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ABSTRACT

ZigBee is the open-standard enabling smart devices to be adopted in new and innovative

ways. In this research, the network layer of the ZigBee protocol is examined to further

the understanding of security impacts it brings to the environment. The first research

question is determining of the ZigBee beaconing patterns reveal the device type. This is

the first layer that introduces encryption and the results indicate that beacon layer data

with the lower layer information do not provide enough information to confidently identify

the device prior to admittance to the network. This is important in the identification of

rogue devices. The second research question is how applying machine learning to a set

of features extracted from network traffic can reveal device types. The results are yes,

training a model to identify traffic is possible leveraging network-layer traffic to identify

device types within the network. The third research question is revealing if the traffic

being captured at the network layer can be categorized as abnormal leading to potential

malicious traffic identification. The results indicate a yes when the abnormal traffic is

greater than one standard deviation from the average packet size. A reverse majority-vote

classifier is created that classifies devices based on observed traffic. This research expands

network identification, inventory, and potential detection for ZigBee smart devices that

can be leveraged in the field environments today.

iii



DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language

of others is set forth, quotation marks so indicate, and that appropriate credit is given

where I have used the language, ideas, expressions or writings of another. I declare that

the dissertation describes original work that has not previously been presented for the

award of any other degree of any institution.

Signed,

K˚u˚r˚t L J´a˚r‹v˘i¯s

Kurt L Jarvis

iv



TABLE OF CONTENTS

Dissertation Approval Form ii

Abstract iii

Declaration iv

Table of Contents v

List of Tables x

List of Figures xi

Chapter 1:

Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Existing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.8 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

v



Chapter 2:

Literature Review 6

2.1 Integration Into Everything . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Radio Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 RF Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Jamming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Radio Frequency Gaps . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Power Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Energy Depletion Attacks . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Embedded Multiple Flows . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Power Attack Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Protocol Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Replay Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Deadlock Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Passive Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4 Protocol Attack Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3:

Methodology 16

3.1 Methodology Selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Single-Case Mechanism Experiments . . . . . . . . . . . . . . . . . . . . . 17

3.3 Trustworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Ethical Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



Chapter 4:

Experiment Setup 22

4.1 The Lab Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Procedures Followed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Converting Questions To Answers . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.1 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.2 Research Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.3 Research Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 5:

ZigBee Device Identification Using Beacons 33

5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Collection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Data Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 6:

ZigBee Device Identification Using Network Traffic 44

vii



6.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Collection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Data Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.1 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.2 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.1 Research Question 2 Results . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 7:

Identifying Abnormal ZigBee Device Behavior Using Network Traffic 55

7.1 Research Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3.1 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4.1 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 8:

Conclusion 61

8.1 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

viii



8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 65

Appendix A: PCAP Parsing 68

A.1 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Media Access Control Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.3 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4 Computed Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



LIST OF TABLES

Table 4.1Devices Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 5.1Unpacked Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 5.2Computed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 5.3Machine Learning Results For Identifying Devices Based Off Beacons . 40

Table 5.4Model Tuning Parameter 1 . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 5.5Model Tuning Parameter 2 . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 5.6Model Tuning Parameter 3 . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 5.7Correlation Heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 6.1Timers For Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 6.2Unpacked Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 6.3Computed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 6.4Model Tuning Parameter 1 . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 6.5Model Tuning Parameter 2 . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 6.6Model Tuning Parameter 3 . . . . . . . . . . . . . . . . . . . . . . . . 51

Table A.1First Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table A.2Second Layer Initial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table A.3Second Layer Unpacked . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table A.4Third Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table A.5Computed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

x



LIST OF FIGURES

Figure 2.1Wireless Hierarchy [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 ZigBee Network Layer Security Options [14] . . . . . . . . . . . . . . 13

Figure 3.1 ZigBee Layers [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.2Methodology Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 4.1 ZigBee Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.2 ZigBee Hardware [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.3CC-Debugger [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 5.1Data Preparation [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 5.2ML Options [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 6.1Network Random Forest Results . . . . . . . . . . . . . . . . . . . . . 50

Figure 6.2Network Decision Tree Results . . . . . . . . . . . . . . . . . . . . . . 51

Figure 6.3Network KNN Training Results . . . . . . . . . . . . . . . . . . . . . 51

Figure 6.4Network AdaBoost Training Results . . . . . . . . . . . . . . . . . . . 52

Figure 6.5Network Gradient Training Results . . . . . . . . . . . . . . . . . . . 52

Figure 7.1Abnormal Behavior Decision Tree Results . . . . . . . . . . . . . . . . 58

Figure 7.2Abnormal Behavior AdaBoost Results . . . . . . . . . . . . . . . . . . 58

Figure 7.3Abnormal Behavior GradientBoost Results . . . . . . . . . . . . . . . 59

Figure 7.4Abnormal Behavior Random Forest Results . . . . . . . . . . . . . . . 59

Figure 7.5Abnormal Behavior K-Nearest Neighbor Results . . . . . . . . . . . . 60

xi



Figure A.1ZigBee Layers [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



Chapter 1

Introduction

1.1 Introduction

Internet of Things (IoT) devices have been rapidly adopted into almost every aspect of

business, commercial, industrial, and personal life at a rate exceeding the ability to secure

them. The IoT infrastructure is a heterogeneous combination of technologies, protocols,

and proprietary devices. The wireless spectrum is dominated by the Wireless Fidelity

(Wi-Fi) Alliance protocol, which is heavy in communications and requires high power

consumption. The addition of new protocols reducing the communication burden and

lowering the power consumption extending the life of devices has opened up a new window

to innovation. Some proprietary protocols are available, along with an open standard

called ZigBee riding over the RFC 802.15.4. This protocol has allowed vendors to offer

new devices in new areas that have exploded into the market. Taking simple devices that

enable automation and placing them in new areas has opened the door to innovation.

With the adoption of the word “smart” being applied to electronic devices that allow

connectivity with control, these devices are controlling mundane functionality like outlets

and coffee pots. However, they are also being applied to water treatment plants, railway

control devices, traffic controllers, and power grids that affect many aspects of daily life.
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1.2 Motivation

This rapid adoption of these devices without a holistic security plan is a risk that has been

forced upon all who adopt these devices into their lives and businesses. The consumer

desires to have a plug-and-play feature and has demonstrated this quality with every new

technology adoption that is introduced. When vendors have a monopoly, they can add

security features that support rapid adoption by consumers. The current state of the

industry has multiple vendors with niche areas of the market with very little concern for

providing security. Due to the range of the ZigBee protocol, the adoption into homes may

provide risk but it is localized to a personal or family extent that can be accepted by

the owner. We are observing the adoption into industrial and business settings that are

touching finance, industrial controls, traffic safety, and public safety that can have dire

effects to the public and potential life.

1.3 Existing Problems

ZigBee is built on top of the RFC 802.15.4 protocol that defines the wireless medium

standards that focus on low power consumption and lower transmissions compared to

Wi-Fi. After the first two layers, such as the physical layer and the data link layer, Zig-

Bee operates at two layers: the network layer and application layer. The network layer

offers 8 different levels of security options ranging from zero security to encryption with

frame checks. Using level 8 provides the most security but is rarely used in heterogeneous

environments. Most devices are designed to communicate with a controller without con-

figuration until it is admitted into the network. Once in the network, a set of keys can

be shared to increase security. However, the network is only as secure as the least secure

device. Networks that cannot reach level 8 with all devices are retrograded to the security

level of the lowest device. This common scenario allows for a plethora of attacks into the

2



heterogeneous network that propels an attacker into corporation and industrial areas that

were previously hardened. Additionally, the number of devices that are added to these

spanning networks is rapidly catching up with the number of wired devices, if not sur-

passing them. With coordinators extending the range of ZigBee networks, the complexity

of device mapping has exceeded the tools and technologies available. The problem is the

ability for ZigBee devices to be infiltrated into a network with malicious intent without

the availability of monitoring to identify the devices or malicious behavior.

1.4 Research Gap

The majority of ZigBee research has focused on RFC 804.15.4 looking at the signal layer

to identify device locations and investigating the attacks rampant in the protocol stack.

While many of these attacks are similar to attacks that were found in earlier versions of

Wi-Fi standards, the ZigBee network layer provides a new area of research regarding the

security implementation and device enumeration. A heterogeneous collection of devices is

being added rapidly that are increasing the vulnerability landscape of homes, businesses,

and industrial complexes. As shown in the literature review section, the research indicates

the available attacks while missing the research to enable monitoring with indicators of

compromise through network traffic analysis.

1.5 Research Questions

The first question (R1) is: Do ZigBee devices have a consistent beaconing pattern that

can be uniquely identified from other devices based on timing? There are two subques-

tions: Does the introduction of a new ZigBee device in a heterogeneous environment cause

the network to switch network keys; can we fingerprint the device based on beaconing

patterns? The second question (R2) is Can we identify device types based on network

layer traffic using machine learning (ML)? There are two subquestions: Is there enough

3



indicators at the network layer to provide enough uniqueness for a device to be identified

into categories; can we fingerprint the device based on network layer traffic? The third

question (R3) is Given an inventory of items authorized to communicate on a ZigBee net-

work, can traffic analysis of the network layer identify devices that are sending abnormal

traffic? This question involves defining abnormal traffic as traffic outside of a learned

range of expected traffic patterns. A sub-question to this includes attempting to expand

the ML model from R2 to identify these abnormalities. These three questions form the

foundation of the research and lead to knowledge discovery and potential future research.

1.6 Approach

This research takes a pragmatic approach to a growing problem. After completing an

extensive literature review, the laboratory listed in Chapter 3 is used to collect network

layer data to answer the research questions. These data are analyzed to perform feature

extraction to apply machine learning. From the machine learning model, an assessment

can be made that could automate the inspection of traffic to identify devices based on

their network-layer traffic patterns.

1.7 Research Challenges

There are a few challenges to overcome. First is isolation of network traffic. There

are fourteen channels available within the spectrum that can cause interference. This

will be accomplished by performing some spectrum analysis of the lab environment first

and forcing the hubs to operate in the channel with the lowest interference. The second

challenge is control of network key exchanges. The Eria ZigBee Hub provides the interface

for full control. The Amazon Alexa Echo does not provide a user option to change the

network key. The key will have to be extracted during network capture in the transport key

link exchange. This requires a little more effort at the APS layer [1], but once extracted

4



can be applied to the python script for accurate data extraction. The last challenge

identified is the automation of sensors. The hubs provide an automation sequence that

can be used to change the state of all the other devices. To automate the sensors, it will

required some inventive ideas. To automate the motion sensor, the researcher plans to

put the sensor facing automated window blinds. The movement of the blinds trigger the

motion sensor, allowing for a repetitive and predictable pattern that can be used for data

collection. The door and window sensor are more complicated, but a similar technique

can be used. A hot-wheels race track can be set up to place one side of the sensor next to

the track while the other side is attached to a hot-wheels car. Each time the car passes the

sensor, it will trigger the alert. This may cause R3 to become predictable, so a separate

dataset may be needed to prevent this type of sensor from being predictable.

