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ABSTRACT

This comprehensive research endeavors to address a pressing issue within the realm of

cybersecurity—the challenge posed by malicious activities utilizing Domain Generation

Algorithms (DGAs). These algorithms, numbering at least 84 traditional malware families

as of late 2023, dynamically generate domain names to facilitate nefarious operations while

evading conventional detection mechanisms. The study generated over 159,750 domains

and studied more than 1.27 million data points. Existing studies have predominantly

focused on surface-level aspects of DGAs, including domain lengths, alphanumeric values,

and top-level domains (TLDs). In response to this challenge, the research question at

the core of this study aims to investigate whether sophisticated classifiers can effectively

detect and classify DGA-enabled malware by discerning variations in DGAs, including

original DGAs, those modified with injected noise, and a novel approach of modification

through Linear Recursive Sequences (LRS).

The chosen methodology for this research adopts a quantitative design, utilizing

Python programming and a suite of libraries for efficient data manipulation, machine

learning, and visualization. The focal point of the methodology involves training a Feed-

forward Neural Network (FNN) using a meticulously curated dataset comprising both

original DGAs and their modified counterparts. To facilitate effective classification, the

dataset undergoes a detailed segmentation into categories. The FNN architecture, with

specific hyperparameters, employs the Adam optimizer, sigmoid activation functions, and

three dense layers. Eight features, including Damerau Levenshtein Distance and String

Entropy, and others to contribute to the FNN’s understanding of the input data.

The research explores the intricacies of neural network comprehension, dataset classi-

fication, and feature identification, overcoming these challenges through extensive multi-

classification learning processes. The training configuration involves a Learning Rate of
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0.0001, 50 epochs, a batch size of 32, and a 80/20% validation split. Rigorous feature

selection and engineering, model selection, and hyperparameter adjustment are integral

to the methodology. The study reviews five primary DGA datasets Banjori, Dnschanger,

Dyre, Gameover, Murofetweekly, presenting detailed insights into their characteristics.

The analysis reveals the challenges posed by DGA families with insufficient sample sizes,

necessitating a strategic selection process. The FNN’s performance is explicitly evalu-

ated on its ability to classify instances into original DGAs, Noise-Modified DGAs, and

LRS-Modified DGAs.

In conclusion, this research contributes significantly to cybersecurity by offering a

sophisticated approach to DGA detection. The methodology’s robustness is examined

through potential challenges, and recommendations for addressing these challenges are

provided. This research demonstrates the effectiveness of the FNN in identifying an

average of 99.5 percent of noise and LRS DGA modifications. This significant contribution

enhances cybersecurity by introducing a sophisticated approach to DGA detection. It

underscores the significance of staying abreast of evolving cyber threats and emphasizes

the need for proactive cybersecurity measures in the face of continually adapting tactics

employed by malicious actors.
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Chapter 1

Introduction

1.1 Background of the Problem

In the shadows of the cyber realm, a growing menace lurks in the form Domain Gener-

ating Algorithms(DGA)s or automated domain names that are used to support malware

command and control connections. As of mid-2021, Ayub A. et al. [1] documented the

existence of at least 84 traditional malware families. Existing studies on DGA strings

often provide only superficial insights, focusing on general characteristics such as domain

lengths, alphanumeric values, and potential Top Level Domains (TLDs). The majority

of DGAs analyzed in these studies have been sourced and submitted for research through

the DGArchive website.

In 2022, Z. Mu [2] conducted research involving DGAs and employed N-Grams for

classification. Mu reported an impressive 95% accuracy in classifying known DGA do-

mains and an 88.5% accuracy in detecting previously unknown domains. His approach

involved leveraging numerical and vowel patterns, examining the frequency of repetition

or non-repetition of these values. It is crucial to note that Mu’s work primarily focuses on

botnets, which entail millions of potential DGA domains. The applicability of his research

may be limited if DGA domains are used specifically against certain applications.

J. Ahmed et al. [3] carried out research in 2022, focusing on automatically detecting

DGA-enabled malware through Software Defined Networking (SDN) and Traffic Behav-
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ioral Modeling. Their study spanned 75 days on a school campus, analyzing DNS queries

to identify DGA-related domain names. Out of 2.4 billion DNS queries within the campus

network, only 589K were found to be related to DGAs. The researchers cross-referenced

these potential DGA domains with DGArchive. The research presented the top 10 most

used DGA-related domain names, all belonging to four families. Notably, the top two

families had 22k to 530k hits, while the remaining families exhibited significantly fewer

interactions, averaging only a couple of hundred during the observation period. The

research highlights the potential challenge of intermittently active DGAs that may go

unnoticed in conventional analyses. In this evolving narrative of threats and innovations,

the quest for adaptive detection strategies becomes ever more crucial. However, what if

DGAs were modified just enough to evade detection within DGArchive?

1.2 A Brief History of DGAs

1.2.1 Introduction

Domain Generating Algorithms (DGAs) emerged in response to the escalating sophistica-

tion of cyber threats, particularly in the realm of malware [4]. These algorithms dynam-

ically generate domain names that malicious software uses to establish communication

with command and control servers, evading traditional security measures.

The dissertation covers the domain of Feedforward Neural Networks (FNNs) and their

applications, specifically addressing the cybersecurity challenges posed by obfuscated Do-

main Generating Algorithms (DGAs). FNNs, with their layered structure encompassing

input, hidden, and output layers, provide a foundation for learning hierarchical represen-

tations. The interconnected neurons, activation functions like sigmoid or ReLU, and the

forward propagation principle contribute to their versatility across diverse applications,

including pattern recognition, image processing, and natural language understanding.

These networks, as universal approximators, play a fundamental role in machine learning

2



tasks, serving as foundational models for more advanced architectures.

The cybersecurity landscape faces a formidable challenge with the emergence of so-

phisticated obfuscation techniques within DGAs. The focus of the research is on the

utilization of noise and linear recursive sequences in DGAs, introducing complexity that

demands advanced analytical approaches. The problem at hand involves identifying and

understanding obfuscated DGAs, with a specific emphasis on employing FNNs to discern

the underlying linear recursive patterns. The research aims to contribute to cybersecurity

practices by providing a robust framework for identifying and analyzing DGAs leveraging

linear recursive sequences, enhancing the capabilities of cybersecurity systems to detect

and counteract evolving threats.

1.2.2 Early Years

The concept of DGAs dates back to the mid-2000s when security researchers and mal-

ware analysts observed a shift in malware tactics. Examples include the Conficker worm

(2008), which utilized DGAs to update itself and connect to its command and control

infrastructure [5].

The early years of Domain Generating Algorithms (DGAs) marked a significant evolu-

tion in cyber threat tactics, showcasing the adaptability of malicious actors. Originating

in the mid-2000s, DGAs emerged as a response to traditional static blacklists used for

blocking known malicious domains. Cybercriminals sought ways to evade detection and

maintain control over their malicious infrastructure. DGAs were ingeniously designed al-

gorithms that dynamically generated a large number of seemingly random domain names.

This dynamic generation allowed malware to establish communication with command and

control servers without relying on fixed, easily blockable domain names. The early DGAs

often utilized pseudo-random techniques, making it challenging for security solutions to

predict or block their activities effectively. This shift in strategy marked a cat-and-mouse

game between cybersecurity professionals and attackers, as each side continuously adapted

3



their methods. The early years of DGAs laid the groundwork for more sophisticated and

complex algorithms, contributing to the ongoing challenges faced in modern cybersecurity

landscapes.

1.2.3 Advancements and Variations

As security measures evolved, so did DGAs. Malware authors introduced more sophisti-

cated algorithms and variations to increase the resilience of their malicious infrastructure.

Notable examples include seed-based algorithms, which are a predetermined seed that

initiates the generation of seemingly random domains [6]. Pseudo-Random Number Gen-

erators (PRNGs) are an alternative common approach, via seeds to create sequences of

domain names that appear random, making it difficult for security systems to predict

and block them effectively [4]. Additionally, time-based variations introduces time-based

elements, leveraging current date or time information in the generation process [7]. Un-

derstanding these methods is critical for creating robust cyber defense strategies..

1.2.4 Cat-and-Mouse Game

The battle between cybersecurity professionals and malware authors became a cat-and-

mouse game. While security experts developed tools to detect and block DGAs, attackers

continually refined their techniques to stay ahead. Some of these tools. Cisco Umbrella,

formerly known as OpenDNS, is a cloud-delivered security service that includes DNS-

layer security capable of identifying and blocking malicious domains generated by DGAs

[8]. FireEye DNS Analytics offers a solution focused on analyzing DNS traffic patterns to

detect and mitigate threats associated with DGAs [9]. Security Information and Event

Management (SIEM) solutions, such as Splunk and LogRhythm, can be configured to

monitor DNS logs and identify anomalous patterns indicative of DGA activity [10], [11].

Additionally, machine learning-based solutions leverage advanced algorithms to analyze

DNS traffic and detect deviations associated with DGAs [12]. Employing a combination
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of these tools, organizations can bolster their defense against the evolving threat posed

by DGA-related activities.

1.2.5 Machine Learning and Behavioral Analysis

In recent years, machine learning and behavioral analysis integration has become pivotal in

combating DGAs [13]. Security solutions leverage these technologies to identify patterns

and anomalies in domain name generation, enhancing the ability to detect and prevent

malicious activities. Machine learning algorithms, including support vector machines

(SVM) and deep neural networks, undergo training using extensive datasets incorporating

benign and malicious domain names [14]. This training process allows the models to

grasp intricate patterns and distinctive characteristics associated with Domain Generation

Algorithms (DGAs). Through the analysis of features such as domain length, character

frequency, and temporal patterns, these machine learning models can proficiently discern

between legitimate and malicious domain names [15].

Behavioral analysis complements machine learning by focusing on the runtime be-

havior of DGAs within a network. This approach involves monitoring the interactions

and communications of dynamically generated domains to identify deviations from nor-

mal network behavior. Techniques like anomaly detection and clustering are applied to

distinguish malicious activities from legitimate network traffic [16].

By combining machine learning and behavioral analysis, security systems can utilize

the adaptability of machine learning models and the contextual insights from behavioral

analysis, providing a multi-faceted defense against DGAs. This approach allows security

systems to stay ahead of evolving DGA techniques and enhance overall cyber defense

resilience.
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1.2.6 Current Landscape

In today’s cybersecurity landscape, DGAs continue to pose a significant threat. Mal-

ware campaigns frequently utilize sophisticated DGAs to establish resilient command and

control infrastructures [6].

For example:

• Elevated Sophistication: Malicious actors have heightened the sophistication of

DGAs, making it increasingly challenging for conventional security measures to

anticipate and counteract their impact effectively.

• **Robust Command and Control Networks:** The integration of advanced DGAs

contributes to creating highly robust command and control networks. This adapt-

ability enables cyber adversaries to control compromised systems while evading de-

tection.

Cybersecurity strategies emphasize ongoing vigilance and adaptability to counter the

evolving tactics employed by malicious actors using DGAs.

Computer Worm: Conficker, or can be called Downadup or Kido windows based

malware. Initially identified in 2008, continues to pose a significant threat in the cy-

bersecurity landscape. This malicious software has demonstrated remarkable persistence

over the years. Its multifaceted capabilities include serving as a tool for propagation,

forming botnets, executing Command and Control operations through the use of DGAs,

delivering payloads, engaging in data theft and espionage activities, and facilitating the

dissemination of scareware. The versatility of Conficker makes it a formidable cybersecu-

rity concern, as it can be utilized for a range of malicious activities, from compromising

systems and networks to unauthorized data access and even the dissemination of decep-

tive scare tactics. The ongoing prevalence of Conficker highlights the challenges faced by

the cybersecurity community in combating and mitigating evolving threats in the digital

realm.
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Banking Trojans: Emotet Trojan, a highly sophisticated malware strain, showcases

a modular architecture that allows for adaptability and continuous updates to its ma-

licious functionalities. Propagating primarily through deceptive email attachments or

links, Emotet employs social engineering tactics to deceive users. Once activated, it de-

livers additional payloads, stealing sensitive information like credentials and exhibiting

lateral movement within networks. It is notorious for its polymorphic nature or technique

used to constantly change the code or appearance of the malicious software. Polymor-

phic malware alters its code without changing its underlying functionality, making it

challenging for traditional antivirus solutions that rely on static signatures to detect and

block malicious programs. Emotet constantly changes its code to evade traditional de-

tection methods. Utilizing command and control servers via DGAs establishes remote

communication, enabling cybercriminals to control and update the malware and gather

stolen data. Emotet’s evolving tactics make it a formidable threat in the cybersecurity

landscape, demanding vigilance and proactive defense measures.

GameOverZeus(GOZ), identified in 2014, is a formidable threat that evolved from a

variant of the notorious Zeus banking trojan. Exhibiting a range of sophisticated char-

acteristics, GOZ is adept at spreading through various channels, employing tactics such

as malicious email attachments and exploit kits. It establishes a resilient botnet infras-

tructure, allowing cybercriminals centralized control over compromised systems. GOZ is

equipped with keylogging capabilities, enabling the theft of sensitive credentials crucial for

online financial transactions. Its use of man-in-the-browser attacks further amplifies its

threat, manipulating online banking sessions to facilitate financial fraud. Demonstrating

persistence and resilience within infected systems, GOZ employs peer-to-peer communi-

cations, reducing dependency on a central server and making it challenging to detect and

combat. The dynamic and multifaceted nature of GOZ underscores the importance of

robust cybersecurity measures to protect against evolving banking trojans.
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1.2.7 DGA Obfuscation

In the cybersecurity landscape, malicious entities’ adoption of domain-generating algo-

rithms (DGAs) has emerged as a widespread strategy to establish covert communication

with command and control servers. Cyber adversaries deploy DGA obfuscation techniques

to elude detection, injecting intricacies into the domain generation process. Seed-based

obfuscation, a prominent approach, employs predefined values or seeds to initiate the DGA

algorithm, introducing variability and impeding pattern recognition. Complementing this,

integrating Pseudo-Random Number Generators (PRNGs) is commonplace, utilizing ini-

tial seeds to generate domains with an appearance of randomness, thus adding an extra

layer of unpredictability to the malicious infrastructure. Conversely, time-based obfusca-

tion introduces temporal elements, such as the current date, into the domain generation

process, resulting in dynamically changing domains. These obfuscation methodologies

pose substantial challenges for cybersecurity defenses, necessitating the development of

adaptive detection mechanisms. Advanced machine learning algorithms and behavioral

analysis play pivotal roles in discerning patterns amidst the intricacies of obfuscation.

The persistent evolution of DGA obfuscation tactics underscores the ongoing need for

research to proactively address and counteract these evasion techniques.

