, Module32FirstW, HttpAddRequestHeadersW, OpenSCManagerA, CryptAcquireContextA, Intern

etCrackUrlA, HttpSendRequestW, CopyFileW, GetDiskFreeSpaceExA, RegEnumValueA, GetCursorP

os, InternetReadFile, InternetConnectW, NtEnumerateValueKey, CryptEncrypt, WaitForDebugEvent,

SslEncryptPacket, listen, NtCreateThreadEx, NtCreateNamedPipeFile, CryptGenKey, CryptExportKey

, RegNotifyChangeKeyValue, BCryptEncrypt, RegDeleteValueA, NtDeleteKey, NtSuspendThread

DocuSign Envelope ID: DBED7C56-5768-47C2-AA08-454128F95172

	DISSERTATION APPROVAL FORM
	Malware pattern of life analysis
	DISSERTATION APPROVAL FORM
	Abstract
	Declaration
	TABLE OF CONTENTS
	CHAPTER 1
	INTRODUCTION
	A. Background of the Problem

	INTRODUCTION
	B. Statement of the Problem and Motivation

	INTRODUCTION
	B. Statement of the Problem and Motivation
	C. Research Questions

	INTRODUCTION
	D. Objectives

	CHAPTER 2
	Literature review
	CHAPTER 3
	3.1 Introduction
	3.2 Research Design

	CHAPTER 3
	3.3 Research Methodology
	3.3.0 Phase 0: Data Collection

	CHAPTER 3
	3.3.1 Phase I: Discovery

	CHAPTER 3
	3.3.2 Phase II: Assessment

	CHAPTER 3
	3.3.3 Phase III: Explanation (Descriptive Data Analysis)

	CHAPTER 3
	Drill Down Data: General Features (Comparison of captured 27 features)

	CHAPTER 3
	Table 4: General Features Statistical Occurens Per Cluster

	CHAPTER 3
	Drill Down Data: All Invoked APIs [General Comparison] By Cluster

	CHAPTER 3
	Drill Down Data: Encryption API Drill Down [Comparison]

	CHAPTER 3
	Drill Down Data: File Function API Usage

	CHAPTER 3
	Drill Down Data: DLL Used [Static]

	CHAPTER 3
	Drill Down Data: Dropped Files

	CHAPTER 3
	Drill Down Data: Network Communication Process (DLL)

	CHAPTER 3
	Drill Down Background Execution

	CHAPTER 3
	3.3.4 Phase IV: Anticipation (Research Questions)

	CHAPTER 3
	3.4 Ethical Considerations
	3.5 Results and Discussion

	CHAPTER 3
	3.6 Limitations

	CHAPTER 3
	3.7 The Researcher

	Conflict of Interests
	CHAPTER 4
	RESULT
	RESULT
	Contribution

	CHAPTER 5
	Conclusions
	References
	Appendices
	Appendix A. Identified input used for feature engineering for Machine Learning (ML)

	Appendices
	Appendix B: Feature Engineering, Level of Scan, Algorithm Used

	Appendices
	Appendix C: All API Calls

	Appendices
	Appendix D: Imported DDL Similarities
	Appendix E: 159 API files that are not found in the common features

		2023-11-21T06:57:07-0800
	Digitally verifiable PDF exported from www.docusign.com