1.8 Dissertation Outline

This dissertation describes the rigorous method applied to answering the research ques-

tions. Chapter 2 introduces the background literature of previous research that set the

foundation for these experiments. This covers methods and topics at each of the ZigBee

layers relevant to this topic. Chapter 3 presents the methodology used during this re-

search to determine the validity of the procedures and results. Chapter 4 outlines the

experimental lab leveraged to establish, collect, analyze, and record the data and devices.

Lab design is a simplistic view of an industrial automation setup that mimics a real sce-

nario. Chapters 5, 6, and 7 define the research implementation for each research question

individually. Details of data capture, analysis, and model building are provided. Chapter

8 provides a concrete conclusion to this research, what it means to the field of cyber

operations, and where the next evolution of this research should be taken.
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Chapter 2

Literature Review

The limitations of the Wi-Fi protocol delayed adoption of devices requiring low power

consumption. Every transmission requires power consumption that makes small devices

without continual power have a short lifespan. The 802.15.4 standard was introduced as

an alternative option on 2.4 GHz that changes the burden to allow the wireless protocol

to use less transmissions, but also limits the distance. Built on top of 802.15.4, wireless

standard options include ZigBee, ZWave, and EOcean [2]. The ZigBee Alliance is the only

open-standard out of the three that invite adoption at minimal costs with transparency.

Companies jumped at the opportunity to provide connectivity to their devices, enabling

the evolution of “smart devices” [2]. The changes were made so fast that the adoption

of devices outpaced the ability to provide security contexts. Each device independently

provides some small advancement in control automation, but combined with a multitude

of other devices provides a large problem-set for security professionals. When devices

are applied to the home, the impact is localized and risk is assumed by the home owner.

However, when applied to power plants, electrical grids, traffic signals, and airport con-

trols, the risk increases exponentially. Even the drive to telework to use home computers,

networks, and resources bring undue risk to companies. Mandatory Virtual Private Net-

works (VPNs) are an attempt to isolate local network traffic from the corporate network,

but does not prevent pivoting on the machine itself. One attempt is to apply the same

centralization of network controls used on wired architectures. The second attempt is to
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force centralized authentication. Both of these concepts break the implementation of the

802.15.4 wireless protocol. This literature review focuses on the techniques being used

today and the gaps currently in this space.

2.1 Integration Into Everything

IoT has been deployed in almost all aspects of business, industry, and homes. Figure 2.1

shows graphically an ecosystem leveraging multiple mediums to communicate. While its

convenience is appealing, it brings a multitude of concerns. First is a privacy perspective.

Taking a simple addition to the power grid to allow electric-metering devices to transmit

to a SmartMeter allows the company to use a device to drive down the road and collects

readings without visually inspecting the meter at, on, or in the home [3]. There are

lots of benefits for the company profits and efficiency. However, this is also information

available to anyone else reading the signals. Allowing someone to do a little pattern

analysis to determine when a home owner draws more power can indicate activity such as

when shower hygiene is happening. While not too intrusive, reading when power is being

consumed from industry entry gates provides a little more insight into operations. Taking

the concept to an extreme, knowing when power is drawn at a missile launch site has

a dramatic impact on national security [4]. Second is the idea of autonomy and taking

cyber-physical systems into an interconnected environment making decisions, such as

vehicle operation. The consequences of attacks within this realm become deadly quickly.

We already incorporate cellphones into car entertainment systems, which took over 5

years to convince engineers to stop connecting vehicular controls with the entertainment

systems.

As society continues to push from “man-in-the-loop” to “man-on-the-loop” to, eventu-

ally, autonomy; the security concerns continue to slow the progress [4]. Although ZigBee

is just one of the wireless options in this context, attackers will continue to target the
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Figure 2.1: Wireless Hierarchy [5]

weakest and most vulnerable areas. Third, the sheer amount of devices accessible to the

Internet is drawing interest from script kiddies to nation-state cyber actors. With the IoT

expanding into billions of devices, corruption of one device rapidly spreads to adjacent

devices, providing a foothold and compromise. Even when an intrusion detection system

(IDS) is built into the network, the amount of damage is insurmountable depending on

the devices that these IoT are controlling [6]. While the locality of ZigBee devices may

prevent a wide-spread impact, recent open-source demonstrations with devices attached

to drones called “warflying” are showing how wide-spread an attack can get [6], [7].

2.2 Radio Frequency Analysis

Radio Frequencies (RF) are everywhere and almost never have encryption on the headers.

Due to the open airwaves, there is no way to prevent signal capture. Even with directional

antennas, it does not prevent data interception (or injection). Regardless of the payload,

the RF emissions provide a set of information that may lead to conclusions. Research has

recently been conducted to use what is available to find devices and train models with

that limited feature set. Because ZigBee is on top of IEEE 802.15.4 standards, ZigBee
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devices suffer attacks at the lower layers. Several proposals have been made to update

the IEEE 802.15.4 standard, but they have not yet been accepted or published.

2.2.1 Triangulation

Any device that puts off a signal can be received. The basic measurement of signal

strength is the received signal strength indicator (RSSI). While it is impossible to know

the amount of signal sent, the device can measure what it received. With two devices,

concentric circles can determine potential locations narrowing the device location to two.

With a third device, triangulation occurs. Two approaches have been researched to further

the topic. First, a neural network was applied with input provided from receivers spread

across an area that uses known devices and their locations to find devices not previously

identified (labeled as rogue) [1]. This approach requires registration of devices based on

signatures. The second approach is conducting signal processing to determine devices

based on other devices within the proximity [1]. This involves a high processing classifier

researchers called Zero-Effort Proximity Detection (ZIP). Both of these approaches require

high amounts of processing and distinct hardware modifications not inherent in ZigBee

devices today.

2.2.2 RF Fingerprinting

Efforts are researched to find device-dependent emissions used to distinctly native at-

tributes [8]. Distinctive attributes were researched leading to coining a term “RF-DNA”

[8]. Efficiencies were researched to make the technique practical. The research is limited to

the information available within the physical layer. Outside of packet sizes and frequency

of packets, there are few additional features available for training models. Follow-on

research requires additional features that are unavailable from the physical layer trans-

missions alone. IEEE 802.15.4 focuses on the low power consumption and combines

packets within the standard to keep the communications lower than Wi-Fi. This research
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indicates to move up the technology stack for fingerprinting.

2.2.3 Jamming

At the RF level, the jamming technique most applicable is flooding [9]. This paper refers

to five types of jamming but in all cases some signal is transmitted to drown out the

intended signal. The technology limits the range to 14 channels (country-dependent)

within the 2.4 GHz band. A quick listen by a scanner [7] and anyone can begin flooding

the channel with a jamming signal. It does not matter if the signal has any meaning. The

only anti-jamming techniques offered is to implement spectrum spreading [9], but the

consequences of that include increase power consumption and transmission times; both

of which are undesirable in most IoT use cases.

2.2.4 Radio Frequency Gaps

Research at the IEEE 802.15.4 standard has reviewed the ability to detect that a device

is on, transmitting, and then use signal strength to determine location. The ability to

identify they type of device is missing due to the lack of information extracted at those

levels. The standard is designed to provide the physical transmission and be agnostic

from the protocol riding upon the transmission. This disconnect has limited the ability

to support ZigBee understanding.

2.3 Power Attacks

A key advantage to ZigBee is the feature of long battery life. The longer battery life is

proportionally to the amount of transmissions. Effort in design reduced the bandwidth

compared to the 802.11 frameworks enabling this feature. Fully-functional devices that

have constant power are less prone to power attacks, but the reduced-functionality devices

that are in more remote positions living from a battery cell can be reduced quickly.
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2.3.1 Energy Depletion Attacks

Instead of attacking the communications to high-jack for intercept, these devices can fall

victim to a depletion attack that renders the device useless [10], [11]. Similar to a de-

authentication attack on Wi-Fi, a continuous beacon requiring the device to respond keeps

the device active for as long as messages are being received. Leveraging beacons takes

a considerable amount of time as the power consumption for a beacon is much smaller

than other protocol packets. However, if the attacker could target a specific device with

replay attacks at the network layer then depletion could be sped up tremendously (best

case of 90 minutes in the example) [10]. Research conducted by Khanji, Iqbal, and Hung

highlight that this attack could occur at the MAC layer with slower results [11]. An attack

with frames are much smaller and incomplete frames would be dropped. This would still

incur the power to process the packets, but not consume as much as using transmit power

in some response. While this attack may not be a viable option for an attacker, it still

exists within the architecture. Regardless of the type of attack, the criticality of the node

within the topology can create Denial of Service attacks which lead to a desired effect by

the attacker.

2.3.2 Embedded Multiple Flows

A counter to the power attacks is reducing the number of communications within the

2.4 GHz band that is currently cluttered with collisions and devices. Embedded Multiple

Flows (EMFs) use two techniques to interweave the ZigBee communication in-between the

Wi-Fi transmissions [12]. This solution is a software-only solution that could be done with

firmware updates and is encouraging. The research gap here is prioritization of packets.

Similar to Quality of Service (QoS) within Wi-Fi, the saturation of packets within the

2.4 GHz band leaves the ZigBee packets stranded waiting for its slot within the protocol.

Wi-Fi issued new modulation techniques that implement improved Read to Send/Clear
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to Send (RTS/CTS) procedures that limit the opportunity for EMF to be effective [12],

[13].

2.3.3 Power Attack Gaps

The approaches to reduction of power attacks are attempting to limit the transmission

need but do nothing to prevent such transmissions. Due to the agnostic nature of the

RFC 802.15.4 layers, any intelligent processing to determine attacks at these layers have

to be implemented in the control layer above, which is the network layer of ZigBee. Even

the proposed integration of the EMF focuses on changing the Wi-Fi messaging to support

ZigBee integration, which does nothing in ZigBee-dominant topologies.

2.4 Protocol Attacks

The protocol itself has security options that can provide confidentiality and integrity.