1.2.8 LRS Concepts

[17] [18] explains Linear recursive sequences are mathematical sequences defined by a

linear recurrence relation. The general form of a linear recursive sequence of order k is

given by:

an = c1an−1 + c2an−2 + . . .+ ckan−k + b

Here, an represents the n-th term in the sequence, c1, c2, . . . , ck are constant coeffi-

cients, and b is a constant term. Once the initial terms, a0, a1, . . . , ak−1, are specified, the
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sequence is completely determined listed in table below.

Key Characteristics:

1. Linearity: Linear recursive sequences exhibit linearity because a linear combination

of the preceding terms forms each term.

2. Homogeneous and Inhomogeneous Sequences: If b = 0, the sequence is homoge-

neous; otherwise, it is inhomogeneous.

3. Order of the Sequence: The sequence order is determined by the highest subscript

in the recurrence relation, in this case, k.

4. Initial Conditions: To uniquely determine the sequence, initial conditions (sequence

values for the first k terms) must be provided.

Applications:

Linear recursive sequences find applications in various fields, including computer sci-

ence, signal processing, and cryptography. In computer science, they are used to model

and analyze algorithms. In signal processing, linear recursive sequences are employed in

the design of digital filters. Cryptographic algorithms may use linear recursive sequences

for generating pseudorandom numbers.

Understanding linear recursive sequences is foundational for solving difference equa-

tions and recurrence relations, providing valuable insights into the behavior of sequences

over time.

1.3 Difficulties in protecting the cyber domain

Protecting cyber domains against Domain Generating Algorithms (DGAs) poses several

challenges for cybersecurity professionals. DGAs are dynamic techniques used by malware

to generate domain names dynamically, making it difficult to predict and counteract

malicious activities. The following challenges highlight the complexities in defending

against DGAs:
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1. Dynamic and Evolving Nature [19]: DGAs continually evolve to counter ex-

isting detection mechanisms. The dynamic nature requires adaptive and real-time

detection strategies to keep pace with the changing tactics of malicious actors.

2. Large Number of Potential Domains [4]: DGAs can generate a vast num-

ber of potential domains, creating a significant search space for security systems.

Analyzing and predicting the multitude of potential domains poses a challenge for

traditional security solutions.

3. Algorithm Variability [6]: Malicious actors employ various obfuscation tech-

niques in DGAs, such as seed-based, time-based, or pseudo-random generation.

Each variation introduces unique challenges in understanding the underlying algo-

rithm and developing effective countermeasures.

4. Fast Flux Networks Some malware using DGAs utilize fast flux techniques,

rapidly changing associated IP addresses. This dynamic nature complicates tracking

and blacklisting efforts as the malicious infrastructure constantly shifts.

5. False Positives [4]: Overly aggressive detection methods may lead to false posi-

tives, misclassifying legitimate domains as malicious. Achieving a balance between

accurate detection and minimizing false positives is a constant challenge.

6. Encryption and Tunnelling [20]: Malware employing DGAs often uses en-

crypted communication channels and tunneling techniques. This additional layer

of obfuscation makes it challenging to inspect and identify malicious traffic, espe-

cially when the communication is encrypted end-to-end.

7. Resource-Intensive Analysis [4]: Analyzing a large volume of DNS traffic for

potential DGA-generated domains can be resource-intensive. Effective detection

mechanisms must be implemented without adversely affecting network performance.
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Addressing these challenges requires a comprehensive approach, combining heuristic

analysis, machine learning algorithms, and behavioral analysis. Cybersecurity profes-

sionals must stay abreast of evolving DGA techniques and continually update defense

strategies to mitigate the risks posed by these dynamic and sophisticated threats.

1.4 Machine Learning

Machine Learning (ML) is a pivotal domain within the broader landscape of artificial

intelligence, focusing on empowering computers to learn from data and make informed

decisions without explicit programming. At its core, machine learning aims to develop

algorithms and models capable of recognizing patterns, learning from experiences, and

generalizing knowledge to handle novel, unseen data. The essence of machine learning lies

in its departure from traditional rule-based programming, shifting towards an approach

where algorithms learn and evolve based on the inherent patterns within the data they

encounter. Key concepts are listed in Table 1.1.
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Key Concepts Description

Learning from Data Unlike traditional programming paradigms, machine learning
leverages data as the primary source of knowledge. Algorithms
are trained on datasets, enabling them to discern patterns and
extrapolate insights from the information they are exposed to
[21].

Types of Learning Machine learning encompasses various learning paradigms, in-
cluding supervised learning, unsupervised learning, and rein-
forcement learning. Each type addresses specific scenarios,
from labeled dataset training to learning through interaction
with an environment [22].

Feature Extraction ML models operate on features, representing the relevant char-
acteristics or variables of the data. Feature extraction involves
the selection and transformation of raw data to create a format
suitable for learning [23].

Model Training and
Evaluation

The training phase involves adjusting the internal parameters
of the algorithm to minimize errors and enhance performance.
Evaluation on separate datasets gauges the model’s ability to
generalize to new, unseen data [24].

Applications Machine learning finds applications across diverse domains, in-
cluding image and speech recognition, natural language pro-
cessing, recommendation systems, healthcare diagnostics, and
finance for fraud detection [25].

Table 1.1: Key Concepts in Machine Learning

Despite its successes, machine learning encounters challenges such as model inter-

pretability, bias, and ethical considerations. Ongoing research aims to address these issues,

enhancing transparency, minimizing bias, and ensuring responsible and fair deployment

of machine learning systems.

In conclusion, machine learning emerges as a powerful tool for extracting insights and

making predictions from complex datasets. As technology advances, machine learning is

poised to play a central role in shaping the future of intelligent systems and applications.

1.4.1 FNN and its Features

A Feedforward Neural Network (FNN) represents a foundational architecture in artificial

neural networks, a subset of machine learning inspired by the workings of the human
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brain. Often called multilayer perceptrons, FNNs are characterized by layered nodes or

neurons without cyclic connections. The architecture typically includes an input layer,

one or more hidden layers, and an output layer [26].

Key features define the nature of Feedforward Neural Networks:

The layered structure of FNNs encompasses input, hidden, and output layers, allowing

for the learning of intricate hierarchical representations. Neurons within the network are

interconnected with weights, and each neuron is associated with a bias term, providing

flexibility in decision-making. Activation functions, such as sigmoid or rectified linear

unit (ReLU), introduce non-linearity to the neurons, enabling the modeling of complex

relationships within the data [24].

The information processing in FNNs follows the principle of forward propagation.

During training, the backpropagation algorithm is employed, adjusting weights and biases

iteratively to minimize the difference between the predicted and actual outputs [26].

Demonstrating their versatility across diverse applications, one notable characteristic

of FNNs is their role as universal approximators. These networks can approximate any

continuous function with sufficient neurons and proper training.

In practice, Feedforward Neural Networks find applications in various domains, includ-

ing pattern recognition, image and speech processing, natural language understanding,

and regression tasks. While serving as foundational models, FNNs have paved the way

for more advanced architectures like convolutional neural networks (CNNs) and recurrent

neural networks (RNNs).

The simplicity, interpretability, and effectiveness of Feedforward Neural Networks con-

tribute to their widespread use in machine learning, making them a fundamental tool for

various tasks.
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1.5 Statement of the Problem

In the landscape of cybersecurity, the emergence of sophisticated obfuscation techniques

within Domain Generating Algorithms (DGAs) poses a formidable challenge for threat

detection and mitigation. Particularly, the utilization of linear recursive sequences in

DGAs introduces a layer of complexity that demands advanced analytical approaches. The

problem at hand involves the effective identification and understanding of these obfuscated

DGAs, with a specific focus on employing Feedforward Neural Networks (FNNs) to discern

the underlying linear recursive patterns.

This research aims to contribute to the advancement of cybersecurity practices by

providing a robust framework for the identification and analysis of DGAs that leverage

linear recursive sequences. The utilization of FNNs is envisioned as a powerful tool to

uncover hidden patterns and relationships within the obfuscated domain generation pro-

cess, thereby enhancing the capabilities of cybersecurity systems to detect and counteract

evolving threats.

The outcomes of this study are anticipated to offer valuable insights into the applica-

tion of machine learning, specifically FNNs, in the context of cybersecurity, contributing

to the development of more adaptive and resilient defense mechanisms against obfuscated

DGAs.

1.6 Objectives of the Project

The research aims to achieve two main objectives. Firstly, it seeks to develop and assess

the effectiveness of Feedforward Neural Networks (FNNs) in the identification and inter-

pretation of obfuscated algorithms. Specifically, the focus is on detecting and decoding

algorithms that are obfuscated through techniques such as introducing noise to strings

with character modification and utilizing Linear Recursive Sequences. The choice of these
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obfuscation methods is influenced by their distinctive mathematical properties, which pose

challenges for conventional detection approaches. Consequently, the research emphasizes

the exploration and application of advanced machine learning techniques, particularly

FNNs, to address these challenges.

Secondly, the research explores the characteristics of algorithms based on Linear Re-

cursive Sequences used in Domain Generation Algorithms (DGAs). DGAs are often em-

ployed in malicious activities, and understanding the new novel properties of introducing

algorithms based on linear recursive sequences can contribute to enhanced detection and

mitigation strategies. This aspect of the research underscores the importance of inves-

tigating the intricacies of linear recursive sequence-based DGAs, shedding light on their

patterns and behaviors to bolster the development of more effective cybersecurity mea-

sures.

1.7 Dissertation Organization

This dissertation is organized in the following format: Chapter 1 serves as the introduc-

tion, providing an overview of Feedforward Neural Networks (FNNs) and their applica-

tions, subsequently addressing the cybersecurity challenges posed by obfuscated Domain

Generating Algorithms (DGAs). Chapter 2, Literature Review, conducts a thorough

literature review, exploring the applications and recent advancements in FNNs, along-

side an examination of the Damerau-Levenshtein Distance(DLD) and FNN noise training

applications. Chapter 3 Methodologies: elaborates on the identified problem within cy-

bersecurity, specifically focusing on the obfuscated DGAs and the potential role of FNNs

in addressing this challenge. Chapter 4 Experiments outlines the dual objectives of the

research: evaluating FNN effectiveness in deciphering obfuscated algorithms and under-

standing the characteristics of Noise and Linear Recursive Sequences in DGAs. Chapter

5 conclusion offers additional background information to enhance contextual understand-
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ing. Chapter 6 details the overall organization of the dissertation. Subsequent chapters

(7-10) cover the methodology, results and analysis, discussion, and conclusion, provid-

ing a comprehensive exploration of the research findings. The final chapter, Chapter 11,

suggests potential avenues for future research.
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Chapter 2

Literature Review

2.1 Feedforward Neural Networks

Feedforward neural networks have found applications in various fields, including computer

vision, natural language processing, and pattern recognition [27]. A feedforward neural

network is a type of artificial neural network characterized by its unidirectional flow of

information. In this architecture, data travels sequentially from the input layer through

any intermediate hidden layers, if present, and finally reaches the output layer. Unlike

recurrent neural networks, feedforward networks lack cycles or loops in their connections.

Each layer of nodes serves as a function that transforms the input data into a more

abstract representation at each subsequent layer [28].

Recent research in the field of neural networks has witnessed significant progress in

understanding and optimizing feedforward architectures. Studies have explored diverse

aspects, from the network’s structure to its activation functions. For instance, researchers

have explored the design of novel activation functions to introduce non-linearity, which

is crucial for the network to capture complex relationships in data [29]. Additionally,

advancements have been made in the learning and training process, with techniques like

backpropagation being refined to efficiently adjust the weights assigned to each connection

during training [30].
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2.2 Damerau-Levenshtein Distance (DLD)

[31] explores the application of the DLD algorithm for word correction, with a specific

focus on mitigating extended processing times, especially concerning large dictionaries.

To address this challenge, the study introduces a novel method of expediting the DLD

algorithm by distributing the dictionary based on the number of characters, resulting in

a substantial 29.04-second improvement in processing time. Their research provides an

in-depth exploration of the DLD algorithm’s operations, including substitution, insertion,

deletion, and transposition, emphasizing its significance in spell-checking. They discuss

the challenges associated with processing time, referencing related research that optimized

the algorithm for improved efficiency. Demonstrating the proposed dictionary distribu-

tion method’s effectiveness, their study utilizes two stories from a website, showcasing

reduced processing time without compromising accuracy. Their research methodology

encompasses data selection, the application of the DLD algorithm, and the implementa-

tion of dictionary distribution. Crucial components include word suggestions and accuracy

assessment, mainly focusing on words with an edit distance of 1 to 3 characters.

Adapting the Methodology for Identifying DGAs with FNNs: Although the primary

focus of [31] research is word correction using DLD, its methodology and findings offer a

valuable foundation for identifying Domain Generating Algorithms (DGAs) with FNNs.

DGAs often involve generating random and obfuscated domain names, posing challenges

akin to correcting misspelled words. Leveraging the DLD principles for measuring word

differences, FNNs can be trained to discern patterns within DGAs. The innovative dis-

tributed dictionary approach, designed to enhance processing time, can be transposed

to create a diverse dataset for training FNNs. This allows FNNs to learn the structural

similarities and variations within DGAs, including those modified with noise, Linear Re-

cursive Sequence (LRS) or other obfuscation techniques. The research’s focus on accu-

racy and efficiency aligns seamlessly with the requirements of effectively identifying DGAs

18



in real-world cybersecurity scenarios. The success of the DLD algorithm in addressing

language-related challenges provides a solid framework for adapting similar techniques to

the intricate patterns exhibited by DGAs, contributing significantly to enhanced threat

detection and network security.

2.3 FNN and Noise Training

Applications of feedforward neural networks span a wide range of fields, including com-

puter vision, natural language processing, and pattern recognition[27]. Notable break-

throughs in these areas have been enabled by the adaptability and versatility of feed-

forward architectures. Furthermore, the continuous evolution of this neural network

paradigm has led to the development of more efficient training algorithms and the ex-

ploration of new architectures such as convolutional and recurrent neural networks [32].

2.4 Domain Generating Algorithms

This section provides a comprehensive overview of research studies in the cybersecurity

domain, focusing on the use of Domain Generation Algorithms (DGAs) and advanced

techniques employed by malicious actors. Building upon previous investigations, the

discussion encompasses tactics observed in cyber attacks, the analysis of DGAs, and

advancements in cyberattack detection using deep learning. Each study addresses specific

aspects of cybersecurity, contributing valuable insights to the field. The aim is to explore

the intricacies of DGAs, uncover potential challenges posed by randomized techniques,

and enhance cyberattack detection methodologies through cutting-edge approaches. The

following sections look into the key findings and methodologies of these studies, shedding

light on their contributions and potential areas for further exploration.
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2.4.1 Tactics of Domain Generating Algorithms

In [33], the authors examined the sophisticated techniques employed by hackers to take

control of victimized machines. They highlighted the use of Domain Generation Al-

gorithms (DGAs) in Command and Control operations and drive-by download attacks.

These activities involve coercing victims into accessing malicious websites hosting Browser

Exploit Packs (BEPs) that exploit vulnerabilities in web browsers or third-party plugins.

The authors introduced a classification system covering binary-based DGAs for Command

and Control functions, and scripted-based DGAs for infection proliferation. While the

Binary-Based DGA section briefly touched on generating pseudorandom domain names

based on a predetermined seed value, the authors did not delve into specific seed values

or DGA creation details. This new paper aims to provide additional insights by exploring

the use of DGAs and Linear Feedback Shift Registers (LRSs), opening up new avenues

for research in this domain.

2.4.2 Comprehensive Analysis of DGAs: Addressing Traditional

and Randomized Techniques

In [1], authors discussed the use of DGAs by botnets for facilitating Command and Con-

trol communications in cyber attacks. They highlighted how hackers utilize algorithms

to generate numerous download sites, enabling victim hosts to download malware and

upload information. They also explore various modifications that attackers can make

to their Tactics, Techniques, and Procedures (TTPs) involving DGAs. The paper ad-

dressed different types of DGAs, including traditional and dictionary-based DGAs, which

pose challenges to defensive detection methods. However, they do not explicitly discuss

randomized DGAs that could mimic random web addresses generated by search engines

like Google, making detection even more difficult. The authors also mention DGArchive,

a malicious domain dataset containing 84 malware families at the time of their report,
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which they utilize for their research. In their approach, the authors discuss botnets’ use

of DGAs for C2 communications and explore attackers’ modifications to their tactics.

However, they focus on traditional and dictionary-based DGAs and overlook the chal-

lenges posed by randomized DGAs, which mimic search engine-generated web addresses

[31]. The paper lacks an in-depth analysis of their methodologies’ practical implications

and limitations and mainly relies on the DGArchive dataset. In contrast, this new work

offers a more comprehensive examination of DGAs, including randomized techniques and

practical implications.

In [1], the authors examined botnets’ deployment of Domain Generation Algorithms

(DGAs) for Command and Control (C2) in cyber attacks. They highlighted the use of

algorithms by hackers to create numerous download sites, facilitating malware downloads

and information uploads by victim hosts. The paper explored attacker modifications

to Tactics, Techniques, and Procedures (TTPs) related to DGAs, addressing traditional

and dictionary-based DGAs that challenge defensive detection methods. However, it did

not explicitly cover randomized DGAs, which can mimic web addresses generated by

search engines like Google, adding to the difficulty of detection. The authors referenced

DGArchive, a dataset with 84 malware families used in their research. In their approach

[18], the authors focused on botnets’ use of DGAs for C2 communications and modifi-

cations to tactics. However, they emphasized traditional and dictionary-based DGAs,

overlooking challenges posed by randomized DGAs mimicking search engine-generated

addresses. The paper lacked a thorough analysis of the practical implications and limita-

tions of their methodologies, relying primarily on the DGArchive dataset. In contrast, this

new work provides a more comprehensive examination of DGAs, including randomized

techniques, and explores practical implications.
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2.5 Advancing Cyberattack Detection with Deep Learn-

ing: A Comprehensive Study

The work by [34] centers on bolstering cyberattack detection through deep learning tech-

niques. The study delves into the application of deep neural networks (DNNs) in cyberse-

curity investigations, encompassing domains like domain generation algorithms (DGAs),

intrusion detection, spam and phishing detection, and secure shell (SSH) traffic analysis.

The authors present a comprehensive framework, ScaleMalNet, for identifying malware

in executables and categorizing malicious traffic. They emphasize the significance of ac-

curately pinpointing harmful URLs using DNNs, highlighting the elimination of the need

for traditional blacklisting and signature-matching methods. While the research under-

scores the potential of DNNs in tackling a variety of cybersecurity challenges, it could

further benefit from integrating strategies like obfuscation with linear recursive sequences

in DGAs to enhance the overall effectiveness of domain name detection, thus fortifying

resilience against evolving cyber threats.

2.6 Linear Recursive Sequences

2.6.1 Limited Precision Deep Learning Architectures

In [35], researchers explored ransomware identification using limited precision deep learn-

ing architectures implemented on a Field-Programmable Gate Array (FPGA). They chose

a Deep Belief Network (DBN) for training on a dataset containing ransomware samples.

This training approach involved an initial unsupervised phase followed by supervised lo-

gistic regression with soft-max activation. The DBN used in this study is a generative

probabilistic model that incorporates layers of Restricted Boltzmann Machines (RBMs),

with the highest layer containing an undirected RBM. For most operations, an 8-bit Lin-
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ear Feedback Shift Register (LFSR) was employed to generate uncorrelated bitstreams.

The study showed a significant 91% overall detection rate, with a rapid detection time of

0.006ms using their FPGA setup. Unlike non-linear sequences, which lack easily recogniz-

able patterns and reduce the predictability of botnet clients, Linear Feedback Shift Reg-

isters (LFSRs) exhibit distinct mathematical relationships among their elements, making

them more predictable. Integrating LFSRs through overlapping and XORing the system

results would enhance obfuscation, as any Domain Generation Algorithm (DGA) used

would only interpret human-readable characters. It’s important to note that in real-

world scenarios involving malware-infected servers and clients, replication would still be

necessary to establish proper connections.

In their recent publication, ”Novel Deep Learning Approach for Detecting Domain

Generation Algorithms”, [36], the authors introduced a novel approach utilizing deep

learning to instantly detect randomly generated domain names and DNS homograph at-

tacks. This technique eliminates the necessity for reverse engineering or the inspection of

nonexistent domains. Through evaluation, its efficacy in recognizing DNS homograph at-

tacks and Domain Generation Algorithms (DGAs) was showcased, boasting an impressive

accuracy of 0.99. Notably, the method demonstrated resilience against common evasive

cyberattacks and surpassed the performance of well-known deep-learning architectures.

Through the new incorporation of XOR binary combinations involving both DGAs

and Linear Recursive Sequences (LRSs) during the training phase, this approach facili-

tated the generation of adversarial examples that replicated intricate attack strategies. By

subjecting the models to training with these examples, they were empowered to adeptly

counter both white-box and black-box attacks, significantly reinforcing their aptitude to

withstand efforts aimed at evasion and tampering. Diverging from the methodology de-

tailed in reference [19], this approach integrates Linear Recursive Sequences (LRS) with

DGAs, resulting in more realistic adversarial instances and amplifying the model’s capabil-

ity to navigate through an array of detection techniques. Furthermore, a comprehensive
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comparative analysis was conducted, highlighting the superiority of the LRS-DGA hy-

brids. This outcome ultimately heightens obfuscation levels and reduces the occurrence

of real-time cyber threat detection alerts.

This new research is focused on DLD and NDL and (NDL, string entropy, string

compression, and similarities. Levenshtein Distance and DLD both quantify string dis-

similarity through minimum edit operations, but they differ in handling transpositions.

While Levenshtein Distance considers insertions, deletions, and substitutions, DLD ex-

tends this to include transpositions, allowing the swapping of adjacent characters. DLD is

advantageous when transpositions are common, as in spell checking, while Levenshtein is

more straightforward and more suitable for scenarios where transpositions are rare or less

critical. The choice depends on specific application requirements and the variations ex-

pected in the compared strings. DLD and NDL, along with additional features, provided

improved results of 100.

The study, ”Comparative Analysis of DGA Detection Methods: Machine Learning vs.

Deep Learning,” presented in [37] delved into the realm of automatically detecting Domain

Generation Algorithms (DGAs) through the lens of machine learning. The authors tackled

two key challenges in this domain. First, they addressed the issue of comparing DGA de-

tection methods, a challenge exacerbated by the scarcity of independent benchmarks. The

second challenge involved the adaptability of cybercriminals to circumvent these detec-

tion techniques. The researchers juxtaposed two distinct approaches for DGAs. The first

method involved classical machine learning employing manually crafted features, while the

second method leveraged the power of deep learning neural networks. The findings re-

vealed that adversaries exhibited a faster adaptation rate against the manually engineered

features approach, succeeding approximately 57 percent of the time. However, their ef-

fectiveness diminished when confronted with deep learning detection systems, achieving

an impressive accuracy of 78.9 percent.

Yang et al. [38] introduced in, ”Enhancing DGA Detection with Heterogeneous Deep
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Neural Networks and Obfuscation Strategies”, an approach using a deep learning-based

framework called Heterogeneous Deep Neural Network (HDNN) for detecting malicious

domain names generated by stealthy domain generation algorithms (SDGAs), focusing

on 20 DGA families. However, the study did not explore the potential of modifying

the DGAs to test if the resulting generated domains could still be classified within the

original families. To address this, they introduced a strategy involving obfuscation, com-

bining a linear recursive sequence with a domain-generating algorithm. This approach

shows promise in overcoming challenges related to adversarial attacks, exploring various

feature extraction methods, creating diverse datasets, and conducting a comprehensive

comparison with existing deep learning-based schemes for DGA detection.

The study, ”Securing Cyber-Physical Systems: Deep Learning-Based Detection of

Domain Generating Algorithms”, in [39] proposes a deep learning-based domain name

detection system to address security concerns related to identifying Domain Generating

Algorithms (DGAs) in Cyber-Physical Systems (CPS). This system is designed to com-

bat adversarial sample attacks and improve the identification of malicious domain names

generated by DGAs. The authors address the complex challenges associated with detect-

ing DGAs, including the evasive techniques attackers use to evade detection. They also

highlight the adaptive and dynamic nature of DGAs, which continuously evolve to bypass

conventional detection methods. However, the study does not explore the integration of

DGAs with Linear Recursive Sequences (LRSs).

In [40], the authors of ”Detection of DGA-Generated Domain Names with TF-IDF

” tackle the crucial challenge of detecting domain name generation algorithms (DGAs)

utilized by botnets to evade detection. They employ machine learning and deep learning

techniques to bolster cybersecurity against these threats. Notably, they introduce the

innovative use of TF-IDF (term frequency–inverse document frequency) for identifying

DGA-generated domain names. The paper also conducts a thorough review of recent

research efforts in this field, showcasing diverse methodologies, datasets, and models.
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However, they acknowledge challenges such as dataset variability, model complexity, and

feature engineering. They suggest the potential incorporation of linear combinations,

though not explicitly XORed LRSs, to enhance feature selection and unveil hidden pat-

terns in domain name generation. Overall, the paper enriches the landscape of DGA

detection by combining new approaches with valuable insights from existing research.

The paper, ”Enhancing DGA-Driven Botnet Detection,” by [41] focuses on detecting

DGA-driven botnets using Machine Learning (ML) and Deep Learning (DL) techniques.

These botnets utilize dynamic domain generation algorithms (DGAs), making them chal-

lenging to detect. The study outlines a comprehensive methodology involving data prepro-

cessing, model training with Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), and Long Short-Term Memory networks (LSTMs). and performance

assessment using metrics like precision, recall, accuracy, and F1-score. and both ML

(e.g., Logistic Regression, Naive Bayes, Random Forest). They did not attempt to use

FNNs. One potential enhancement could involve integrating Linear Recursive Modified

DGAs, which would add an extra layer of complexity to the domain generation process,

heightening the difficulty of botnet detection. This addition would lead to a more robust

evaluation of detection methods against a wider range of threats, enhancing applicability

to real-world scenarios where attackers continuously innovate their techniques. Moreover,

discussing the challenges and benefits of incorporating such advanced algorithms would

give readers a deeper understanding of the complexities involved in DGA-driven botnet

detection.

The study, ”Real-Time Detection of Dictionary DGA Network Traffic Using Deep

Learning”, presented in [42] identified a gap in effective comparisons with established deep

learning frameworks. The authors asserted that their novel hybrid neural network archi-

tecture showcases consistent performance when pitted against contemporary cutting-edge

deep learning architectures. Nonetheless, the study lacks a direct and effective compara-

tive analysis vis-à-vis these existing architectures. Such a comparative examination with
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other deep learning methodologies would substantiate the proposed architecture’s superi-

ority and highlight its strengths and limitations. By implementing the DGA/LRS obfus-

cation technique and conducting meticulous comparative analysis, the suggested hybrid

neural network architecture could be directly juxtaposed against prevalent deep learning

architectures. This assessment could encompass both unmodified and obfuscated domain

datasets to gauge how adeptly the architecture handles dictionary-based DGAs in the

context of obfuscation. This new holistic evaluation would offer a more all-encompassing

grasp of the architecture’s performance and its distinctive attributes when contrasted with

other advanced methodologies.

2.6.2 General LFSRs Creation

The study by [27] introduces an approach for generating linear feedback shift register

(LFSR) sequences to achieve maximal equidistribution. Enhancements to the algorithm

were made feasible by combining the generator’s output with other generators. This

research also identifies a novel variant of the polynomial Linear Congruential Genera-

tor (LCGs) using modulo-2 arithmetic and input additions for desired equidistribution

characteristics. This paper’s approach differs significantly, presenting a technique that in-

corporates Linear Feedback Shift Registers (LFSRs) into Domain Generation Algorithms

(DGAs) for increased obfuscation. Unlike the focus of the method proposed in this refer-

ence, which centers on maximal equidistribution through LFSR sequences by overlapping

and XORing specific domain names in binary, this approach concentrates on enhancing

the complexity and resilience of obscured domain names.

The study, ”Enhanced DGA Detection through Integration of DGA and Linear Feed-

back Shift Register”, in [43] compared deep learning techniques with feature-based ap-

proaches like Random Forest (RF) and Multilayer Perceptron (MLP) models. It’s im-

portant to note that the assessment may not cover the full range of possible feature-

based methodologies. Combining a Domain Generation Algorithm (DGA) with a Linear
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Feedback Shift Register (LRS), the introduced detection system in the research incorpo-

rates a broader set of innovative features, effectively capturing the hidden patterns and

unique attributes associated with DGAs. This enhancement enables a more thorough

evaluation and comparison of feature-based approaches, potentially improving detection

performance.