The options are listed in Figure 2.2. ZigBee Alliance recommends that level 5 and above

should be used to prevent payload introspection. Unfortunately that is a recommendation

and conflicts with many business models that require pre-installed encryption keys. This

reduces the interoperability with other manufacturers resulting in lowers profits which

is not desirable within the community. A nonce could help with the interception issues

that could provide an element of integrity, but a nonce is difficult to keep a common

starting point without a network time stamp or similar item that each device can use to

validate created nonce [2]. As long as devices are designed to last, having unique nonces

without repeating will also be a challenge. Lastly, the wired community continues to

recommend an intrusion detection system (IDS) for solutions where devices designed for

this implementation do not have the computing space or power to conduct [2]. Many of

these IDS recommendations are attempting to take a wired solution and apply it to a

domain that cannot support it.
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Figure 2.2: ZigBee Network Layer Security Options [14]

2.4.1 Replay Attacks

A set of research has been conducted on the attacks to reuse data to get the same results.

If a ZigBee packet is captured that causes a light bulb to turn on, we could get the same

effects without knowing what was actually in the packet by conducting replay attacks.

The amount of encryption would not matter as nothing needs to be broken, just resent.

At the ZigBee network layer, there are a set of integrity checks to validate the packet.

The frame counter is located at the layer below that does not have encryption. As

long as the frame counter is greater than the last one received, the packet is accepted.

Researchers have provided a potential solution that would incorporate a timestamp that

would validate that packets are old and should be ignored [14], [15]. Using this approach, a

software update for fully-functional devices could be deployed and potentially a hardware

update for reduced-functionality devices. A consorted effort by each manufacturer would

be necessary for change, which is not applicable to heterogeneous environments. Another

attack in this category is the Sybil Attack [16]. This allows a device to masquerade as a

valid, trusted device already admitted in a network. In the ZigBee hierarchy (see Figure

2.1, it requires the capturing of the trust key that is exchanged at the application layer

(one layer above the network layer). While that may appear technically challenging, the

interoperability default design leveraging an auto-join policy allows for the decryption
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of the transport key by monitoring the link exchange. This exposes the entire network

opening up rogue device possibilities. Even when the auto-join is disabled, there are other

techniques like downgrade attacks that force the network to exchange the network key that

can be decrypted allowing for interception of the transport key anyway. This is a business

decision for rapid adoption of devices for convenience vice a stringent management plan.

A difficulty with the Sybil attack is the data storage requirement needed to determine

outliers [16]. The size and processing requirements move this processing to a dedicated

computer that usually is NOT a ZigBee device.

2.4.2 Deadlock Attack

Similar to the Replay Attack, the frame counter must always be higher than the last

number one accepted. In networks that reboot and reset prior to reaching the maximum

value, it is not an issue. However, IoT devices are designed to be left on for years without

reboot. If the frame counter is set to the maximum value and sent to a ZigBee device,

that device will reject further packets as that 8-bit value will wrap back around to zero

[17]. While no changes to the RFC have been made yet, this situation generates the need

for a network reset still yet to be implemented.

2.4.3 Passive Attack

Attacks do not have to respond or send data to the device. The confidentiality of infor-

mation or the loss of that data to unknown devices also impacts the protocol [11]. While

home automation networks are less concerned with data transmission leaks, industries

and businesses are highly sensitive to that data protection [3]. A device that just listens

to the open airwaves for RFC 802.15.4 and collects that information impacts data pri-

vacy. As stated above, level 5 does provide some inherent protection that requires key

management. Real-time attacks can be difficult for decryption, but adversaries do not

always need it in real-time. The ability to collect data then use high computing power
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later is a technique used across nation states globally. The use of these devices within

critical infrastructure makes these devices a high value target within the landscape.

2.4.4 Protocol Attack Gaps

The previous research on protocol attacks highlight a need for additional monitoring that

is not appropriate for the ZigBee devices. While a dedicated network device with constant

power may provide a network defender with information flow that can be processed and

scrutinized, it does not improve the protocol or the situation; it provides a response and

investigation capability. There is no suggested effort to innovate or iterate the protocol

standard, only deploy additional items within the ecosystem to provide detection.

2.5 Summary

The ZigBee landscape has garnered attention at each of the ZigBee layers that allow the

inspection of transmitted data. While ZigBee is being fully integrated into critical spaces,

the available data to be captured provides both opportunity and threats to the devices and

the networks in which they are apart. The radio signals themselves can be leveraged to

identify where devices are located. Due to the nature of radio waves, ZigBee is vulnerable

to other radio attack techniques that impact the signal-to-noise ration. Apart from the

radio signals itself, this chapter outlined the techniques used against the design of the

protocol that have been researched. While some of the techniques impacting ZigBee can

be mitigated, there are others that still need researched solutions. Understanding the

history of what has been researched allows the research questions of this experiment to

build upon the knowledge foundation. The next chapter outlines the methodology used

to build the experiments to answer the research questions.
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Chapter 3

Methodology

This chapter outlines the research methodology for identifying ZigBee devices through

pattern of life analysis. The approach is a quantitative design science methodology that

focuses on a single-case mechanism experiment in a laboratory environment with a repre-

sentative sampling of ZigBee devices. The approach is discussed in depth in this chapter,

originating with the analysis of the research question, designing the environment with

engineering rigor, and the approach to data analysis.

3.1 Methodology Selected

The main premise of the research is that there are numerous devices transmitting across

radio frequencies that can be captured, collected, analyzed and evaluated to categorize

and make predictions. The relationship is defined by the theory of quantitative research

by Creswell as “an interrelated set of constructs . . . that specify the relationship among

variables” [18]. Design science is selected to find solutions to the research questions

listed in Chapter 1. Artifacts are generated by the environment and call for a change in

the implementation in the real world [19]. Each research scenario and field deployment

may contain different devices in the array of configuration possibilities, but it continues

to depend on collecting transmitted data and analyzing the pattern to predict types.

Because of this commonality between environments, it allows the application of single-

case mechanism experiments to answer the above research questions.
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3.2 Single-Case Mechanism Experiments

This research aims to link the cause and effect correlation between the ZigBee traffic trans-

mitted and intercepted with the functional properties of the device. Single-case mecha-

nism experiments have an inference design that is used to validate the results through

descriptive inference, normally through charts, graphs, and tables of analyzed data [19].

These experiments are systematically set up with a design that supports data integrity

and data preservation. An important distinction is the “set of experimental methods that

can be used to test the efficacy of the intervention [treatment]” that this research aims

to answer [20]. Wieringa provides a checklist to ensure that all the elements are needed

to contribute to abductive inference [19]. The first element is interpreting the signals and

analog data. RFC 802.15.4 defines the first two layers that convert between analog waves

and digital fields. This is the physical layer and the media access control layer as shown

in Figure 3.1. These layers also provide the basics of power management, signal strength,

and communication frequencies that allow RFC 802.15.4 to outperform RFC 802.11 in

power consumption, but reduces the signal strength.

The next two layers are defined by the ZigBee standard, which enables device commu-

nications for control functionality. Between these two standards, data fields are structured

for systematic extraction. The standards do provide the option for optional data, which

can cause variation between vendors implementing the standard to include/exclude re-

fined information. The second element is the summaries of the data planned within the

experiment. According to Figure 3.1, all ZigBee communications involve at least the first

three layers of the stack, but generally include at least one element of the fourth layer.

The first exception lies in the router configuration where the device serves as a repeater,

and the fourth layer would not be processed (or decrypted), but sent out again to allow

the communication to expand across a larger span to the targeted endpoint. The second

exception is the beaconing process, which contains nothing in the network layer while
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Figure 3.1: ZigBee Layers [2]

establishing association with the coordinator. Regardless, the analysis is available at each

of these layers with the potential to provide summaries, graphical comparisons, and ana-

lyzed correlations. The third element is the inherent support for data preparation. The

laboratory discussed later in this chapter enables the data to be prepared in a repeatable

manner that can be reproduced and validated, as show in Figure 3.2.

Figure 3.2: Methodology Diagram
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The data collected during this experiment is representative of the field environment

as it is the same device type and configuration communicating in the normal established

patterns per the RFC. The fourth element is data interpretation, which is essential to

validity with industry peers. In this research, the results of the raw, intermediate and

final analysis results are presented and shared to show the logic between interpretations

and correlations. The fifth element is descriptive statistics. The usage of the RFC-defined

data leveraged both in field deployments and the lab environment being the same allows

for any statistics to be applied and directly correlate between the environments. The

conclusions are directly applied to the field. The sixth and last element is repeatability.

This design allows for the full disclosure of all environment configurations, collection tools,

and processing programs that can be used by any future researcher or industry to repeat

these tests and produce similar results. Without the ability to seed communication start-

ing points and device enrollment timing, it is impossible to get exact raw results. However,

any raw results generated from a similar lab environment can repeat the data curating,

analysis, graphing, and reach the same conclusions. Although single-case mechanism ex-

periments require rigor in engineering and demonstrated logic flow that any researcher

can follow, the researcher must have a minimal level of expertise and experience.

3.3 Trustworthiness

The amount of sampling required for this research is dependent on two criterion: the com-

munication mechanisms used for each device and the number of devices being used within

the environment. Commercial adoption has reduced cost and increased availability of de-

vices that can be leveraged in a lab environment. Simplex devices such as plug adapters,

contact sensors, and motion detectors are expected to communicate in a similar fashion.

Complex devices such as colored light bulbs, doorbell keypad sensors, and thermostats

have extended communication requirements because of their increased capability to con-
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trol systems as a full function device. Additionally, the number of devices used within

an environment increase the traffic load but does not change the communication schemes

outside of the network design (as mentioned above). Treatments applied to samplings are

in the context of being able to identify the device through its normal usage model. For

those sensors or devices that would be at a daily frequency, will need to be sped up (not

with simulation but with manual triggering) so that the device captures are authentic

and can be leveraged for identification. Many ZigBee hubs come with automation scenes

that allow for the application of communication at a designated interval or event (i.e.,

dawn and dusk). Inference is valid in this case because the same mechanisms used for

communications, alerts, and triggers in real-world examples are replicated within the lab

environment. This allows accurate modeling and scalability for commercial applications.

The design of the experiment is focused on transparency in data collection and a repeat-

able process for future collections. The data are obtained directly from communication

devices without alteration, allowing data cleansing, curating, and presentation. Moving

the collection devices to a new environment requires no change in the data analysis stages

or machine-learning process. As indicated by Batley, Contractor, and Caldas; the goal

of single-case methodology is to show that the observations made during the treatment

are a function of the applied treatment [21]. Trustworthiness is inherent in this design

methodology.