2.6.3 Critical Analysis of Xorshift Generators

In [44], the authors examined both practical and theoretical aspects of three xorshift

generators introduced by [45][46]. Their investigation revealed that while these gener-

ators were fast, they suffered from unreliability. The Marsaglia generators were part

of a lineage of generators based on a linear recurrence modulo 2 framework, which in-

cluded SRG, Mersene twister, and other variants. The paper introduced efficient Random

Number Generators (RNGs) based on xorshift operations, exhibiting commendable ran-

domness attributes and long periods achieved through specific parameter choices [a, b,

c]. However, the paper lacked a comprehensive comparative analysis against alternative

RNG methodologies, potentially overlooking recent advancements in the field. Addition-

ally, it did not explore the practical implications of the presented RNGs or address the

limitations of specific applications.

2.6.4 Overcoming Data Limitations in DNS Security through

Synthetic DGAs and LRS Integration

In [47], the study tackled the challenge of limited public availability of extensive DNS

data logs, hindering effective detection strategy development. Legal, privacy, and bureau-

cratic concerns complicate data sharing across organizations. To address this scarcity,

the study proposed using a combination of Domain Generation Algorithms (DGAs) and

Linear Feedback Shift Registers (LRSs) to generate large-scale, authentic DNS data logs.
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This approach overcomes data scarcity, allowing the sharing of synthetic datasets among

organizations for comparative evaluations and the development of more effective detec-

tion methods. The upcoming research will focus on known DGA families, utilizing LRSs

XORing with a known DGA family for training to identify potential DGAs.

The collective body of related articles lacks comprehensive data pertaining to the

creation and analysis of Domain Generating Algorithms (DGAs) when integrated with

Linear Recursive Sequences (LRSs). This work is positioned to bridge this void by offering

a thorough exploration into the fusion of DGAs with LRSs, thereby expanding avenues

for researchers to analyze and detect such combinations. This research addresses a critical

deficiency within the current literature. Moreover, the cited related works exhibit notable

gaps in terms of providing essential evidence for the development and analysis of DGAs

in tandem with LRSs, along with potential detection methodologies. These gaps signifi-

cantly hinder a comprehensive understanding of the synergistic application of DGAs and

LRSs. The omission of discussions surrounding the creation and analysis of DGAs paired

with LRSs limits the exploration of the intricacies inherent in this combined strategy. As

a result, these articles miss the chance to explore effective strategies for identifying and

mitigating these hybrid techniques. In light of these considerations, further research and

analysis are imperative to grasp the full scope of integrating DGAs with LRSs. The ex-

isting data deficit, especially in terms of the development and analysis of such approaches

and the formulation of robust detection techniques, must be resolved. By closing this

knowledge gap, this comprehension of the potential cyber threats stemming from these

hybrid methodologies will be enhanced, leading to more robust defense strategies against

evolving cyber-attacks.
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Chapter 3

Research Methodology

3.1 Overview

In the realm of cybersecurity, combating malicious activities such as Domain Generation

Algorithms (DGAs) has emerged as a pivotal challenge. DGAs are frequently employed

by cybercriminals to dynamically generate domain names for their malicious operations,

evading traditional detection mechanisms. The research proposes a sophisticated ap-

proach to address this challenge by developing robust classifiers capable of discerning

between different variations of DGAs. Three distinct classes are defined: original DGAs,

those modified through character substitution to introduce noise, and those modified

through Linear Recursive Sequences (LRS). A Feedforward Neural Network (FNN) is em-

ployed as the classifier, utilizing a training dataset comprising original DGAs and modified

versions. The training process enhances the classifier’s resilience to evolving cyber threats,

crucial in the face of continuously adapting tactics by malicious actors. The methodology

follows a quantitative design, utilizing Python programming and a variety of libraries for

efficient data manipulation, machine learning, and visualization. The FNN architecture,

with specific hyperparameters, is designed to effectively process and classify DGA data

instances, demonstrating a commitment to proactive cybersecurity.
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3.2 Challenges

This section navigates through various challenges encountered during the research jour-

ney, shedding light on the knowledge gap, research scope, feature selection, and other

associated issues. The initial challenge emerges from a gap in understanding neural net-

works and machine learning intricacies, necessitating extensive self-directed learning to

overcome this hurdle. The research scope, as the second challenge, involves transitioning

from a macro-level perspective to a micro-level approach for accurate classification of Do-

main Generation Algorithms (DGAs). Additionally, challenges in feature selection arise,

encompassing optimal feature identification, determining effective optimizers, learning

rates, and other critical parameters for the Feedforward Neural Network (FNN). Fur-

thermore, various issues related to methodology, such as Python version compatibility,

dataset bias, and dependencies on machine learning libraries, are highlighted. The need

for addressing these challenges is emphasized to enhance the overall robustness, reliability,

and sustainability of the research methodology.

3.2.1 Knowledge Gap

The initial exploration into neural networks and machine learning revealed a notable

knowledge gap, particularly at the macro-level of analysis. This macro-level approach,

while informative, resulted in unexpected misclassifications, signaling the need for a shift

towards a more granular, micro-level approach. The encountered challenges encompassed

several facets, including hurdles in feature identification, complexities in selecting optimal

optimizers and learning rates, and addressing issues related to dataset imbalance. These

intricacies highlighted the importance of a nuanced understanding at the micro-level to

effectively navigate and address the specific challenges posed by neural networks and

machine learning methodologies.
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3.2.2 Research Scope

The second challenge arose from initially adopting a macro-level perspective when analyz-

ing the problem rather than a micro-level approach. Misclassifying the 80-plus datasets as

a single class and creating two separate classes for noise-obfuscated and LRS-obfuscated

DGAs resulted in inaccurate classifications. The correction involved recognizing that each

DGA family needed its own classes, paired with noise and LRS-related classes for each

family. Another hurdle was identifying DGA families with an insufficient number of sam-

ples per family, causing a risk of overfitting and false positives. Eventually, the solution

involved selecting DGA families with more substantial sample sizes, ranging from 300 to

500 or more per family.

3.2.3 Feature Selection

Beyond the initial obstacle, the research encountered additional challenges, notably in the

realm of feature identification and the optimization of the neural network model. A critical

aspect involved the meticulous process of selecting optimal features for the Feedforward

Neural Network (FNN). The identified features played a pivotal role in the network’s

ability to discern patterns and make informed decisions. Among the diverse set of features

considered, the research explores the intricacies of DLD, NDL, entropy, compression, basic

similarity, Smith-Waterman similarity, Euclidean distance, and Jaccard similarity.

The challenge extended to determining which combination of these features would

best serve the research objectives, necessitating a thorough evaluation of their individual

strengths and weaknesses. The significance of each feature in capturing the distinctive

characteristics of the obfuscated Domain Generating Algorithms (DGAs) had to be care-

fully assessed.

Another set of challenges revolved around the fine-tuning of the neural network archi-

tecture. This encompassed the identification of the most effective optimizer and learning
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rate, crucial factors influencing the training process and overall performance of the FNN.

The determination of suitable numerical values for the dense layers, involving considera-

tions of depth and width, added complexity to the optimization process.

Decisions regarding the number of neurons to be employed in each layer, the selection

of the sigmoid activation function as the most appropriate for the research context, es-

tablishing an ideal batch size for efficient training, and defining the appropriate length of

epochs further contributed to the intricate optimization challenges.

Navigating through these challenges required a delicate balance between theoretical

understanding and empirical experimentation. The research sought to strike an optimal

configuration that maximized the FNN’s ability to unravel the hidden patterns within the

obfuscated DGAs. This involved an iterative process of experimentation, evaluation, and

refinement to converge on a neural network architecture and feature set that demonstrated

optimal performance in addressing the complexities of the research problem.

3.2.4 Other issues

The methodology employed in the research project faces several potential challenges and

suggests solutions to enhance its robustness. Firstly, the reliance on Python versions 2

and 3 for programming and the ”fastDamerauLevenshtein” library might introduce com-

patibility issues in the future. It is advisable to consider using the latest version of Python

and ensure that libraries are up-to-date to mitigate this challenge. Additionally, the choice

of datasets, such as Banjori, Dnschanger, Dyre, Gameover, Murofetweekly, poses a risk

of bias, and incorporating more diverse datasets could improve the model’s generaliza-

tion. Furthermore, the machine learning process heavily depends on libraries like pandas,

numpy, scikit-learn, and keras. Ensuring version compatibility and handling potential

updates or deprecations in these libraries is crucial to maintaining the script’s functional-

ity over time. The model’s performance evaluation and visualization components should

be enhanced by providing more precise labels and explanations, contributing to better
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interpretability. Moreover, considering the complexity of the Feedforward Neural Net-

work (FNN) architecture and the potential challenges in hyperparameter tuning, model

training, and assessment, the script could benefit from breaking down into smaller func-

tions or classes for improved organization and maintainability. Additionally, robust user

input validation, detailed training output information, and implementation of save/load

model functionalities would contribute to a more user-friendly and error-resilient script.

Addressing these challenges would contribute to the research methodology’s reliability,

scalability, and sustainability.

3.3 Innovations

This section addresses the cybersecurity challenge of combating Domain Generation Al-

gorithms (DGAs). It emphasizes creating classifiers to distinguish between different DGA

variations: non-modified, character-substituted noise, and Linear Recursive Sequences

(LRS). The training dataset includes original DGAs as a baseline and modified DGAs

simulating real-world scenarios. The chosen classifier, the Feedforward Neural Network

(FNN), excels at discerning complex patterns. Exposure to diverse DGAs enhances the

classifier’s ability to recognize subtle variations, making it more resilient to evolving cyber

threats. The integration of character substitution and LRS modifications in the training

dataset reflects real-world challenges, highlighting the importance of a versatile classifier

for proactive cybersecurity.

3.3.1 Classification Framework

To effectively address this challenge, a sophisticated approach involves the creation of

classifiers capable of distinguishing between different variations of DGAs. Three distinct

classes are defined for this purpose: the first class represents non-modified DGAs, the

second involves modifications through character substitution to introduce noise, and the
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last employs Linear Recursive Sequences (LRS). This nuanced classification enables the

training of classifiers to recognize intricate patterns and alterations introduced by cyber

adversaries, aiming to obfuscate their malicious intent.

3.3.2 Training Dataset Composition and Structure

The complexity of the research extended to the composition and structuring of the train-

ing dataset for the classifiers. The dataset, a critical component in the development and

evaluation of the classifiers, was meticulously designed to encompass three distinct cat-

egories, each contributing to a comprehensive understanding of the Feedforward Neural

Network’s (FNN) capabilities.

The first category within the training dataset comprised ”original DGAs,” acting as

the baseline for the classifiers. Original DGAs represented the typical patterns associated

with malicious domain generation, encapsulating the conventional characteristics that

cybersecurity professionals often encounter. This category laid the foundation for the

classifiers to learn and recognize the standard features indicative of malicious domain-

generating algorithms.

In contrast, the training dataset included two modified categories, introducing nuances

that mirrored real-world scenarios where cyber attackers employ sophisticated techniques

to mask their activities. The second category involved DGAs with character substitution,

simulating scenarios where attackers manipulate domain names by substituting charac-

ters. This modification aimed to challenge the classifiers with variations that emulate the

obfuscation techniques commonly employed by cyber adversaries.

The third category in the training dataset consisted of DGAs with Linear Recursive

Sequence (LRS) modifications. This category emulated situations where attackers intro-

duce linear recursive sequences to obfuscate the domain generation process. The addition

of this category provided the classifiers with exposure to more intricate patterns, mirroring

the sophisticated methods utilized by cyber attackers to evade detection.
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The deliberate structuring of the training dataset with these three categories aimed to

expose the classifiers to a diverse set of patterns and challenges. The classifiers were thus

trained to discern not only the standard characteristics of malicious DGAs but also to

adapt and identify variations introduced through character substitution and LRS modifi-

cations. This multifaceted training approach was integral to ensuring the robustness and

adaptability of the classifiers in addressing the intricacies of obfuscated domain-generating

algorithms encountered in real-world cybersecurity scenarios.

3.3.3 Training the FNN for DGA Classification

The training process focuses on the Feedforward Neural Network (FNN) as the chosen

classifier, known for its ability to discern intricate patterns within data, specifically in

distinguishing between benign and malicious domain generation strategies in the cyberse-

curity domain. The FNN undergoes rigorous training with a diverse dataset, comprising

original DGAs representing typical patterns associated with malicious domain generation

and modified versions introducing subtle variations.

Challenges in the training process include determining optimal FNN configuration

parameters, such as selecting the most effective optimizer and learning rate, defining nu-

merical values for dense layers, choosing the number of neurons, selecting the appropriate

activation function (sigmoid), establishing batch size, and determining epoch length. Bal-

ancing the FNN’s generalization capabilities while avoiding overfitting or underfitting is

crucial.

3.3.4 Enhancing Resilience

The integration of character substitution and LRS modifications into the training dataset

enhances the classifier’s simulation of evolving cyber threats. Given the continuous adap-

tation of malicious actors’ tactics, a versatile classifier becomes indispensable for proactive

cybersecurity measures.
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3.4 Quantitative Methodology

This section outlines a quantitative approach for countering Domain Generation Algo-

rithms (DGAs). Utilizing Python versions 2 and 3, the study employs the ”fastDamer-

auLevenshtein” library and constructs an effective Feedforward Neural Network (FNN)

architecture with key Python libraries. Five DGA datasets are utilized, categorized

into Original DGA, Noise-Modified DGA, and LRS-Modified DGA classes. The sec-

tion succinctly details the FNN’s architecture, training configuration, input features, and

methodology, addressing challenges in hyperparameter optimization and model assess-

ment. Suggestions for improvement encompass organization, user input handling, com-

ments, visualization, save/load functionality, training output, and consistency. Overall,

the methodology provides a robust framework for the research on DGA countermeasures.

3.4.1 Quantitative Research Design and DGA Dataset Classifi-

cation

This research was conducted with a quantitative design that focused on specific variables,

analysis, and rigid constraints; it was well-structured and designed to ensure its overall

validity and reliability could be replicated. A quantitative research model was followed to

demonstrate how research could be conducted and how data could be collected, analyzed,

and detected. Regular measurements throughout the experiment were fundamental, con-

necting research observations and the formalization of the research purpose.

Five distinct DGA datasets were used and reviewed; they are Banjori, Dnschanger,

Dyre, Gameover, Murofetweekly, and three specific classes were used within this research,

remaining 79 datasets can be viewed within Appendix A. All presented unique challenges

and opportunities for classification. The first dataset comprises originally unaltered DGA

domain names, serving as a foundational baseline for analysis. This dataset provides

essential insights into the characteristics and patterns exhibited by legitimate DGA do-
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main names. This research covers naming conventions, length distribution, and syntactic

structures. This initial classification aids in the creation of a reference point against which

anomalous or malicious domain activities can be identified.

The second dataset introduces injecting generated noise into known DGAs, increment-

ing a minimum of 10 percent of characters within each of the domain name strings. This

deliberate manipulation seeks to emulate the adaptive nature of cyber threats, where

attackers constantly refine their tactics to evade detection. This research focuses on iden-

tifying and quantifying the impact of noise injection on existing classification models.

The third dataset introduces a layer of novel complexity by incorporating linear LRS-

modified domain-generated algorithms (DGAs). These algorithms dynamically alter do-

main names in a systematic manner, posing a significant challenge to traditional classifi-

cation methods. Researchers must decipher these modified domains’ underlying sequences

and patterns to distinguish them from legitimate counterparts effectively. The exploration

of linear recursive sequences becomes instrumental in uncovering the intricacies of this

dataset, ultimately enhancing the accuracy of classification models against evolving cyber

threats.

3.4.1.1 Programming Environment and Machine Learning Libraries

This experiment primarily used Python languages versions 2 and 3 for programming.

Python was chosen because it also had a library called ”fastDamerauLevenshtein,” which

is a string metric for measuring the edit distance between two sequences of strings. Ad-

ditionally, data was collected by obtaining results from submissions to DGArchive, most

likely through submissions from a predetermined Application Programmable Interface

(API) application to DGAarchive.

The Python libraries used in the FNN plays crucial roles in different aspects of the

machine learning process. The pandas library, referred to as pd, facilitates efficient data

manipulation with its DataFrame structure, enabling tasks like reading, filtering, and
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grouping structured data such as CSV files. numpy (as np) serves as a fundamental

library for numerical computing, offering support for large, multi-dimensional arrays and

mathematical operations on them.

The scikit-learn library, denoted as sklearn, is a comprehensive machine learning

toolkit utilized for diverse tasks like model selection, preprocessing, and classification.

Notably, the LabelEncoder from scikit-learn converts categorical labels into numerical

format. The keras library provides tools for building neural networks, with the Sequential

model allowing the creation of a linear stack of layers.

The FNN architecture uses keras.layers.Dense for fully connected layers, and the

keras.layers.Dropout layer is applied for regularization. The optimization of the model

is handled by keras.optimizers.Adam. Callbacks, such as keras.callbacks.EarlyStopping

and ModelCheckpoint, functions were used for stopping training when a metric stops

improving and saving the model checkpoints during training.

For visualization, the script utilizes matplotlib.pyplot (as plt) to create various plots

and charts. seaborn (imported as sns) builds on Matplotlib, providing a high-level in-

terface for statistical data visualization. The sklearn.metrics module supplies metrics for

evaluating the model’s performance, while the PCA module reduces dimensionality.

3.4.1.2 Computational Infrastructure and Hardware Configuration

Primary computations for the study were completed with a home computer, DELL In-

spiron Configure To Order (CTO) Base Laptop, which held 64GB of Random Access

Memory (RAM) and 2TB of Solid State Drive (SSD) space. Two additional External

SanDisk SSDs, 2TB and 4TB, could be used for additional storage if required or as back-

ups. The laptop also utilized VMWare Workstation 16 Pro, allowing different operating

systems to run simultaneously.
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3.5 FNN Architecture and Training Configuration

This section provides an overview of the Feedforward Neural Network (FNN) architecture

designed for countering Domain Generation Algorithms (DGAs). Following a multi-class

classification strategy, the FNN utilizes the Adam optimizer, sigmoid activation function,

and two dense layers. The training process involves epochs, a small batch size, and

a validation split. With eight input features, the FNN structure comprises input, two

dense layers, and an output layer with softmax activation. The training configuration

features the Adam optimizer, learning rate, epochs, sigmoid activation, batch size, and

validation split. These features contribute to the FNN’s comprehension of DGA data,

classifying instances across datasets for robust cybersecurity. The input data comprises

eight features: DLD, NDL, Entropy, Compression, Similarity, Smith-Waterman Similarity,

Euclidean Distance, and Jaccard Similarity.

3.5.1 General Training Configuration

Optimizer: The model utilizes the Adam optimizer, an adaptive learning rate optimization

algorithm.

Learning Rate: The learning rate for Adam is set to 0.0001, controlling the step size

during optimization. Maintaining a lower learning rate ensures more stable convergence.

Epochs: The model undergoes 50 epochs of training, which signifies the number of

times the entire dataset is processed by the neural network.

Activation Methods: Sigmoid activation is employed as the activation method. Sig-

moid is chosen for its suitability as a multiclass classifier, following a one-vs-all (OvA)

or one-vs-rest (OvR) strategy. This entails training individual binary classifiers for each

class, where each class is considered positive while the others are treated as negative.

Sigmoid activation functions are well-suited for this approach. Softmax activation is used

for multi-class classification tasks. It transforms the model’s raw output into a probabil-
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ity distribution, making it easier to interpret and evaluate the FNN’s performance using

appropriate loss functions.

Batch Size: Training is conducted with a batch size of 32, where each batch contributes

to updating the neural network’s weights.

Validation Split: 80% of data used for training and 20% of the data is reserved for

validation, enabling the model to assess its performance on unseen data during train-

ing. This practice aids in preventing overfitting and provides insights into generalization

capabilities.

3.5.2 FNN Model Configuration

Input Layer: The neural network starts with an input layer that accommodates the eight

features mentioned above.

First Dense Layer (256 Neurons): The first dense layer uses sigmoid for activation,

contains 256 neurons, and applies the sigmoid activation function. This layer is a powerful

feature extractor, capturing complex patterns within the input data.

Second Dense Layer (128 Neurons): The second dense layer uses a sigmoid for activa-

tion, consists of 128 neurons, and uses the sigmoid activation function. This layer further

refines the learned features from the previous layer, enabling the network to understand

intricate relationships within the data.

Third Dense Layer: Uses softmax activation for multi-class classification tasks. It

transforms the model’s raw output into a probability distribution, making it easier to

interpret and evaluate the FNN’s performance using appropriate loss function.

Output Layer: The output layer employs the softmax activation function, producing

a probability distribution across the three classes (Original DGA, Noise-Modified DGA,

LRS-Modified DGA). The network is trained to classify input instances into one of these

three categories.
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3.5.3 Input Features for Neural Network

The eight features, including Class, DLD, NDL, String Entropy, String Compression,

Standard String Similarity, Smith-Waterman Similarity, Euclidean Distance, and Jaccard

Similarity collectively contribute to the neural network’s understanding of the input data.

These features are crucial for characterizing and distinguishing the different types of DGA

data (Original, Noise-Modified, LRS-Modified).

3.5.4 DGA Dataset Selection and Preprocessing

This research extensively examines five primary DGA datasets Banjori, Dnschanger, Dyre,

Gamechanger, and Murofetweekly—carefully chosen from a pool of 84 datasets available

in DGArchive. The detailed results of the remaining datasets will be documented in Ta-

ble 4.17 and 4.18. The dataset selection process involved narrowing down the datasets to

71 as 13 lacked a sufficient number of domain names. The selection criteria considered

both the length of strings and the overall dataset size. Each selected dataset underwent

thorough modification and segmentation, resulting in three distinct categories of classes:

Original DGA data, Noise-Modified DGA data, and LRS-Modified DGA data. The pri-

mary objective of this multi-class classification task is to effectively train the multi-layer

neural network to adeptly categorize instances into one of these three classes, leveraging

the unique features provided by each dataset the features provided.

3.5.5 Summary

The FNN is structured to effectively process and classify DGA data instances using the

Adam optimizer, sigmoid activation functions, and two dense layers. The choice of fea-

tures and the multi-class nature of the task contribute to the network’s ability to discern

patterns and make informed predictions for the different types of DGA data.

42



3.6 Machine Learning Methodology

3.6.1 Feature Selection for FNN Training

The selection of features for training a Feedforward Neural Network (FNN) with domain

generating algorithms (DGAs) is crucial for robust defense against LRS obfuscated DGAs

through domain-specific noise and deep learning analysis. The ”Class” feature serves

as the target variable, providing distinctive labels for the various DGA types (Original,

Noise-Modified, LRS-Modified), enabling supervised learning and aiding the neural net-

work in pattern recognition. The DLD, quantifying the number of edit operations needed

to transform strings, provides crucial insights into string similarity and structural dispar-

ities. This information is vital for identifying unique patterns associated with different

Domain Generating Algorithms (DGAs). Normalizing DL Distance ensures a consistent

scale, preventing biases and enhancing the neural network’s ability to discern patterns

independently of string lengths. String Entropy, representing unpredictability, and String

Compression, reflecting compressibility, capture essential aspects of DGA patterns, assist-

ing the neural network in distinguishing between random and structured strings. Standard

String Similarity and Smith-Waterman Similarity provide fundamental metrics for under-

standing baseline string relationships and fine-grained local alignments. With its numeri-

cal representation, Euclidean Distance captures geometric relationships between vectors,

contributing to the neural network’s understanding of numerical patterns in DGA data.

Jaccard Similarity, measuring set similarity, helps analyze specific character sets or se-

quences, offering insights into the distinctive character combinations typical of DGAs.

These features collectively empower the neural network to comprehend and differentiate

between the various DGA types, forming a robust defense against LRS obfuscated DGAs

through domain-specific noise and deep learning analysis.
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3.6.2 Optimizing FNN Weight Parameters

Navigating the intricacies of optimizing weight parameters in an FNN comes with var-

ious challenges, especially considering the specific architecture and training parameters

outlined. One significant challenge involves selecting an appropriate learning rate for the

Adam optimizer, which critically influences the convergence speed and stability during

training. Additionally, striking the right balance between model complexity and gener-

alization poses a challenge, given the risk of overfitting with the specified architecture of

256 and 128 neurons in the two dense layers and a Softmax dense layer for processing

output in chartable format. Techniques like dropout or weight regularization may be

necessary to mitigate this risk. The characteristics of the dataset, such as imbalanced

classes or noisy features, can significantly impact the model’s performance, requiring pre-

processing steps like normalization and feature engineering. The validation split of 20%

is a common choice but may need adjustment based on the dataset’s size and complex-

ity. Hyperparameter tuning, including the number of epochs and batch size, demands

careful consideration to avoid underfitting or overfitting. Feature scaling is crucial for the

Adam optimizer’s efficiency, and the interpretation of results can be challenging with a

complex architecture, necessitating techniques like feature importance analysis or more

info SHAP values. SHAP (SHapley Additive exPlanations) values are a method used in

machine learning to explain the output of a model for a specific instance or prediction[48].

They provide a way to allocate the contribution of each feature to the final prediction.

Moreover, the computational demands of training a deep neural network, coupled with

the need for domain knowledge for effective decision-making, add further layers of com-

plexity to the optimization process. Regular validation and monitoring are paramount

for iteratively refining the model’s performance in the face of these challenges.
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3.6.3 Model Assessment During Research

Comments and suggestions for improvement: Graphical Visual Representation: Labeling

of the Title and other items needed to be increased to improve readability. Organization:

The model could be broken down into separate Python files to ease editing and improve

readability and maintainability. User Input Handling: Improved input validations and

possible default inputs could be added to reduce errors. Validation checks may be added

to check for valid integers or floats. Visualization: Have included various visualization

functions, which are great for understanding model performance. Make sure that the vi-

sualizations are correctly labeled and easy to interpret. Save and Load Model: implement

functionality to save and load models. Ensure that the paths the user provides are cor-

rect and that the models are saved and loaded successfully. Training Output: Print more

information during training, such as the current epoch, loss, and accuracy. This can help

users monitor the training progress more effectively. Consistency: Ensure consistency

in variable naming conventions and coding style throughout the script. Error Handling:

Implement robust error handling to gracefully handle potential issues, such as incorrect

file paths or invalid user inputs.
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Chapter 4

Experiments

4.1 Results

This section, will cover outcomes of the artifact and content analysis, explore the results

generated by machine learning processes, and assess the performance of the multi-layer

FNN model.

4.1.1 Artifact and Context Results

4.1.1.1 Datasets

Initially, a vast pool of 84 Domain Generation Algorithms (DGAs) was identified from

the DGArchive repository due to its extensive collection. Subsequently, the selection

was refined to approximately 72 DGAs for the specific focus of this dissertation. The

study centers on a detailed examination of five distinct DGAs, while the outcomes for the

remaining DGAs are systematically presented in an appendix for comprehensive review.

To facilitate classification and analysis, three classes were defined for each DGA:

Original DGAs: This class constitutes the baseline dataset, representing unaltered

DGAs that capture the typical patterns associated with malicious domain generation.

Noise-Modified DGAs: This dataset introduces injected noise to emulate adaptive

cyber threats. The noise is generated by randomly performing a 10% one-up character

modification. For example, in the domain ”abc123.com,” the character ’c’ is modified to

’d,’ resulting in ”abd123.com.”
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LRS-Modified DGAs: This dataset incorporates modifications through Linear Recur-

sive Sequences (LRS), presenting challenges to conventional classification methods. The

LRS modification involves creating an extended sequence of binary ones and zeros. At

a specific point in the sequence, the binary is XOR-added to the original DGA’s binary,

and the resulting human-readable characters are utilized as the domain name. This de-

liberate complexity adds a layer of intricacy for more nuanced analysis. iginal DGA and

the resulting human readable characters were used as the domain name.

4.1.1.2 FNN Architecture

The model structure employed comprises a Feedforward Neural Network (FNN) char-

acterized by the Adam optimizer, sigmoid activation functions, and two dense layers

containing 256 and 128 neurons, respectively. Using the Adam optimizer enhances the

model’s efficiency in optimizing and updating its parameters during the training process.

Sigmoid activation functions are applied to introduce non-linearity, crucial for capturing

complex patterns within the data. The two dense layers, comprising 256 and 128 neu-

rons, contribute to the model’s capacity to learn hierarchical representations of the input

features.

Several key parameters are defined to guide the learning process regarding the training

configuration. These include the learning rate, which dictates the step size during opti-

mization, the number of epochs representing the complete iteration through the dataset,

the activation methods applied to introduce non-linearity, the batch size determining the

number of samples processed in each iteration, and the validation split specifying the pro-

portion of the dataset reserved for validation during training. The careful consideration

and tuning of these parameters are pivotal in optimizing the model’s performance and

ensuring effective learning from the provided data.
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4.1.1.3 Machine Learning Methodology

Feature Selection: Eight features, including DLD, NDL, Entropy, Compression, and oth-

ers. Referenced in Chapter (3.6.1)

Engineering Challenges: Considerations for learning rate, model complexity, class im-

balance, and feature scaling. Referenced in Chapter (3.6.2)

4.1.1.4 Challenges Faced

The initial exploration into neural networks and machine learning revealed a notable

knowledge gap, particularly at the macro-level of analysis. This macro-level approach,

while informative, resulted in unexpected misclassifications, signaling the need for a shift

towards a more granular, micro-level approach. The encountered challenges encompassed

several facets, including hurdles in feature identification, complexities in selecting optimal

optimizers and learning rates, and addressing issues related to dataset imbalance. These

intricacies highlighted the importance of a nuanced understanding at the micro-level to

effectively navigate and address the specific challenges posed by neural networks and

machine learning methodologies.