3.4 Ethical Concerns

ZigBee has the potential to have proprietary and sensitive information flowing across Zig-

Bee layers (Figure 3.1). However, there is encryption happening at the network layer and

application layer. The network layer encryption key is known (or can be extracted) allow-

ing transparency to extract communication information. However, the application layer

performs a key exchange that is not being decrypted during any step of this process. The
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information within that layer is captured and processed as a data stream that remains

encrypted. Analysis techniques like entropy, stream lengths, and patterns are performed,

but data within that layer remains protected during all phases of the experiment design.

No new information disclosures are seen, induced, or attacked. However, there is a po-

tential for uncovering weak encryption techniques being used by a vendor which requires

the researcher to do the due diligence: reporting the findings to the vendor through that

vendor’s submission processes. No devices used within this research include health devices

that regulate any aspects of human health. There exists devices such as glucose monitors

that leverage the ZigBee protocol. While a monitor itself may not impact health, but

taking action on what that monitor reports can lead to deadly results. This research

should be applied to the health industry devices to protect individuals using this protocol

within their devices.

3.5 Summary

The rapid adoption of automation devices across the home, office, and industrial have

allowed networks of heterogeneous devices to be affordable, varied, and available. The

research methodology explained in this chapter focuses on a single-case mechanism ex-

periment approach for design science methodology. The laboratory design described in

this chapter allows the transfer of findings from this research to be directly shifted to

industry and field environments to reveal the same patterns of life for ZigBee devices.

The experiment design enables the research questions to be answered with the analysis

available with the treatment. The next chapter takes this design and analyzes the data

to reach the conclusions for the research questions.
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Chapter 4

Experiment Setup

This chapter outlines the tools, hardware, software, and overall environment needed to

reproduce this research. This approach takes the methodology for Chapter 3 and puts in

practice the environment. The devices that are chosen reflect the popular smart devices

being deployed on ZigBee networks within homes. It was important for these experiments

to have a clean capture of data ensuring that there was limited packet loss and reduced

duplication. While many configurations can be leveraged, this chapter outlines what was

used to collect the data leveraged answering the research questions in Chapters 5, 6, and

7.

4.1 The Lab Design

The lab design is based on a star topology. Other lab layouts provide repeater function

that allows long-haul communication across a large area, commonly for industrial areas

(see Figure 4.1). Repeated communication provides a set of noise that would drive the

need for data reduction during the machine-learning phase of the research. However, the

trained machine-learning model is able to accept any duplication created as it will be

uniquely identified by the source (RFC 802.15.4 layer 2). This reduces the dataset for

collection and analysis. The factors that influence this design are the type of devices

that can be controlled as well as the location needed to fulfill their function. As indi-

cated in Figure 4.1, there exist three categories of devices: the full function device, the

coordinator, and a reduced-function device. The unique controller for any network is the
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coordinator that serves as the master to all the other devices within the network. Once a

device is designated as a coordinator, that device controls the network key and enrollment

processes. The full function devices are capable of being a coordinator and serving as a

repeater for any traffic that destined for a device not currently in range of the emitter.

Figure 4.1: ZigBee Topologies

Any full function device that is designated to be a coordinator when another coor-

dinator exists within the same channel establishes a different network that allows other

devices to enroll with it. Allowing different networks to reside on the same channel in-

creases network traffic flow and reduces battery life. Reduced-function devices do not

have those capabilities and are usually placed at the edge locations of a network topology

design. These devices scan all channels looking for controllers to enroll. Once enrollment

occurs, the reduced function device stops beaconing on all channels and communicates

with the network on the enrolled channel. Upon dis-association, the device resumes the

beaconing process across all channels looking for a new enrollment option. The controlled
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environment of this scenario is not to influence any industrial control device that regu-

lates safety equipment or life-manipulating devices. This allows the researcher to mimic

commands and inject different control features without regards to the effects of any device

these ZigBee controllers influence. This stimulus is designed to collect data and speed up

collection efforts. The devices selected for the lab have the following requirements:

• the device must be inter-operable with a heterogeneous hub and

• the device must be able to accept configuration and control commands from the

hub.

The first requirement enables multiple manufacturers to be included in the lab and re-

moves bias associated with a manufacturer’s timing, RFC adherence, and proprietary

restrictions. The second requirement allows for an automation setup to speed up the data

collection timeline. For example, if a light-bulb is the unit under test (UUT) within the

environment, the normal usage of that device would be associated with the user of that

light-bulb which would drastically reduce the amount of times it is engaged and extend

the collection time required. Automation allows a stimulant to imitate user behavior

and remove the dependence on human interaction to collect the data needed for machine

learning to perform classification. The UUTs are listed in Table 4.1.

The two devices on the list that serves as coordinators is the Alexa Echo Dot and the

Eria AduroSmart Hub. The rest of the devices have reduced functionality. Both of these

devices provide a user-interface available via an app on a smartphone. This allows for

setup, monitoring, and automation of any device paired with it. For these experiments,

only one coordinator is used at a time.

4.2 Data Collection

An abundance of low-cost devices provides easy access to multiple device types in local

environments. This lab uses two ZigBee cards (Figure 4.2).
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Table 4.1: Devices Used

Device Type Name Model Quantity

Smart Plug Wemo F7C063 2
Smart Plug Wemo WSP080 2
Smart Plug Sengled E1C-NB7 4
Smart Plug Sengled E1C-NB7 4
Contact Sensor Sonoff M0802070007 1
Mini Smart Socket Apromio US-101 2
PIR Motion Sensor SOUJAMAO B08P6QMYC5 1
Motion Sensor Eria 81823 1
Adjustable White Bulb Sylvania 71831 2
Adjustable White Bulb Sengled E21-N13A 4
Full Color LightBulb OSRAM 73693 2
Color Changing LightBulb Sengled E11-N1EAWA 2
AduroSmart Hub Eria 81821 1
Echo Dot Alexa 5th Gen 1

Figure 4.2: ZigBee Hardware [7]

The first card is a CC2531 used to scan one channel at a time and does not allow packet

injection. The second device is an Apimote capable of both scanning and packet injection,

but cannot do both at the same time. These were used on an Ubuntu 18.5 virtual machine

leveraging the killerbee python library to sniff and inject packets. While newer versions

of the Ubuntu kernel are available, the firmware drivers would not work with the newer

version without manual modification of the firmware source code. The researcher rolled

back the operating system versions until 18.5 to allow the firmware drivers to communicate

with both ZigBee cards. To ensure a spectrum of device types available to home and

small businesses, a combination of smart plugs, light bulbs, motion detectors, and contact
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sensors that connect to two different hubs: Amazon Alexa Echo Dot and Eria SmartHub

are used. The ZigBee framework allows for full function devices and coordinators so

both hubs can serve as both routers and coordinators. In this configuration, neither will

serve as a router to reduce the rebroadcasting of data. Research question 1 (R1) presents

the follow-on question of changes to communications based on which hub is serving as

the coordinator while the other device is the full-functioning device. This lab allows for

repeatability to swap out coordinators and re-running the data collection and analysis.

Like hub vendor options, each of the device types are selected with different vendor types

to remove bias based on manufacture tolerance and RFC adherence.

4.3 Procedures Followed

A number of stages are required to ensure that laboratory results provide repeatable and

consistent data. The first stage is the establishment of a collection device and proper

positioning to allow for a star topology. An Ubuntu 18.5 operating system is installed

on a virtual VMWare device. The APIMOTE leveraged factory firmware that comes

pre-installed to collect and transmit ZigBee signals. The CC2531 does not come with

installed firmware, so the researcher utilized the CC-Debugger hardware (Figure 4.3) from

Texas Instruments to flash the firmware per manufacturer’s guidance. The firmware is

downloaded from the Texas Instruments repository, and compile instructions are followed

to generate the compiled firmware for loading with the CC-Debugger device [7]. The

collection device will be placed so that it was within range of each device, ensuring that

its received signal strength indicator (RSSI) is strong enough to collect data and not need

any device serving as a router or repeater. While anything above -80 begins to drop

packets, the RSSI must rise above -60 for all devices to limit dropped packets.

The second stage is to prepare the software to run the data collection. Python 3.9

is installed from the default Ubuntu repository with sudo apt install python3 with no
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Figure 4.3: CC-Debugger [7]

modifications. Killerbee is cloned with git from GitHub.com and installed following the

instructions in the Readme.txt. Wireshark is also installed from the default repository

with sudo apt install wireshark to be used to validate traffic as an independent check.

This should complete all the software required to collect the raw data.

The third stage is to systematically capture the phases from each device. The first

phase is collecting the device transmitting without associating with a coordinator. Plug-

ging in the device and running a network capture of the beacons for at set amount of

time for each device. The second phase is collecting the enrollment of each device with

a coordinator. The capture starts with the device beaconing, then interacting with the

coordinator to search for available devices. After selecting the device on the coordinator

and joining the coordinator, the data capture will terminate. This is repeated for each

device independently to only have the coordinator and that device be communicating on

one channel. The third phase is the collection of data while all devices are connected over

a pre-defined period. During this period, all devices are fully interacted with each other

to collect all actions that the individual devices can perform. To ensure repeatability,

the automation tools used within the hubs will be documented and available for later

reproduction.
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These procedures ensure repeatability and validation of the lab environment. The

procedures are repeated, allowing both hubs to serve as a coordinator. This allows for

multiple runs with ML training and validates the collection. To ensure clean data, each

coordinator is established on one of the sixteen possible channels within the ZigBee fre-

quency band. Killerbee is used to dump data on each channel, ensuring that the channel

was free of other communications before a coordinator is assigned to a channel. This

reduces any bleed over from other devices within the area that inject packets during the

collection method.

4.4 Data Analysis

With raw data collected, an extraction is required to migrate data from pcap files (killerbee

saving format with zbdump) to analyzable text files for ML. A python program is written

to read the pcap files, extract the data layers into a row of column-separated values

(CSV), and save the results into a CSV file for further analysis. The killerbee library

allows RFC 802.15.4 traffic to be extracted consistently supporting both ZigBee and

ZWave technologies. Depending on the manufacturer’s adherence to the standard, any

traffic not containing RFC-compliant ZigBee traffic should be dropped. With the above

requirement for RSSI that is implemented, the number of dropped packets should be

minimal and are removed potential interference from the environment. Multiple tools are

available to present CSV data, manipulate it, graph it, and provide insight into its usage.

Kazdan indicates that visual inspection is the primary method of data evaluation [20].

Excel is initially used to review the results and leverage filtering to provide preliminary

analysis. Since python is already being leveraged, machine-learning libraries are readily

available. A Jupyter notebook is leveraged to conduct exploratory data analysis (EDA)

and use the seaborn and matplot libraries to ingest a CSV file and present different

correlations, data cleaning, data reduction, data normalization, and data discretization.
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Using a notebook allows for a repeatable look at each data capture. Common looks at

data distribution, statistical tests, and correlations between dependent and independent

variables can be represented and graphically analyzed to make logical inferences and

assessments. In machine learning, this is a classification problem that attempts to put

the data into distinguishable buckets. The multiple techniques available within the sklearn

and panda libraries are available for convergence and repeatability.

4.5 Converting Questions To Answers

The research questions are derived from the gaps in previous research that intersect with

problems in the field. For each of these questions, each have a hypothesis:

• R1: Manufacturers provide a unique signature in their implementation of the wire-

less signal propagation that can be used to identify a captured unknown signal’s

source. The captured data are listed in the following section, but the metrics that

will be used to prove this are a machine-learning model that can predict the model

based on signal packets as input. The F1 score for that model reflects the ability to

determine the type of device. Results are expected to be > 80 percent accurate.

• R2: Manufacturers implement the network layer protocol uniquely enough to iden-

tify device types operating within a trusted network based on traffic flow features.

The metrics are the same as R1, but the data input into the model is a feature set

that calculates fields that evaluate not only the transmitted data, but the relation

of these packets over time. Results are expected to be > 60 percent accurate by the

model, with iterations of feature selection getting the model to above 80 percent.

• R3: Devices have a normalcy in their traffic pattern and a model can be used to

ingest traffic that indicates whether the traffic is abnormal or normal. The metrics

are the set of accuracy tests passed to the model in relation to the F1 score. Results
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expect a threshold to be evident in the analysis of the data that indicates what

makes traffic abnormal based on feeding abnormal data into the normal dataset.

In this research, the corpus is missing benchmarks in relation to ZigBee findings. There

are plenty of benchmarks that indicate the strength or confidence in a model’s prediction,

but none that relate to ZigBee. This research is contributing to the body of evidence to

establish a baseline for future research in this area.

4.5.1 Research Question 1

R1 consists of collecting beacons from devices. Devices perform beaconing to search for

available networks to join or transmit the notification that the device is still available

in a joined network. Using the procedures above to collect beacons in the lab, analysis

will be performed on the beacon data to identify and extract features that can be used

for uniqueness based on multiple data points. This answers R1’s second subquestion.

To answer the first question, a set of devices must already be connected to the network

prior to focusing on the shared network key. Three of the devices selected for the network

default to the preshared key from the ZigBee Standard [22]. Using the hub interface to

set specific network keys, a series of test runs will be performed to check for specific use

cases:

• The hub starts with the same pre-shared key as the device. The device is added to

the network and the data is captured to validate the behavior. A sequence of tests

are preformed with the two different hubs.

• The hub starts with a pre-shared key different from the device. The device is added

to the network and the data is captured to review behavior. The same sequence of

tests are preformed with the two different hubs.

These tests are collected in different configurations with the heterogeneous devices to

be analyzed for differences. Manufacturers may provide different behavior that will be

30



apparent with the data extraction comparisons.

4.5.2 Research Question 2

R2 expands past beacons to collect behavior across all network traffic. There are four

different stages of data to collect:

• beaconing,

• network acceptance,

• key change,

• steady state.

This requires collecting the data during each phase separately. Multiple runs are needed

to collect enough data for trend analysis. Based on the data, there is an expectation that

an evolution of understanding will be found. The details of categorization will evolve:

• the distinction between a FFD and an RFD,

• the distinction between a coordinator and a router,

• the distinction between a sensor and a multi-function device,

• and then the distinction between multi-function devices.

The leverage of machine learning models will aid in the identification based on supervised

learning. In each of the four expectations above, feature extraction will be performed to

push a model above a 90% accuracy.

4.5.3 Research Question 3

R3 provides an opportunity to expand the identification of devices to find devices that

send abnormal traffic. This begins with collecting hours of transmission data to expand
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the feature extraction, focusing on timing and size. The ability to inject packets allows the

researcher to specifically leverage some attacks [11] to determine whether a machine model

can be trained to identify abnormal traffic patterns. Starting with a supervised model,

the research believes that a semi-supervised model can be built to lessen the training set

required through known packet identification.

4.6 Summary

This chapter outlines the tools and techniques that are being leveraged to systematically

collect data and process it. The network lab is representative of an automation area that

combines motion and action integrated with time. Home environments are miniature

representations of industrial areas. This design leverages the simple star topology that

allows the traffic to highlight operations without repeating the data transmissions to move

it across spans. The tools used to in this research are readily available and industry-

standards. With the collected data, the machine learning models are then built that

ingest the data to provide results. Listed are the research questions with the expectations

for each question that are detailed in the next three chapters.
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Chapter 5

ZigBee Device Identification Using

Beacons

This chapter uses the laboratory setup in Chapter 4 to answer research question 1 (R1)

which is: Do ZigBee devices have a consistent beaconing pattern that can be uniquely iden-

tified from other devices based on timing? Answering this question required beacon data

from every device in the experiment design leveraging the star topology. By processing

that beacon data through a machine-learning process, the results reinforce the hypothesis

to answer R1.

5.1 Data Collection

The laboratory outlined in Chapter 4 enabled collecting raw data by sniffing the traffic

being transmitted. R1 requires the collection of beacon data that are transmitted by

ZigBee devices that are not admitted to a network. The device is not in the pairing state

and is looking for a coordinator to begin the handshake for admittance.

5.1.1 Collection Procedure

The default action by non-paired ZigBee devices is to begin transmitting beacons on

each available channel until a ZigBee coordinator responds. These steps are performed to

collect the ZigBee data:

• Open the ZigBee Coordinator device and ensure that all devices are unpaired and
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removed from the coordinator.

• Unplug all ZigBee Devices.

• Start the ZigBee sniffer device on the laptop within the range of the ZigBee device.

• Run zdump from the killerbee framework to validate the ZigBee channel being tested

is empty. Capture for two minutes to validate no traffic is captured.

• Restart the zdump and tee the output to a file that will be processed later. Name

the device with the format: deviceName-beacon.pcap.

• Plug in / power on the ZigBee Device. Validate that zdump is seeing the packets.

• Run the capture for 20 minutes and then stop the capture.

• Unplug the ZigBee device.

This process can be repeated as many times as necessary with as many devices as required

for the experiment. The 20 minute timeframe creates approximately 30,000 beacons per

device. When running the the model in the future steps, if more data is required that

number can be pumped up. At the end of data capture, the file format is a standard packet

capture format (.pcap) that can be investigated and reviewed with common network

tooling.

5.2 Data Analysis

The standard packet capture format must be ingestible by the machine learning model

for the next step. Figure 5.1 is the standard process for machine learning. This is done in

a pipeline that converts the standard packet capture format to a comma separated value

format that allows the pandas library in Python3 to perform most of the data preparations

(see Chapter 4 for details).
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Figure 5.1: Data Preparation [7]

5.2.1 Data Conversion

To perform the first step is converting from the standard packet capture to the comma-

separated values format. There was no industry tool available for research, so a tool was

created that uses Python3. The killerbee and pyshark libraries are utilized for ease of

extraction and to minimize any deviations from the ZigBee and 802.14 standard. Algo-

rithm 1 is straight-forward for field extraction.

During extraction, there are packed fields within the transmission stored as hex values.

These fields are broken down into individual bit values represented as integers to improve

the results of the machine learning algorithm. Instead of applying data discretization and

data normalization further down the pipeline, this converter separates those packed fields

into their bit representations. During the conversion fields are unpacked as listed in Table

5.1. In addition, there are a few fields that are added to the dataset that are calculated

based on the data present within the packet. These fields are listed in Table 5.2.

The manufacturer field is a lookup based on the MAC address published by the source

of the message in the third layer of the packet. Using that master MAC address list, that
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Algorithm 1 PCAP Parser

1: procedure parser(a) ▷ a is the actual packet
2: result← null
3: if a is a ZigBee Packet then
4: b← a
5: if b has a MAC layer then
6: for c for each attribute in b do
7: result← c
8: end for
9: end if
10: if b has a Beacon layer then
11: for c for each attribute in b do
12: result← c
13: end for
14: end if
15: if b has a Network layer then
16: for c for each attribute in b do
17: result← c
18: end for
19: end if
20: else
21: Skip packet and do not process
22: end ifConduct Lookup of MAC address
23: end procedure
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Table 5.1: Unpacked Fields
frame control field hex Second Layer
destination PAN id hex Second Layer

frame payload hex Second Layer
security frame hex Third Layer

discovery hex Third Layer

Table 5.2: Computed Data
entropy double entropy of the data field

manufacturer string the manufacturer of this device
device Identifier string the actual unique device name

manufacturer name is pushed into the row of values. If a value does not exist, that field

is left blank. The match with the longest MAC address matching is used for the field.

The entropy is also calculated based on the encrypted data field being passed. For beacon

data, this field should be zero and is not used for this question. For the full list of fields

extracted from the PCAP, see Appendix A.

5.2.2 Data Preprocessing

After the previous step, the data is now in a CSV format ready for ingestion into the

Jupyter Notebook for the python3 panda library. The data are imported and saved as a

panda array for manipulation throughout the rest of the process.

5.2.2.1 Data Cleansing

The converter provides a header line that provides field headers for every column in the

dataset. This row is removed and saved for later during analysis. Any columns that are

all blanks are removed from the dataset. A blank column indicates that the packet did

not have data in that field or that field was not available within the Beacon packet type.
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5.2.2.2 Data Reduction

Only Beacon packets are kept. This ensures that packet captures with other packet

types are removed to keep the dataset solely focused on beacons. This allows the Data

Conversion step to process any ZigBee packets.

5.2.2.3 Text Cleansing

The manufacture field is separated for the categorization solution of the model. Source

and Destination addresses are removed for the beacon analysis.

5.2.2.4 Data Normalization

The remaining fields that are hexadecimals are converted to integers. The machine learn-

ing categorization functions leverage math operations that depend on integers. Leaving

fields as hexadecimals resulted in large outliers in the matrix. Changing the data type

improved convergence times when the models were building.

5.2.2.5 Data Discretization

Each numerical column is run through a Normalizer function. The StandardScaler func-

tion was attempted for each model, but it did not improve the results.