4.1.1.5 Innovations Introduced

The project involves the intricate task of developing classifiers with the capability to dis-

cern variations in Domain Generating Algorithms (DGAs). This necessitates the creation

of a comprehensive training dataset that incorporates not only the original DGAs but also

versions that have been modified through the introduction of noise and Linear Recursive

Sequences (LRS). Adding these modified DGAs to the dataset is crucial for ensuring that

the classifiers are robust and adaptable to diverse obfuscation techniques employed by

cyber threats. A key component of the project is the utilization of Feedforward Neural

Networks (FNN) as a powerful tool to enhance the resilience of the classifiers to evolving

cyber threats. The FNN is a sophisticated model capable of learning intricate patterns
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within the modified DGAs, thereby enabling a more effective identification and analysis

of the obfuscated algorithms. This strategic use of FNN contributes to the project’s over-

arching goal of developing advanced classifiers that can withstand the dynamic nature of

cyber threats and provide robust defense mechanisms in cybersecurity.

4.1.1.6 Methodology Enhancements

Addressing potential challenges like Python version compatibility and diverse dataset

incorporation. Recommendations for script improvement, including clearer labels, user-

friendly features, and enhanced performance evaluation.

4.1.1.7 Model Assessment Suggestions

Organizational improvements for code readability and maintainability. Enhanced user

input handling, validation, and default inputs. Inclusion of detailed comments, additional

visualizations, and save/load model functionality. Robust error handling for potential

issues.

4.1.2 Machine Learning Results

Preliminary findings and examination of datasets, including Banjori, Dnschanger, Dyre,

Gameover, and Murotfetweekly, are detailed in Sections 4.1.2.1 to 4.1.2.5. The compre-

hensive results are summarized in Table 4.16. Total results for all datasets can be found

in Tables 4.17 and 4.18.

4.1.2.1 Banjori Dataset

The Banjori dataset examples as shown in tables 4.1 through 4.3 are organized into

three distinct classes: LRS Modified (Class 1), Noise Modified (Class 2), and Orig-

inal (Class 0). In the LRS Modified class, where domain names have undergone

intentional modifications, the DLD ranges from 13 to 14, indicating the number
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of edit operations needed for transformation. The Normalized DLD hovers around

0.778, ensuring a consistent scale regardless of string lengths. Entropy values vary

between 2.90 and 3.38, reflecting unpredictability, while Compression ranges from

2.11 to 2.43, indicating compressibility. Similarity and Smith-Waterman Similarity

metrics provide insights into string relationships, with values ranging from 31 to 44

and 0.44 to 1.17, respectively. Euclidean Distance spans from 75.512 to 102.274,

and Jaccard Similarity ranges from 0.278 to 0.529. In the Noise Modified class,

characterized by intentional character substitutions, DLD values are consistently 1,

indicating minimal edit operations. Normalized DLD remains low at 0.056, ensur-

ing a standardized scale. Entropy values vary from 2.90 to 3.38, with Compression

ranging from 2.11 to 2.11. Similarity and Smith-Waterman Similarity metrics are

uniformly high at 94, and Euclidean Distance and Jaccard Similarity showcase val-

ues of 1.0. The Original class, representing unchanged domain names, exhibits DLD

and Normalized DLD values of 0, indicating no edit operations. Entropy values vary

but typically fall within the range of 2.90 to 3.38, with Compression consistently at

2.11. Similarity and Smith-Waterman Similarity metrics are uniformly at 100, in-

dicating identical domains, while Euclidean Distance and Jaccard Similarity reflect

values of 0.0 and 1.0, respectively. Comparing these classes, variations in feature

values across LRS Modified and Noise Modified examples illustrate intentional modi-

fications, while the Original class maintains identical domain characteristics. These

numerical insights contribute to the understanding and classification of Domain

Generation Algorithms within the Banjori dataset.
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Table 4.1: Banjori Dataset LRS Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

xjsrrsensinaix.com hzbbbcubxpyh.com 1 14 0.778 2.90 2.25 31 0.44 102.274 0.278
hlrfrsensinaix.com xcvbcubxpyh.com 1 14 0.778 3.24 2.33 33 0.44 87.721 0.316
fnosrsensinaix.com vcbcubxpyh.com 1 14 0.778 2.99 2.43 36 0.44 75.888 0.278
qcwcrsensinaix.com asfsbcubxpyh.com 1 13 0.722 3.24 2.25 44 1.17 102.274 0.368
lbzorsensinaix.com rkbcubxpyh.com 1 13 0.722 3.38 2.43 43 1.11 76.118 0.368
sgjprsensinaix.com cwbcubxpyh.com 1 14 0.778 3.18 2.43 36 0.44 75.512 0.316
aybarsensinaix.com qisqbcubxpyh.com 1 14 0.778 3.04 2.25 39 0.83 102.274 0.529
tbmzrsensinaix.com drjbcubxpyh.com 1 13 0.722 3.38 2.33 40 1.11 91.777 0.35
lzpzrsensinaix.com jajbcubxpyh.com 1 14 0.778 3.24 2.33 40 0.83 92.558 0.368
dnkirsensinaix.com tzybcubxpyh.com 1 14 0.778 2.99 2.33 33 0.44 89.28 0.25

Table 4.2: Banjori Dataset Noise Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

xjsrrsensinaix.com xjsrrsensinajx.com 2 1 0.056 2.90 2.11 94 1.06 1.0 1.0
hlrfrsensinaix.com hlrfrsensioaix.com 2 1 0.056 3.24 2.11 94 1.06 1.0 1.0
fnosrsensinaix.com fnosrsfnsinaix.com 2 1 0.056 2.99 2.11 94 1.06 1.0 0.917
qcwcrsensinaix.com qcwcrsensinajx.com 2 1 0.056 3.24 2.11 94 1.06 1.0 0.929
lbzorsensinaix.com lbzorsensjnajx.com 2 2 0.111 3.38 2.11 89 1.11 1.414 0.867
sgjprsensinaix.com sgjpssensinaix.com 2 1 0.056 3.18 2.11 94 1.06 1.0 0.929
aybarsensinaix.com bybarsensinaix.com 2 1 0.056 3.04 2.11 94 0.94 1.0 1.0
tbmzrsensinaix.com tbmzrsensinbix.com 2 1 0.056 3.38 2.11 94 1.06 1.0 0.929
lzpzrsensinaix.com lzpzrtensinaix.com 2 1 0.056 3.24 2.11 94 1.06 1.0 0.933
dnkirsensinaix.com dnkjrsensinaix.com 2 1 0.056 2.99 2.11 94 1.06 1.0 0.929

Table 4.3: Banjori Dataset Original Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

xjsrrsensinaix.com xjsrrsensinaix.com 0 0 0.0 2.90 2.11 100 1.00 0.0 1.0
hlrfrsensinaix.com hlrfrsensinaix.com 0 0 0.0 3.24 2.11 100 1.00 0.0 1.0
fnosrsensinaix.com fnosrsensinaix.com 0 0 0.0 2.99 2.11 100 1.00 0.0 1.0
qcwcrsensinaix.com qcwcrsensinaix.com 0 0 0.0 3.24 2.11 100 1.00 0.0 1.0
lbzorsensinaix.com lbzorsensinaix.com 0 0 0.0 3.38 2.11 100 1.00 0.0 1.0
sgjprsensinaix.com sgjprsensinaix.com 0 0 0.0 3.18 2.11 100 1.00 0.0 1.0
aybarsensinaix.com aybarsensinaix.com 0 0 0.0 3.04 2.11 100 1.00 0.0 1.0
tbmzrsensinaix.com tbmzrsensinaix.com 0 0 0.0 3.38 2.11 100 1.00 0.0 1.0
lzpzrsensinaix.com lzpzrsensinaix.com 0 0 0.0 3.24 2.11 100 1.00 0.0 1.0
dnkirsensinaix.com dnkirsensinaix.com 0 0 0.0 2.99 2.11 100 1.00 0.0 1.0

1. Training Accuracy/Loss and Validation Performance: In Figure 4.1, The outcomes

of training and validating the model on the Banjori dataset unveil insightful patterns

in its performance. During the training phase, both accuracy and loss exhibit no-

table trends. The training accuracy initiates at almost zero around the 25th epoch,

indicating initial difficulties in correctly classifying the training data. Correspond-

ingly, the training loss remains nearly zero until approximately the 50th epoch,

implying gradual improvement and enhanced fitting to the training data over time.

On the other hand, the validation phase showcases distinct behavior. Validation
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accuracy demonstrates a swift ascent, starting around the 4th epoch and gradu-

ally reaching 100% accuracy by the 50th epoch. Simultaneously, the validation loss

experiences a continuous decline, gradually approaching zero by the 50th epoch.

These results collectively suggest that the model, though facing challenges in the

early training stages, quickly generalizes well to new, unseen data, achieving opti-

mal performance with high accuracy and minimal loss by the end of the validation

process.

Figure 4.1: Banjori Dataset Training Loss & Accuracy / Validation Loss & Accuracy

2. Confusion Matrix: In the analysis of the Banjori dataset, a systematic approach is

observed in Figure 4.2 the handling of data. Each of the initial classes starts with

750 lines of data, organized within a CSV file. Notably, approximately 80 percent,

or 600 lines, are dedicated to training, while the remaining 20 percent, equivalent

to 150 lines, is set aside for validation purposes.

The evaluation of the model’s performance on the validation set showcases successful

recognition rates for distinct classes. The ”Original DGA” class is effectively identi-

fied in 596 instances, the ”DGA with LRS” class demonstrates accurate recognition

with 597 instances, and the ”DGA with Noise” class achieves successful recognition

in 607 instances.
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These outcomes signify a robust ability of the model to classify instances across

different classes within the Banjori dataset. The allocation of data for training and

validation, coupled with the model’s accurate recognition of specific classes, high-

lights its proficiency in generalizing to new, unseen data and effectively discerning

patterns within the dataset.

Figure 4.2: Banjori Dataset Confusion Matrix

3. F1 Score and ROC Curve: The impressive F1 Score and ROC results depicted in Fig-

ures 4.3 and 4.4 for the Banjori dataset can be attributed to specific characteristics

intrinsic to the dataset. The strings undergoing comparison are of moderate length,

approximately 14 alphanumeric characters each, and are composed of a restricted

set of 36 options per character.

This controlled and limited character space contributes to the model’s exceptional

performance in terms of F1 Score and ROC metrics. The moderate string length

strikes a balance, providing enough complexity for the model to discern meaningful

patterns and relationships while remaining manageable for accurate classification.
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Figure 4.3: Banjori Dataset F1 Score

Figure 4.4: Banjori Dataset ROC Curve

4. The 2D scatter graph visually represents the model’s performance across different
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DGA classes in the Murofetweekly Dataset. The distinct clusters and striations

provide valuable insights into the model’s ability to accurately predict and classify

instances of Original, DGA with Noise, and DGA with LRS classes, aiding in the

interpretation and potential refinement of the model for improved performance.

The 2D scatter graph results in Figure 4.5 of the Murofetweekly Dataset provide a

visual representation of the model’s predictions and actual values. In the graph, a

single circle in purple, representing the Actual Original class, is positioned near grid

location 5 by -55. This suggests that the model effectively recognizes instances of

the Original DGA class, as evidenced by the clustering of data points around this

specific grid location.

Additionally, the graph illustrates the positioning of Actual and Predicted DGAs

with Noise as yellow boxes, forming three distinct striations near the left side of the

grid. This indicates that the model’s predictions for the DGA with Noise class are

grouped in these specific regions, suggesting some level of accuracy in identifying

instances of this class.

Moreover, Actual and Predicted DGAs with LRS are observed on the right side of

the grid, forming multiple striations from the top right to the bottom center. This

spatial distribution indicates that the model’s predictions for the DGA with LRS

class align closely with the actual values and are concentrated in these specific areas.
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Figure 4.5: Banjori Dataset 2D scatter

5. The 3D scatter graph provides a comprehensive visualization of the model’s perfor-

mance across different DGA classes in the Murofetweekly Dataset. The distribution

of points in the three-dimensional space offers a more detailed representation of

the model’s accuracy in predicting and classifying instances of Original, DGA with

Noise, and DGA with LRS classes, facilitating a more nuanced interpretation and

potential refinement of the model for enhanced performance.

The 3D scatter graph results of the Murofetweekly Dataset in Figure 4.6 offer a

multidimensional perspective on the model’s predictions and actual values. In this

visualization, the Single Circle Blue object representing the Actual Original class

is situated near grid location 5 by -55. The position of this object in the three-

dimensional space suggests that the model effectively recognizes instances of the

Original DGA class, as it converges around this specific coordinate.

Additionally, the graph illustrates the positioning of Actual DGAs with Noise as
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green circles, forming a cluster near the left side of the grid. The three-dimensional

nature of the plot allows for a more nuanced understanding of the distribution of

these points, providing insights into the model’s accuracy in identifying instances of

the DGA with Noise class.

Furthermore, Actual DGAs with LRS are observed on the right side of the grid as

orange circles, forming multiple striations from the top right to the bottom center.

The three-dimensional scatter plot captures the spatial arrangement of these points,

indicating that the model’s predictions for the DGA with LRS class closely align

with the actual values and are concentrated in specific areas.

Figure 4.6: Banjori Dataset 3D Scatter

4.1.2.2 Dnschanger Dataset

Tables 4.4 through 4.6 present example dataset creation from the Dnschanger dataset

categorized into three classes: LRS Modified (Class 1) and Noise Modified (Class
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2). The ”Initial Domains” column denotes the original domain names, ”Modified

Domains” indicates the intentionally modified versions, and ”Class” represents the

respective class assignment. Various feature metrics, including DLD, Normalized

DLD, Entropy, Compressed, Similarity, Smith-Waterman Similarity, Euclidean Dis-

tance, and Jaccard Similarity, offer insights into the characteristics of each example.

In the LRS Modified class, DLD values range from 7 to 10, indicating the number

of edit operations needed for transformation. Normalized DLD is between 0.5 and

0.714, maintaining a consistent scale. Entropy values span from 2.92 to 3.38, re-

flecting varying degrees of unpredictability. Compression ranges from 2.43 to 2.82,

indicating differences in compressibility. Similarity and Smith-Waterman Similarity

metrics range from 38 to 55 and 0.71 to 1.36, respectively. Euclidean Distance spans

from 88.17 to 101.509, and Jaccard Similarity ranges from 0.368 to 0.538. In the

Noise Modified class, DLD values are consistently 1 or 2, indicating minimal edit

operations. Normalized DLD is low at 0.071 or 0.143, maintaining a standardized

scale. Entropy values vary from 2.85 to 3.32, with Compression consistently at 2.43.