5.3 Results

5.3.1 Model Building

The data were passed into a correlation heatmap, which highlighted 23 fields that were

used to build the model. In this approach, a supervised learning model is leveraged

because we know what the data should be based on our environment. Referring to Fig-

ure 5.2, this research leveraged classification. The sklearn library built for python3 sup-
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ports multiple classification models that are leveraged in this research. They key selection

of classifiers is the requirement to be able to handle both numerical and categorical data,

as the data types within the beacon information have both.

Figure 5.2: ML Options [7]

The following models were used to generate a potential solution:

• Decision Tree[23] - This classifier is a simple multi-class classifier that uses a series

of if/else decisions to build its model. It is a foundation for classification and used

as a base-line.

• Random Forest[23] - This classifier serves as an extension to the Decision Tree that

adds in a randomness to increase prediction based on averages.

• K-Neighbors[23] - This classifier uses a query to find the nearest point and allows the

researcher to determine the suppression of noise through the selection of the k value.

This can reduce the classification boundary distinction, but could be important

during classification like answering R1.
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• AdaBoost[23] - This classifier acknowledges that there are weak learners and pro-

vides a method for difficult-to-predict results. This was chosen to account for the

small variation in beacon data.

• GradientBoost[23] - This classifier builds on the AdaBoost model and uses a sorting

mechanism to control overfitting. With the deviations between beacons being small,

this method was chosen to highlight those small differences.

The data was divided into a training set and a testing set with an 80-20 split. The

GridSearchCV function was run on each classifier to systematically determine the ap-

propriate parameters for each model based on the data provided. Once the optimal

parameters were found, each classifier was fit and ready for results.

5.3.2 Model Results

Each model generated an accuracy, precision, recall, and F1 score to show the performance

of each model with this dataset listed in Table 5.3.

Table 5.3: Machine Learning Results For Identifying Devices Based Off Beacons

Model Test Accuracy Test Precision Test Recall Test F1

Random Forest 75.6741 83.2233 75.6741 77.8191
Decision Tree 83.5425 73.4368 73.4368 76.1143
K-Neighbors 71.1534 79.0542 71.1534 73.7083
AdaBoost 72.3957 77.1946 72.2589 74.1954
GradientBoost 77.6893 78.1926 78.9922 77.2973

The models were tuned using the GridSearchCV module from sklearn. The best

parameters were selected based on the accuracy of each model’s performance. Each model

has different parameters used to tune the model and are illustrated in the tables below.

The best factor chosen is highlighted in bold in Tables 5.4, 5.5, and 5.6.

To visualize the data, a correlation heatmap was generated after the data processing

was complete. To generate the heatmap, the sklearn function feature importances was
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Table 5.4: Model Tuning Parameter 1

Model Name Params

Random Forest estimators 5,8,10,13,17,22,28,30,35,40
Decision Tree splitter best, random
K-Neighbors n neighbors 3,5,10,13,17,22,28
AdaBoost base estimator DecisionTree,RandomForest
GradientBoost loss deviance, exponential

Table 5.5: Model Tuning Parameter 2

Model Name Params

Random Forest criterion gini,entropy
Decision Tree criterion gini,entropy
K-Neighbors weights uniform,distance
AdaBoost algorithm SAMME,SAMME.R
GradientBoost criterion friedman mse,squared error,mse,absolute error

used with an ExtraTreesClassifer having a number of estimators equal to 50. The following

data points had higher than 60% correlations listed in Table 5.7.

5.4 Analysis

5.4.1 Research Question 1

Research question 1 (R1) is: Do ZigBee devices have a consistent beaconing pattern that

can be uniquely identified from other devices based on timing? The results of the model are

unable to perform above a 83% accuracy based on the device. Utilizing all available data

within the beacon packet, there is not enough data to distinguish devices. Every device

utilized follows the RFC standard and is within the tolerances given. Collecting additional

data did not impact the accuracy nor did increasing the testing data percentage.

The RQ1 also leads the question, Does the introduction of a new ZigBee device in

a heterogeneous environment cause the network to switch network keys? The results are

no. It causes the end device to be pushed the network key currently being used by the
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Table 5.6: Model Tuning Parameter 3

Model Name Param

K-Neighbors algorithm ball tree,kd tree,brute

Table 5.7: Correlation Heatmap

Frame
Type

CMD ID MAC
Payload

Payload
Length

Beacon
Payload

Beacon
Length

Frame
Type

1 62% 78% 72% 71% 73%

CMD ID 92% 1 94% 77% 73% 74%
MAC
Payload

89% 64% 1 84% 92% 91%

MAC
Payoad
Length

93% 63% 99% 1 91% 89%

Beacon
Payload

91% 63% 97% 93% 1 96%

Beacon
Length

91% 64% 98% 90% 91% 1

network once it is enrolled. The ZigBee device can begin with the 2009 ZigBee password

standard to start beaconing. Once the device is enrolled in the network, the coordinator

sends out an immediate transport key through the APS layer to update the network

encryption key. The ZigBee standard allows multiple networks on the same band; it is

very inefficient for all devices involved. The most efficient answer is to put the device

in the same security posture that the network coordinator is running for everyone else.

By sharing the network key through the APS layer, this requires the end device to be

accepted into the network and, therefore, trusted. Malicious use cases to abuse this key

rely on tricking the coordinator to accept the imposter device. The model developed to

support R1 adds a data point for the decision to reduce imposter devices.

R1 rephrased from a different point of view is Can we fingerprint the device based on

beaconing patterns? The fingerprint that is available between the exposed layers provides

a few data points. Although the provided MAC has governing guidance on how it is
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formed, that does stop threats from cloning or imposing as those MAC addresses. The

model that was built is accurate to fingerprint based on transmission characteristics.

Because these characteristics are limited to only beaconing signals, the model is able to

identify the device manufacturer. The research points to this being based on chipsets, as

the prime discriminator is the time between beacons themselves.

5.5 Summary

This set of experiments outlines leveraging beacon data to identify devices that are bea-

coning to the coordinator asking for admittance to the network. This is the first step in

getting any device to communicate along the ZigBee backbone to allow data to be re-

peated to anyone. The pairing process was initiated once the device was accepted at the

coordinator. By using a machine-learning model, we can begin to identify those devices

that do not belong in the network. Due to the limited data available within the beacon

data itself, there was not enough variance in the transmitted data to fingerprint accurately

(above a 90%) what type of device is asking for admittance through the open airwaves

traffic. A multitude of analysis was done, pulling apart state fields and attempting to

compute additional data fields relevant to the device operations. Although a systematic

process was used to perform data analysis, the limited data fields within the beacon pack-

ets prevented a model from converging with a set of false negatives low enough to be

acceptable.
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Chapter 6

ZigBee Device Identification Using

Network Traffic

This chapter uses the laboratory setup in Chapter 4 to answer research question (R2)

which is Can we identify device types based on network layer traffic using machine learn-

ing (ML)? This experiment requires a network complete with paired devices where the

network traffic can be sniffed, parsed, prepared, and fed to a trained model. The proxim-

ity research[8] highlights the proliferation of devices where finding devices are a challenge

spread out in an industrial environment. Answering this research question allows the

targeted search and removal of devices when they are identified as not allowed on the

network.

6.1 Data Collection

The laboratory outlined in Chapter 4 enabled collecting raw data by sniffing the traffic

being transmitted. R2 requires the collection of network data that are transmitted by

ZigBee devices that are part of a network. The device has already been paired on the

network, has exchanged an initial set of network keys, and is performing routine operations

based on the device’s operations.
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6.1.1 Collection Procedure

The default action by paired ZigBee devices is to transmit packets on the channel it

was admitted to the network. All commands are embedded in the network packet at

the encrypted layer based on the application layer of the RFC. To perform these tests,

the data are collected using the two coordinators independently. Each coordinator has

automated functions that allow the hub to transmit commands to the devices to activate

their functions. In order to get the functionality from each device for testing, a timer was

set up for each device that allowed automation to occur. The details of timers are listed

in Table 6.1.

Table 6.1: Timers For Automation
electrical outlet switch state 15 minutes

light bulb switch state 13 minutes
color light bulb change color 13 minutes

blinds open/close 13 minutes
robot vacuum clean room 12 minutes

In order to automate the motion detector and the contact sensor, A vacuum robot

was used to trigger both the motion sensor and the contact sensor. Half of the contact

sensor is attached to the vacuum enabling the sensor to trigger every time it touched

the other half connected to the baseboard of the room. While running the vacuum, it

also triggers the motion sensor setup in the room. Triggering the vacuum robot is done

through a timer setup in the iRobot app not incorporated into the coordinator due to lack

of proprietary protocol usage. These steps are performed to collect the ZigBee network

traffic:

• Open the ZigBee Coordinator device and unpair all items listed.

• Plug in each device and conduct the pairing process in accordance with the device.

• Verify in the ZigBee Coordinator that all devices listed in Chapter 4 are paired.
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• Start the ZigBee sniffer device on the laptop within the range of the ZigBee devices.

• Run zdump from the killerbee framework to validate the ZigBee channel being tested

has traffic.

• Restart the zdump and tee the output to a file that will be processed later. Name

the device with the format: hubName-lengthofCapture.pcap.

• Run the capture for 240 minutes and then stop the capture.

This process can be repeated as many times as necessary with as many devices as

required to collect the data. At the end of data capture, the file format is a standard packet

capture format (.pcap) that can be investigated and reviewed with common network tools.

6.2 Data Analysis

The same data processing program is used from Chapter 5 to convert the packet capture

to the comma-separated values format. The small differences are listed below.

6.2.1 Data Conversion

After following the data conversion from pcap to csv, the converter addresses the fields

that are unpacked during the conversion as listed in Table 6.2. Additionally, there are

a few fields that are added to the dataset that are calculated based on the data present

within the packet. These fields are listed in Table 6.3.

The manufacturer field is a lookup based on the MAC address being published by

the source of the message in the third layer of the packet. Using that master MAC

address list, that manufacturer name is pushed into the row of values. If a value does

not exist, that field is left blank. The match with the longest MAC address matching

is used for the field. The entropy is also calculated based on the encrypted data field

being passed. For entropy could change based on the security setting of the coordinator
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Table 6.2: Unpacked Fields
source int unique id of who sent the message
dest int unique id of who should receive the message or broadcast

frame type int identifier on the type of packet
discovery int identifier on the discovery bits as a whole number

extended src bool if long or short addressing is being used for src
extended dst bool if long or short addressing is being used for dest

security bool if security is on or off
radius bool whether radius server is being used

protocol version int version being transmitted
sequence number int positive value of sequence for reliability

multicast bool if this is a multicast call or not
extended src64 int the long MAC of the src as an integer
extended dst64 int the long MAC of the dst as an integer
data length int length of the encrypted data portion

data hex data being transported
sec frame int the security counter of this packet

Table 6.3: Computed Data
entropy double entropy of the data field

manufacturer string the manufacturer of this device
device Identifier string the actual unique device name

managing the network. The RFC published in 2018 recommends running the networks

in encrypted mode (level 4 or above) to prevent eavesdropping, replay-attacks, and other

activity. These experiments are conducted with encryption turned on as should be the

standard for ZigBee deployments.

6.2.2 Data Preprocessing

After the previous step, the data is now in a CSV format ready for ingestion into the

Jupyter Notebook for the python3 panda library. The data are imported and saved as a

panda array for manipulation throughout the rest of the process.
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6.2.2.1 Data Cleansing

The converter provides a header line that provides field headers for every column in the

dataset. This row is removed and saved for later during analysis. Any columns that are

all blanks are removed from the dataset. A blank column indicates that the packet did

not have data in that field or that field was not available within the Beacon packet type.

6.2.2.2 Data Reduction

Only network packets are kept. This ensures that packet captures with other packet types

are removed to keep the dataset solely focused on the network layer. This allows the Data

Conversion step to process any ZigBee packets and allow the model preparation steps to

use the data applicable to that experiment.

6.2.2.3 Text Cleansing

The manufacture field is separated for the categorization solution of the model. Source

and Destination addresses are removed for the each row of data for analysis. If a model

was being created that leveraged traffic flow patterns, these fields could be kept. The

focus of this question is on patterns of life of traffic being transmitted, not related to who

is communicating with whom across the network.

6.2.2.4 Data Normalization

The remaining fields that are hexadecimals are converted to integers. The machine learn-

ing categorization functions leverage math operations that depend on integers. Leaving

fields as hexadecimals resulted in large outliers in the matrix. Changing the data type

improved convergence times when the models were building.
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6.2.2.5 Data Discretization

Each numerical column is run through a Normalizer function. The StandardScaler func-

tion was attempted for each model, but it did not improve the results. Secondly, there

are multiple fields that are not really an integer value, but a state encoded as a number.

A transformer was applied to these fields in order to perform a OneHotSwap expanding

that column into multiple columns to account for the state. The following fields were

transformed.

• Frame Type

• MAC CMD ID

• Protocol Version

6.3 Results

6.3.1 Model Building

The data were passed into a correlation heatmap, which highlighted the 38 fields that

were used to build the model. In this approach, a supervised learning model is lever-

aged because we know what the data should be based on our environment. Referring to

Figure 5.2, this research leveraged classification. The sklearn library built for python3

supports multiple classification models that are leveraged in this research. For consistency,

the same models used for R1 were used for R2. The are listed in Chapter 5. The data was

divided into a training set and a testing set with an 80-20 split. The models were tuned

using the GridSearchCV module from sklearn. The best parameters were selected on the

basis of the accuracy of each model’s performance. Each model has different parameters

used to tune the model and are illustrated in the Tables 6.4, 6.5, and 6.6. The best chosen

factor is highlighted in bold.
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Table 6.4: Model Tuning Parameter 1

Model Name Params

Random Forest estimators 5,8,10,13,17,22,28,30,35,40
Decision Tree splitter best, random
K-Neighbors n neighbors 3,5,10,13,17,22,28
AdaBoost base estimator DecisionTree,RandomForest
GradientBoost loss logloss, exponential

Table 6.5: Model Tuning Parameter 2

Model Name Params

Random Forest criterion gini,entropy
Decision Tree criterion gini,entropy
K-Neighbors weights uniform,distance
AdaBoost algorithm SAMME,SAMME.R
GradientBoost criterion friedman mse,squared error,mse,absolute error

6.3.2 Model Results

Each model generated an accuracy, precision, recall, and F1 score to show the performance

of each model with this dataset. See Figures 6.1, 6.2, 6.3, 6.4, and 6.5.

(a) (b)

Figure 6.1: Network Random Forest Results
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Table 6.6: Model Tuning Parameter 3

Model Name Param

K-Neighbors algorithm ball tree,kd tree,brute

(a) (b)

Figure 6.2: Network Decision Tree Results

(a) (b)

Figure 6.3: Network KNN Training Results

6.4 Analysis

6.4.1 Research Question 2 Results

The second question (R2) is Can we identify device types based on network layer traffic

using machine learning (ML)? The results show yes. There are over 59 data points that
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(a) (b)

Figure 6.4: Network AdaBoost Training Results

(a) (b)

Figure 6.5: Network Gradient Training Results

are broadcast, with eight of those fields being bit-fields that are broken apart to have

over 70 data points for discrimination. Leveraging multiple classification models, a model

with 90% F1 score can ingest network traffic from a device admitted to the network and

determine the type of device resembling transmission. The best model was the Random

Forest Model. Decision-Tree was the second best with an 80% score with the other models

coming in lower than 70%. The fields with MAC addresses are removed to prevent the
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overfitting that happens during training.

The RQ2 also gives the question, Are there enough indicators at the network layer

to provide enough uniqueness for a device to be identified into categories? There are 29

fields that have a high correlation factor to include in the machine learning model that

generates the above score. Without using the MAC address fields, device manufacturers

are not distinguishable enough to have a success rate of more than 73%. Modifying

the categorization into device types trains the model to identify devices according to

type. The additional question is can we fingerprint the device based on network layer

traffic? The result is yes if the devices are separated into categories. There are multiple

devices that have almost identical traffic patterns due to their function. For example,

the contact sensor and motion detector provide nearly the same traffic patterns when

used for similar use cases. Once of these devices placed in a high-use area resemble the

same traffic patterns when the situations are reversed. In one experiment, the contact

sensor was activated repeatedly while the motion detector was placed in a remote spot

that did not have frequent activations. Then in a separate experiment, the contact sensor

was not activated frequently but the motion sensor was placed in a high-traffic area. An

attempt was made to distinguish between these two models, but the data fields were not

distinguishable enough to train a model that could accurately identify the difference in

these two device types.

6.5 Summary

The experiments validate the research questions, providing enough information within

the network layer to categorize devices based on network traffic without leveraging the

source/destination MAC addresses. Collecting the data requires a network sniffer within

range of the communicating devices. The data sniffed are stored as a PCAP, then con-

verted to a CSV to allow the sklearn library to ingest those data for feeding the model.
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Most of the supervised learning models available in the sklearn library are leveraged to

determine the best solution for this experiment. The simpler the device, the more false

positives that the devices create with other devices of like simplicity. The more complex

the device (in this case the multicolor lightbulbs and coordinators) give the most accurate

results with the fewest false positives.
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Chapter 7

Identifying Abnormal Zigbee Device

Behavior Using Network Traffic

By leveraging the models built in Chapter 6, can these same models identify traffic is

abnormal from the traffic that it was trained on? Using the same lab setup as before,

this experiment adds in the additional antenna to inject packets into the network with an

identifiable MAC address to determine if the models can detect when data is outside of

its trained bounds.

7.1 Research Question 3

The third question (R3) is Given an inventory of items authorized to communicate on a

ZigBee network, can traffic analysis of the network layer identify devices that are sending

abnormal traffic? This question involves defining abnormal traffic as traffic outside of a

learned range of expected traffic patterns. The training models were trained using 4-hour

traffic patterns to train the model. Once trained, the model was able to identify when

traffic being transmitted was outside the bounds of normal traffic size. The categorization

for this model was binary to “normal or abnormal.” Determining abnormal is subject to

providing a representative model that includes fluctuations in time. In this model, time

of day or day of week were not a factor in developing this model. Based on the results

of these experiments, a model could be trained over a duration period that could include

those routine activities.
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7.2 Data Collection

The data collection presented in Chapter 6 is constant during this experiment. To add

in the “abnormal” traffic, the apimote device is utilized to inject traffic into the network

that modifies the specific fields in the network layer. Once the network capture begins,

Algorithm 2 is started that runs while the captures occur:

Algorithm 2 Abnormal Packet Generator

1: procedure generator(devices) ▷ the list of devices to mock
2: devices← ListofDevices
3: for ever do
4: for c in devices do
5: packet← defaultpacket
6: for c of each attribute in b do randomize packet data
7: end for
8: end for
9: sleep(random(10,12))
10: end for
11: end procedure

7.3 Data Analysis

The same process presented in Chapter 6 is leveraged to create the model. In this instance,

the model is trained using a reverse majority vote technique that builds a model for each

device for the training data. The algorithm flow checks the results of each model per

device-type. The models determine a binary solution: is within the bounds or outside the

bounds. The data is checked with each model in series and if any model identifies the

model data as true the algorithm returns false indicating the data is normal. Any data

that makes it through every model without any model giving a true, the data is abnormal

for the network.
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7.3.1 Data Reduction

In order to account for field data being definitions and not numbers, OneHotEncoding

was performed on each field that represented a bit and was not an integer value. This

greatly increased the column count, but was necessary to prevent the algorithms from

associating standard deviations with unintentional numbers. Since the abnormal data

could be anything, a value was added to each OneHotEncoding in case the data in the

testing collection did not match the training collection.

7.4 Results

7.4.1 Model Building

In this experiment, the models are built for a binary classification of each device type

highlighting if it is valid or not. The label column for result is swapped with a 1 for

matching and a 0 for non-matching during each model build of the training dataset.

After the models were built, they were used in sequence to test the accuracy in the

testing dataset. If any of the models returns a 1 for a match, Algorithm 3 assumes a

match is found and returns the positive indicator. The results are listed in Figures 7.1,

7.2, 7.3, 7.4, and 7.5.