Similarity and Smith-Waterman Similarity metrics are uniformly high at 79 to 93

and 1.07 to 1.21, respectively. Euclidean Distance is between 1.414 and 1.732, and

Jaccard Similarity ranges from 0.769 to 0.923. Comparing the LRS Modified and

Noise Modified classes, variations in DLD, Normalized DLD, and Euclidean Dis-

tance values indicate intentional modifications in the LRS Modified examples, while

the Noise Modified examples demonstrate intentional character substitutions. Both

classes exhibit varying degrees of unpredictability (Entropy) and compressibility

(Compression). The numerical insights from these tables contribute to the under-

standing and classification of Domain Generation Algorithms within the Dnschanger

dataset.
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Table 4.4: Dnschanger Dataset LRS Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

duyvxjbzhq.com tehfhzrky.com 1 10 0.714 3.32 2.54 40 0.86 98.919 0.368
upxkxxvebm.com eihhfts.com 1 10 0.714 2.85 2.82 45 0.93 88.983 0.312
csixhvdhcj.com scxhxftyr.com 1 7 0.5 2.92 2.54 54 1.36 93.979 0.467
xonzhsspmk.com hjxccaz.com 1 10 0.714 3.12 2.82 48 1.21 98.737 0.538
phqghumeay.com xwxetph.com 1 10 0.714 3.12 2.82 48 1.00 87.373 0.467
lnlfdxfirc.com vthvxcr.com 1 8 0.571 2.92 2.82 55 0.71 95.979 0.429
vscxggbwkf.com fcrhwwrfzw.com 1 9 0.643 3.12 2.43 50 1.29 50.636 0.4
nqduxwfnfo.com auehgvw.com 1 9 0.643 2.92 2.82 55 1.07 94.91 0.375
zvsrtkjpre.com jfbbdzact.com 1 10 0.714 3.12 2.54 38 1.14 88.17 0.412
tsslaueptm.com dcbqeuae.com 1 9 0.643 2.92 2.67 50 0.71 101.509 0.5

Table 4.5: Dnschanger Dataset Noise Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

duyvxjbzhq.com duyvyjbzhq.com 2 1 0.071 3.32 2.43 93 1.07 1.0 0.929
upxkxxvebm.com upxkyywebm.com 2 3 0.214 2.85 2.43 79 1.21 1.732 0.769
csixhvdhcj.com ctixhvdhcj.com 2 1 0.071 2.92 2.43 93 1.07 1.0 0.833
xonzhsspmk.com xonzisspmk.com 2 1 0.071 3.12 2.43 93 1.07 1.0 0.833
phqghumeay.com piqghumeay.com 2 1 0.071 3.12 2.43 93 1.07 1.0 0.923
lnlfdxfirc.com mnlfdyfirc.com 2 2 0.143 2.92 2.43 86 1.00 1.414 0.833
vscxggbwkf.com vscyggbwkf.com 2 1 0.071 3.12 2.43 93 1.07 1.0 0.846
nqduxwfnfo.com nqduxxfnfp.com 2 2 0.143 2.92 2.43 86 1.14 1.414 0.833
zvsrtkjpre.com zvsrtkkpre.com 2 1 0.071 3.12 2.43 93 1.07 1.0 0.923
tsslaueptm.com tttlaueptm.com 2 2 0.143 2.92 2.43 86 1.00 1.414 0.909

Table 4.6: Dnschanger Dataset Original Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

duyvxjbzhq.com duyvxjbzhq.com 0 0 0.0 3.32 2.43 100 1.00 0.0 1.0
upxkxxvebm.com upxkxxvebm.com 0 0 0.0 2.85 2.43 100 1.00 0.0 1.0
csixhvdhcj.com csixhvdhcj.com 0 0 0.0 2.92 2.43 100 1.00 0.0 1.0
xonzhsspmk.com xonzhsspmk.com 0 0 0.0 3.12 2.43 100 1.00 0.0 1.0
phqghumeay.com phqghumeay.com 0 0 0.0 3.12 2.43 100 1.00 0.0 1.0
lnlfdxfirc.com lnlfdxfirc.com 0 0 0.0 2.92 2.43 100 1.00 0.0 1.0
vscxggbwkf.com vscxggbwkf.com 0 0 0.0 3.12 2.43 100 1.00 0.0 1.0
nqduxwfnfo.com nqduxwfnfo.com 0 0 0.0 2.92 2.43 100 1.00 0.0 1.0
zvsrtkjpre.com zvsrtkjpre.com 0 0 0.0 3.12 2.43 100 1.00 0.0 1.0
tsslaueptm.com tsslaueptm.com 0 0 0.0 2.92 2.43 100 1.00 0.0 1.0

1. Training Accuracy/Loss and Validation Performance: In Figure 4.7, The outcomes

observed in the training and validation phases of the dnschanger dataset shed light

on the performance dynamics of the model. In the training phase, the accuracy ini-

tiates at approximately 60 percent and progressively matures to reach 100 percent

over the course of 50 epochs. Concurrently, the training loss undergoes a healthy

decline, commencing at 90 percent and gradually reducing to near zero percent by

the 50th epoch. Turning attention to the validation phase, the accuracy experi-

ences a gradual increase, starting at 60 percent and steadily advancing to nearly
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100 percent by the 10th epoch. In parallel, the validation loss shows a continuous

decrease, starting around 70 percent and diminishing to zero by the 50th epoch.

These patterns collectively signify that the model, during both training and valida-

tion, exhibits robust learning behavior. It not only attains high accuracy but also

effectively minimizes loss, indicating its capability to generalize well to new data

and optimize performance over the specified epochs.

Figure 4.7: Dnschanger Dataset Training Loss & Accuracy / Validation Loss & Accuracy

2. Confusion Matrix: The Dnschanger dataset analysis reveals in Figure 4.8 a struc-

tured methodology for handling data, where each initial class begins with 750 lines

of data organized within a CSV file. A deliberate allocation of approximately 80

percent, or 600 lines, is dedicated to training, while the remaining 20 percent, com-

prising 150 lines, is earmarked for validation. Assessing the model’s performance on

the validation set demonstrates a commendable recognition rate for different classes.

The ”Original DGA” class is successfully identified in 591 instances, mirroring the

accurate recognition of 591 instances for the ”DGA with LRS” class. Moreover,

the ”DGA with Noise” class showcases effective recognition, tallying up to 618 in-

stances. These outcomes underscore the model’s capability to accurately classify

instances across various categories within the Dnschanger dataset. The meticulous

allocation of data for training and validation, coupled with the model’s precision in

recognizing specific classes, emphasizes its adeptness in generalizing to new, unseen
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data and discerning intricate patterns within the dataset.

Figure 4.8: Dnschanger Dataset Confusion Matrix

3. F1-Score and ROC Curve:

The remarkable F1 Score and ROC Curve results showcased in Figures 4.9 and

4.10 for the Dnschanger dataset can be primarily attributed to the dataset’s spe-

cific characteristics. In this case, the strings being compared are relatively short,

approximately 10 alphanumeric characters in length. Additionally, the strings are

constructed from a limited set of 36 options per character.

The concise length of the strings ensures that the model can effectively capture

and learn intricate patterns within a manageable context. Moreover, the restricted

character space facilitates the model’s ability to discern and exploit the inherent

structure of the dataset. These factors collectively contribute to the model’s excep-

tional performance, reflected in the high F1 Score and ROC Curve metrics.
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Figure 4.9: Dnschanger Dataset F1 Score

Figure 4.10: Dnschanger Dataset ROC Curve

The 2D scatter graph Figure 4.11 visualization of the Dnschanger dataset reveals
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distinctive patterns and clusters that provide insights into different types of DNS

activities. A single circle in purple, positioned near grid coordinates -3 to -35, likely

represents actual original data points indicative of non-malicious or benign DNS

behavior. On the left side of the grid, two diagonal rolls of yellow boxes annotated

as noise suggest instances of Domain Generation Algorithms (DGAs) with added

noise, exhibiting a discernible pattern. In contrast, on the right side of the grid,

multiple rows of actual and predicted DGAs with LRS modifications are organized,

leading from the center to the right corner. This arrangement implies a systematic

and structured behavior associated with DGAs employing LRS.

Figure 4.11: Dnschanger Dataset 2D Scatter

The 3D scatter graph visualization of the Dnschanger dataset presents a distinct

pattern in its results. A single blue circle, positioned in the grid near coordinates -3,

2 to -35, signifies actual original data points, likely associated with unmodified orig-

inal DNS behavior. On the left side of the grid, there is a loose grouping of 11 green
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circles annotated as Actual and Predicted DGAs with noise. This suggests instances

of Domain Generation Algorithms (DGAs) exhibiting less structured patterns and

potentially representing a lower level of sophistication or noise in the DNS data.

Conversely, on the right side of the grid, there are multiple rows of organized orange

circles denoting Actual and Predicted DGAs with LRS. This organized distribution

implies a more systematic and sophisticated pattern in the DNS activities, possibly

indicating a higher level of complexity and intentional design.

Figure 4.12: Dnschanger Dataset 3D Scatter

4.1.2.3 Dyre Dataset

The Dyre dataset tables illustrate examples categorized into three classes: LRS Modified

(Class 1), Noise Modified (Class 2), and Original (Class 0). Each table provides details on

Initial Domains, Modified Domains, Class assignment, DLD, NDL, Entropy, Compressed,

Similarity, Smith-Waterman Similarity, Euclidean Distance, and Jaccard Similarity.

In the LRS Modified class, DLD values range from 34, indicating a significant number
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of edit operations required for transformation. Normalized DLD is consistently high at

0.919, reflecting the intentional modifications. Entropy ranges from 3.36 to 3.82, repre-

senting varying degrees of unpredictability. Compression values span from 1.54 to 2.38,

indicating differences in compressibility. Similarity and Smith-Waterman Similarity met-

rics vary from 12 to 23 and 0.08, respectively. Euclidean Distance ranges from 161.09 to

219.854, and Jaccard Similarity ranges from 0.091 to 0.15.

In the Noise Modified class, DLD values are considerably lower, ranging from 2 to 5,

indicating fewer edit operations and intentional character substitutions. Normalized DLD

is also lower, varying from 0.054 to 0.135. Entropy values range from 3.36 to 3.82, with

Compression consistently at 1.54. Similarity and Smith-Waterman Similarity metrics are

uniformly high at 86 to 95 and 1.08 to 1.14, respectively. Euclidean Distance ranges from

1.414 to 2.236, and Jaccard Similarity varies from 0.842 to 1.0.

In the Original class, DLD values are consistently 0, indicating no edit operations. Nor-

malized DLD is 0, and other metrics, including Entropy, Compression, Similarity, Smith-

Waterman Similarity, Euclidean Distance, and Jaccard Similarity, are at their maximum

values, indicating identical Initial and Modified Domains.

Comparing the LRS Modified, Noise Modified, and Original classes, it is evident that

the LRS Modified class intentionally involves more complex modifications, resulting in

higher DLD and varied similarity metrics. The Noise Modified class exhibits intentional

character substitutions with lower DLD and consistent high similarity metrics. The Orig-

inal class represents unchanged domains with maximum similarity values. These insights

aid in understanding the characteristics and intentional modifications within the Dyre

dataset examples.

65



Table 4.7: Dyre Dataset LRS Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

b1ca5eebd8e0eb8ea6b61eaccbde527c26.ws rrquusuuurupruqsrstts.ws 1 34 0.919 3.36 1.79 12 0.08 195.614 0.15
cdca364b71f0c8506d60eb2939f4b806d9.to strqsvsuurvru.to 1 34 0.919 3.82 2.25 19 0.08 185.898 0.125
da3a681bc68fc6db334d1586061fe6731f.in tqqsrwstruwuw.in 1 34 0.919 3.56 2.25 19 0.08 161.09 0.13
ecca14cc3f5be1d665cbe8992beddc6c2d.hk usrqsrwsutssusuutssu.hk 1 34 0.919 3.52 1.70 13 0.08 208.658 0.13
fe25f54a057217ce7ecdefe7bf325b0202.cn vuvpsutsuuvuswr.cn 1 34 0.919 3.44 2.11 17 0.08 219.854 0.136
g6854f4c620415e06da72aa3275786a6e3.tk wvruuqqqqt.tk 1 34 0.919 3.72 2.38 23 0.08 188.085 0.13
h012e83eedf219925d9e6b3b4ee7f6788b.so xuttuvutrrtuvs.so 1 34 0.919 3.72 2.06 18 0.08 208.394 0.13
ifcf29747fe797d6db94bb4a286777fc94.cc yvrvwutusrrqvs.cc 1 34 0.919 3.43 2.18 18 0.08 191.937 0.091
j3df872db55a3bf2ec78fc54ff85680903.ws zuvusprvtrvsww.ws 1 34 0.919 3.78 2.18 18 0.08 195.097 0.12
kca9453145112cbeb12d512aefb49c0a63.to spsrusuqtwrsq.to 1 34 0.919 3.73 2.25 19 0.08 211.097 0.125

Table 4.8: Dyre Dataset Noise Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

b1ca5eebd8e0eb8ea6b61eaccbde527c26.ws c1ca6eebd8e1eb8ea6b61eacdbde537c26.ws 2 5 0.135 3.36 1.54 86 1.08 2.236 0.875
cdca364b71f0c8506d60eb2939f4b806d9.to cdca364c71f0c8506d60fb2939f4b806e9.to 2 3 0.081 3.82 1.54 92 1.08 1.732 1.0
da3a681bc68fc6db334d1586061fe6731f.in da3a781bd68gc6db334d1596061ff6731f.in 2 5 0.135 3.56 1.54 86 1.14 2.236 0.842
ecca14cc3f5be1d665cbe8992beddc6c2d.hk ecca14cc3f5ce1e665cbf8992ceddc7c2d.hk 2 5 0.135 3.52 1.54 86 1.14 2.236 0.944
fe25f54a057217ce7ecdefe7bf325b0202.cn fe25f54a057217ce7ecdefe8cf325b0202.cn 2 2 0.054 3.44 1.54 95 1.05 1.414 0.938
g6854f4c620415e06da72aa3275786a6e3.tk g6855f4c620425e06da72aa3285886a6e3.tk 2 4 0.108 3.72 1.54 89 1.11 2.0 0.944
h012e83eedf219925d9e6b3b4ee7f6788b.so h012e84eeef219925d9e6b3b4fe7f6788b.so 2 3 0.081 3.72 1.54 92 1.08 1.732 1.0
ifcf29747fe797d6db94bb4a286777fc94.cc ifcf29747fe797d6db94cb4a386777fc94.cc 2 2 0.054 3.43 1.54 95 1.05 1.414 0.933
j3df872db55a3bf2ec78fc54ff85680903.ws j3df873db65a3bf2ec79fc54ff85681903.ws 2 4 0.108 3.78 1.54 89 1.11 2.0 0.95
kca9453145112cbeb12d512aefb49c0a63.to kca9453145212cbeb12d512aefb40c0a63.to 2 2 0.054 3.73 1.54 95 1.05 9.055 1.0