Algorithm 3 Minority Vote

1: procedure Classifier(a,classList)▷ a is the packet to be categorized and classList
is the list of classifiers

2: for option for each attribute in classList do
3: if option returns 1 then
4: return true
5: end if
6: end for
7: return false
8: end procedure
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Figure 7.1: Abnormal Behavior Decision Tree Results

Figure 7.2: Abnormal Behavior AdaBoost Results

7.5 Analysis

When testing R3, the introduction of malicious activity allowed the reduction of accuracy

in identifying malicious events when those malicious events were stuffed into fields omitted

during training. To regain the ability to capture R3 fidelity, the fields were retrained in

the model to catch future abuse. The correlation numbers used in the Model Building

step are skipped and all fields are used (which results in all columns being leveraged

for training). As the models were trained for each device in a binary fashion, the model

58



Figure 7.3: Abnormal Behavior GradientBoost Results

Figure 7.4: Abnormal Behavior Random Forest Results

results were in the high 90s for each accuracy. The categorization model reduced accuracy

as more types of devices were incorporated into the model. In this approach, a majority-

vote model was inverted. A model is built for each type of device that results in a binary

decision. After building these models, the models are put in sequence and if any determine

a positive the categorization is accepted. This provides a model that allows independent

models to be trained, retrained, and inserted into the pipeline allowing flexibility and

growing of the models approach. The false negatives are where the research drives the

techniques for stealth. This results in an accuracy of the minority-vote model to be 93%.
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Figure 7.5: Abnormal Behavior K-Nearest Neighbor Results

Reviewing the false negatives, the abnormal traffic that gets through the model is those

that communicate traffic in traffic sizes similar to normal packets. In the experimental

setup, if the algorithm is altered to ensure that the values are always outside the bounds

of normal traffic for all devices, the accuracy increases. However, this is not realistic for

the field setup. Adjusting the algorithm to ensure that the payloads are always less than

two standard deviations outside the average decreases the accuracy from 93% to 84%.

Any device that communicates abnormal traffic in the bounds of devices on the network

will create false negatives.

7.6 Summary

Testing abnormal behavior within an environment can be challenging without the context

of the device. This experiment uses the knowledge gained from RQ2 to see if a model can

predict abnormal behavior solely based on traffic patterns. The resulting model provides

insight to traffic that is outside the bounds of what has been trained, but fails to highlight

traffic that resembles normal network traffic with subtle alterations.
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Chapter 8

Conclusion

The research provided in the previous chapters provides a systematic approach to building

models for industrial areas. The results of R1, R2, and R3 experiments listed in above

provide evidence to validate those research questions. Those results combine to an under-

standing for the community to move forward with ZigBee implementations and security

options for more complex ZigBee configurations.

8.1 Research Findings

Security solutions are in high demand for IoT infrastructure that provides classification,

detection, and throughput. When we have traffic available, machine learning classifiers

are a proven approach to detect network anomalies for inspection. In the approach shown

here, a testbed environment of a smart home provided the complement of devices that

represent real-world network characteristics. By using this approach, automation can

ingest the near real-time traffic and provide immediate alerts to new devices and activities

within the network. To improve the classification accuracy, a majority-voting scheme can

be applied that leverages independent classifiers to provide better fidelity based on the

characteristics of the device. This lowers the rejection rate and increases the confidence

in the models that are used for decisions.

The most recent research has been on the location and discovery of devices based on

61



their RF signature [24]. This vector is based on the detection of signals and the pinpointing

of where the source comes from. However, [25] indicates that there is an increasing vector

of items masquerading uninvited into the physical locations. The finding of these devices

is based on some roving physical system capable of detecting a signal, then using the

RF signature [24]. To find these devices, there are already coordinators (and routers)

that are FFDs that are plugged into the SCADA backbone for management that have

access to capture and record signals. This research provides the evidence to leverage these

already-connected FFD to feed a security system to identify and find devices that should

not be within the environment.

Real-world network traffic is normally ingested in a control center where logs are

filtered with regular expression rules and complex decision-making for alerting. While

this capability has not show effective in the ZigBee device realm, this approach enables

captured traffic data to be passed in to this research for ingestion into other operations.

In this approach the assumption was a centralized logging center was not available. This

is not true in the larger industrial areas but continues to leave a gap where captured

network traffic is unable to be pulled into a single pane of glass. Several authors discussed

the vulnerabilities inherent in the implementation of the protocol, but few tackled the

approach to provide systematic detection.

8.2 Contributions

The vulnerability landscape grows with the addition of every new ZigBee device. While

the risk in the home may be localized, the risk to the large business and the industrial

base continues to multiply. The current approach to work-life balance is encouraging more

work-from-home opportunities that transfer localized risk to the global platform. This

research adds to the body of knowledge with the following:

• artifacts that show where the ZigBee protocol provides information to identify device
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types,

• recommendations to changes in the ZigBee protocol to improve its cyber resilience,

• Recommendations for implementing ZigBee within the ecosystem to limit the threat

surface of the devices.

These artifacts allow the protocol to be iterated upon for increased security enhance-

ments. Devices can be identified solely off of network traffic enabling the detection of

rogue devices. This drastically improves the security posture and allows the defenders to

gain an advantage in the cat and mouse game of security.

8.3 Limitations

This research is based on available ZigBee Devices on the current market using an open-

source ZigBee protocol. Many of the devices being used in industry are proprietary

requiring some paid knowledge of the framework. However, the network layer remains the

same for those proprietary implementations as the application layer is where the special

functionality is added. It still must be compliant with the standard even when proprietary.

The devices used were low-functioning similar to the field, but no specialized devices where

used. Taking this approach to specialized industries like healthcare can uncover other use

cases impacting other critical areas. No experiments were done leveraging unencrypted

payloads. While the protocol could allow it, neither of the coordinators used during these

experiments were put into the lower security model. The Amazon Alexa Hub will not

accept that setting (providing manufacturer safeguards preventing it). Model building

can be intensive and some algorithms like the K-Neighbors model consume lots of time

with the number of estimators increasing. These experiments limited the number of

estimators to less than 40. Online Jupyter Notebooks would time-out due to the long

runtime requiring local computations. Leveraging more estimators could provide better

results for classification, but were outside the resources available during this research.
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8.4 Future Work

The devices levied in this research were limited to available devices within the Smart Home

realm. Industrial devices should be incorporated into the training set to allow independent

models to account for variations in device operations for custom installations in industrial

areas. Showing this capability begs for plugins to be created for current security and

incident event management tools where Ethernet transport layers can move data in bulk

to filtering centers.
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Appendix A

PCAP Parsing

The transmitted data over the airwaves was captured using the devices highlighted in

section 4 and stored in standard pcap format. These data were then parsed to extract

the ZigBee transmission data found at the first three layers of the ZigBee standard, as

referenced in Figure A.1.

Figure A.1: ZigBee Layers [2]

More layer information is available if the appropriate keys are known at the network

and application layer. For these experiments, it is assumed that those keys are unknown
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and there exists a remaining chunk of data that is encrypted as a payload in the network

layer. To aid in the pcap processing to ingest data into the machine learning model,

the killerbee framework [7] was incorporated into a python class to parse each layer and

extract out data.

A.1 Physical Layer

The Physical Layer contains the lowest level of information that allows the device to

communicate with the hardware. In the killerbee framework, this is encapsulated as the

“frame.” Looking at the data that is available, data is extracted from each frame as

outlined in Table A.1.

Table A.1: First Layer
number integer the frame counter

encapsulation type integer the encapsulation used
capture length integer amount of data captured
frame length integer the length of the frame
capture time double time in UTC format
time delta double time since the previous frame arrived
protocols string the category of message type

Since the protocol demands that the ZigBee encapsulation type is always 104, it could

be removed from the dataset. However, when identifying abnormal behavior the encap-

sulation flag can be used to identify those. In the model training for R1 this field is

removed, but is left in for R2. For this layer, we are ignoring the payload field as it is

represented in other data below.

A.2 Media Access Control Layer

The next layer up contains the protocol data unit that resembles the MAC layer of Eth-

ernet. This layer is used solely to alert the receiver of who is supposed to receive this

69



message and from where it came. In killerbee, it is encapsulated as the “wpan” layer.

data was extracted from this layer as outlined in Table A.2:

Table A.2: Second Layer Initial
source hex unique id of who sent the message
dest hex unique id of who should receive the message

dest pan id hex unique identifier of the network it is associated
dest pan int integer the dest pan id as an integer

sequence number integer the sequence number of this message
frame control field hex frame descriptions

frame control field int integer frame descriptions as an integer
frame payload hex the payload of this frame based on the FCF

There are a few packed fields that need to be extracted so that the data is represented

correctly instead of being packed into those hex bytes. By extracting that data and

categorizing it based on the frame control field, it expounds into Table A.3.

Table A.3: Second Layer Unpacked
source hex unique id of who sent the message
dest hex unique id of who should receive the message

dest pan int integer the dest pan id as an integer
sequence number integer the sequence number of this message

frame type integer options: beacon, data, MAC, ACK, Unknown
frame security bool On or off for security
frame intrapan bool On or off for transporting or not

reserved integer reserved field that should always be 0
MAC CMD ID char command frames from 0-15
MAC Payload hex MAC command

MAC Payload length int length of MAC data
ACK bool true or false if it is a ack frame or not

BEACON address hex address of recipient
BEACON payload hex beacon data being processed

BEACON payload length int length of beacon data

A.3 Network Layer

The final layer that is extracted is the network layer. This layer can contain quite a

few layers if the network data is decrypted with a network key. The presumption of this
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research is that the key is unknown which limits the data available to the fields listed in

Table A.4.

Table A.4: Third Layer
source int unique id of who sent the message
dest int unique id of who should receive the message or broadcast

frame type int identifier on the type of packet
discovery int identifier on the discovery bits as a whole number

extended src bool if long or short addressing is being used for src
extended dst bool if long or short addressing is being used for dest

security bool if security is on or off
radius bool whether radius server is being used

protocol version int version being transmitted
sequence number int positive value of sequence for reliability

multicast bool if this is a multicast call or not
extended src64 int the long MAC of the src as an integer
extended dst64 int the long MAC of the dst as an integer
data length int length of the encrypted data portion

data hex data being transported
sec frame int the security counter of this packet

A.4 Computed Fields

In addition to the fields presented in the above tables, there are a few additional fields

that are calculated during the data extraction to aid in processing. Due to the ease of

execution, these were done prior to the data analysis for machine learning input. The first

field is the entropy of the data being passed. The second field is the manufacturer of the

device based on the MAC address of the device. A running table of MAC to manufacturer

lookups are available on GitHub. The final field are listed in Table A.5.

Table A.5: Computed Data
entropy double entropy of the data field

manufacturer string the manufacturer of this device
device Identifier string the actual unique device name
delta packet double time since last packet

A function was written to ingest that lookup table and tag each packet based on the
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extended src address within the packet to be used to train the model for R1. This field

was validated through testing to ensure it was generating correct values. The third field

is the unique identifier for the device used for training the model for R2. The script

inputs the same value as manufacturer and requires the researcher to process some sed

commands afterwards to modify this last field based on the actual devices being used

within the experiment as listed in Chapter 4.
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