Table 4.9: Dyre Dataset Original Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

b1ca5eebd8e0eb8ea6b61eaccbde527c26.ws b1ca5eebd8e0eb8ea6b61eaccbde527c26.ws 0 0 0.0 3.36 1.54 100 1.00 0.0 1.0
cdca364b71f0c8506d60eb2939f4b806d9.to cdca364b71f0c8506d60eb2939f4b806d9.to 0 0 0.0 3.82 1.49 100 1.00 0.0 1.0
da3a681bc68fc6db334d1586061fe6731f.in da3a681bc68fc6db334d1586061fe6731f.in 0 0 0.0 3.56 1.54 100 1.00 0.0 1.0
ecca14cc3f5be1d665cbe8992beddc6c2d.hk ecca14cc3f5be1d665cbe8992beddc6c2d.hk 0 0 0.0 3.52 1.54 100 1.00 0.0 1.0
fe25f54a057217ce7ecdefe7bf325b0202.cn fe25f54a057217ce7ecdefe7bf325b0202.cn 0 0 0.0 3.44 1.54 100 1.00 0.0 1.0
g6854f4c620415e06da72aa3275786a6e3.tk g6854f4c620415e06da72aa3275786a6e3.tk 0 0 0.0 3.72 1.54 100 1.00 0.0 1.0
h012e83eedf219925d9e6b3b4ee7f6788b.so h012e83eedf219925d9e6b3b4ee7f6788b.so 0 0 0.0 3.72 1.54 100 1.00 0.0 1.0
ifcf29747fe797d6db94bb4a286777fc94.cc ifcf29747fe797d6db94bb4a286777fc94.cc 0 0 0.0 3.43 1.54 100 1.00 0.0 1.0
j3df872db55a3bf2ec78fc54ff85680903.ws j3df872db55a3bf2ec78fc54ff85680903.ws 0 0 0.0 3.78 1.54 100 1.00 0.0 1.0
kca9453145112cbeb12d512aefb49c0a63.to kca9453145112cbeb12d512aefb49c0a63.to 0 0 0.0 3.73 1.54 100 1.00 0.0 1.0

1. Accuracy and Loss/Training and Validation Performance: The analysis of the Dyre

dataset in Figure 4.13 yields valuable insights into the model’s performance during

training and validation phases. In the training phase, the accuracy commences at

approximately 50 percent and robustly evolves to reach 100 percent over the span

of 50 epochs. Simultaneously, the training loss demonstrates a healthy decline,

initiating around 100 percent and steadily reducing to near zero percent by the

50th epoch. Shifting focus to the validation phase, the accuracy exhibits sporadic

increments, starting at 60 percent and sporadically surging to nearly 100 percent by

the 50th epoch. Concurrently, the validation loss experiences a gradual decrease,

starting around 75 percent and steadily diminishing to zero by the 50th epoch. These

patterns suggest that the model effectively learns from the Dyre dataset during the
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training phase, achieving a high level of accuracy and minimizing loss. The sporadic

increases in validation accuracy may indicate some variability in performance, while

the steady decrease in validation loss underscores the model’s ability to generalize

well and optimize its performance over the specified epochs.

Figure 4.13: Dyre Dataset Training Loss & Accuracy / Validation Loss & Accuracy

2. Confusion Matrix: The Dyre Dataset results reveal in Figure 4.14 insightful out-

comes from the classification model trained on initial classes, each comprising 750

lines of data within a CSV file. The dataset was partitioned into training and

validation sets, with approximately 80% (600 lines) allocated for training and the

remaining 20% (150 lines) for validation. Notably, the original DGA (Domain Gen-

eration Algorithm) class demonstrated high recognition, successfully identifying 609

instances. Similarly, the DGA with LRS (Long Range Dependencies and Syntactic

Structures) class exhibited strong performance, recognizing 607 instances effectively.

However, the DGA with Noise class displayed slightly lower recognition, successfully

identifying 584 instances. These results suggest that the model’s proficiency varies

across different DGA classes, with the original DGA and DGA with LRS classes

achieving higher accuracy compared to the DGA with Noise class. Further analysis

and refinement of the model may be warranted to enhance its overall performance
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and address specific challenges posed by distinct DGA classes.

Figure 4.14: Dyre Dataset Confusion Matrix

3. F1 Score and ROC Curve: The exceptional F1 Score and ROC Curve results de-

picted in Figures 4.15 and 4.16 for the Dyre dataset can be attributed to specific

characteristics inherent in the dataset. In this case, the strings being compared are

notably longer, approximately 34 alphanumeric characters in length. Additionally,

each character in the strings is chosen from a set of 36 options.

The extended length of the strings introduces a higher degree of complexity to the

dataset, allowing the model to discern intricate patterns within a more extensive

context. The expansive character space further challenges the model to generalize

its learning across a diverse set of possibilities for each character. These factors

collectively contribute to the model’s exceptional performance, resulting in high F1

Score and ROC Curve metrics.
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Figure 4.15: Dyre Dataset F1 Score

Figure 4.16: Dyre Dataset ROC Curve

re
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4.1.2.4 Gameover Dataset

The Gameover dataset tables 4.10 through 4.12 showcase examples classified into

three classes: LRS Modification (Class 1), Noise Modification (Class 2), and Orig-

inal (Class 0). Each table includes details on Initial Domains, Modified Domains,

Class assignment, DLD, NDL, Entropy, Compressed, Similarity, Smith-Waterman

Similarity, Euclidean Distance, and Jaccard Similarity. In the LRS Modification

class, DLD values range from 22 to 27, signifying a notable number of edit opera-

tions in transforming the domains. Normalized DLD is relatively high, ranging from

0.742 to 0.871. Entropy varies from 3.87 to 4.28, indicating diverse levels of unpre-

dictability. Compression values are consistently between 2.05 and 3.00. Similarity

and Smith-Waterman Similarity metrics range from 28 to 40 and 0.13 to 1.10, re-

spectively. Euclidean Distance varies from 117.013 to 194.7, and Jaccard Similarity

ranges from 0.167 to 0.435. In the Noise Modification class, DLD values are notably

lower, ranging from 1 to 3, indicating fewer edit operations and character substitu-

tions. Normalized DLD is lower, varying from 0.032 to 0.103. Entropy values range

from 3.87 to 4.28, and Compression is consistently at 1.62 to 1.69. Similarity and

Smith-Waterman Similarity metrics are uniformly high at 90 to 97 and 1.03 to 1.10,

respectively. Euclidean Distance ranges from 1.0 to 35.355, and Jaccard Similar-

ity varies from 0.905 to 1.0. In the Original class, DLD values are consistently 0,

indicating no edit operations. Normalized DLD is 0, and other metrics, including

Entropy, Compression, Similarity, Smith-Waterman Similarity, Euclidean Distance,

and Jaccard Similarity, are at their maximum values, indicating identical Initial

and Modified Domains. Comparing the LRS Modification, Noise Modification, and

Original classes, it is evident that the LRS Modification class involves more com-

plex modifications, resulting in higher DLD and varied similarity metrics. The Noise

Modification class exhibits intentional character substitutions with lower DLD and
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consistent high similarity metrics. The Original class represents unchanged domains

with maximum similarity values. These insights provide an understanding of the

characteristics and intentional modifications within the Gameover dataset examples.

Table 4.10: Gameover Dataset LRS Modification Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity
1yjm9lf1qwhr9m2bpdtlvsapzj.net ivfxcraudfcqk.net 1 23 0.767 4.24 2.18 35 1.07 142.51 0.357
54olr41q8dd1y19k60201437kdm.biz butizu.biz 1 27 0.871 3.96 3.00 40 0.13 117.013 0.167
1gnvxty16g64ali7mxrx1cmjbnh.org wfhdivqyibiszsx.org 1 25 0.806 4.11 2.05 32 1.10 145.172 0.37
15hg6yw1j60hxt1priykgo7q6f5.com ywigyhdcxizwaw.com 1 23 0.742 4.11 2.11 33 1.10 162.539 0.4
1psuzh79jgo8a1cv9fk316uj2sm.net bejxvqsfwezb.net 1 25 0.806 4.28 2.25 38 0.52 129.314 0.31
10qeett454mt92r7widvztieo.org uuddebfxtgjdyu.org 1 22 0.759 3.97 2.11 33 1.10 194.7 0.269
14rwyc115c6tzw19cy2oj129xvh4.net cgisrejgrhzigx.net 1 26 0.812 3.87 2.11 39 0.84 152.039 0.435
1hmaw3k18byc08t5j2rm1i6t8ri.com xqgsirdbydcy.com 1 25 0.806 4.11 2.25 38 0.77 149.359 0.308
yuv2u8djz40i1qo58wq1yz5a8z.org iegetkxafaijqk.org 1 24 0.8 3.95 2.11 28 0.80 165.641 0.32
4l15waaqjxg71x122evpc4deq.biz gqqiwhtfastu.biz 1 24 0.828 3.97 2.25 31 1.00 151.291 0.308

Table 4.11: Gameover Dataset Noise Modification Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity
1yjm9lf1qwhr9m2bpdtlvsapzj.net 1yjm9lg1qwhr9m2bqdtlvsapzj.net 2 2 0.067 4.24 1.67 93 1.07 1.414 0.917
54olr41q8dd1y19k60201437kdm.biz 54olr41q8dd1y19k60301537ldm.biz 2 3 0.097 3.96 1.65 90 1.10 1.732 0.955
1gnvxty16g64ali7mxrx1cmjbnh.org 1hovxty16g64ali7mxrx1cmjbnh.org 2 2 0.065 4.11 1.65 94 1.06 1.414 1.0
15hg6yw1j60hxt1priykgo7q6f5.com 15hh6zw1j60hxt1priykgo7q6f5.com 2 2 0.065 4.11 1.65 94 1.06 1.414 0.957
1psuzh79jgo8a1cv9fk316uj2sm.net 1psuzh79jho8a1cv9fk316uj2sm.net 2 1 0.032 4.28 1.65 97 1.03 1.0 0.96
10qeett454mt92r7widvztieo.org 11qeeut454mt02r7widvztieo.org 2 3 0.103 3.97 1.69 90 1.07 9.11 0.905
14rwyc115c6tzw19cy2oj129xvh4.net 14rwyc115c6tzw10cy2oj129xvh4.net 2 1 0.031 3.87 1.62 97 1.03 9.0 0.952
1hmaw3k18byc08t5j2rm1i6t8ri.com 1hmaw3k18byc08t5j2rm2i6t8ri.com 2 1 0.032 4.11 1.65 97 1.03 1.0 1.0
yuv2u8djz40i1qo58wq1yz5a8z.org yuv2u8djz40i1qo58wq1ya5a8a.org 2 2 0.067 3.95 1.67 93 1.07 35.355 1.0
4l15waaqjxg71x122evpc4deq.biz 4l15waaqjxg71x123evqc4deq.biz 2 2 0.069 3.97 1.69 93 1.07 1.414 0.909

Table 4.12: Gameover Dataset Original Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity
1yjm9lf1qwhr9m2bpdtlvsapzj.net 1yjm9lf1qwhr9m2bpdtlvsapzj.net 0 0 0.0 4.24 1.67 100 1.00 0.0 1.0
54olr41q8dd1y19k60201437kdm.biz 54olr41q8dd1y19k60201437kdm.biz 0 0 0.0 3.96 1.65 100 1.00 0.0 1.0
1gnvxty16g64ali7mxrx1cmjbnh.org 1gnvxty16g64ali7mxrx1cmjbnh.org 0 0 0.0 4.11 1.65 100 1.00 0.0 1.0
15hg6yw1j60hxt1priykgo7q6f5.com 15hg6yw1j60hxt1priykgo7q6f5.com 0 0 0.0 4.11 1.65 100 1.00 0.0 1.0
1psuzh79jgo8a1cv9fk316uj2sm.net 1psuzh79jgo8a1cv9fk316uj2sm.net 0 0 0.0 4.28 1.65 100 1.00 0.0 1.0
10qeett454mt92r7widvztieo.org 10qeett454mt92r7widvztieo.org 0 0 0.0 3.97 1.69 100 1.00 0.0 1.0
14rwyc115c6tzw19cy2oj129xvh4.net 14rwyc115c6tzw19cy2oj129xvh4.net 0 0 0.0 3.87 1.62 100 1.00 0.0 1.0
1hmaw3k18byc08t5j2rm1i6t8ri.com 1hmaw3k18byc08t5j2rm1i6t8ri.com 0 0 0.0 4.11 1.65 100 1.00 0.0 1.0
yuv2u8djz40i1qo58wq1yz5a8z.org yuv2u8djz40i1qo58wq1yz5a8z.org 0 0 0.0 3.95 1.67 100 1.00 0.0 1.0
4l15waaqjxg71x122evpc4deq.biz 4l15waaqjxg71x122evpc4deq.biz 0 0 0.0 3.97 1.69 100 1.00 0.0 1.0

1. Accuracy and Loss/Training and Validation Performance: An examination of the

Gameover dataset results in Figure 4.17 provides valuable insights into the model’s

performance throughout the training and validation phases. In the training phase,

the accuracy initiates at approximately 55 percent and robustly increases, reaching

a perfect 100 percent by the 50th epoch. Concurrently, the training loss undergoes

a healthy decline, starting around 95 percent and gradually reducing to near zero

percent over the 50 epochs. Transitioning to the validation phase, the accuracy dis-

plays sporadic increments, starting at 63 percent and occasionally surging to nearly
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100 percent by the 50th epoch. Simultaneously, the validation loss experiences a

gradual decrease, starting around 75 percent and steadily diminishing to zero by

the 50th epoch. These observed patterns suggest that the model effectively learns

from the Gameover dataset during the training phase, achieving high accuracy and

minimizing loss. The sporadic increases in validation accuracy may indicate some

variability in performance, while the steady decrease in validation loss emphasizes

the model’s capability to generalize well and optimize its performance throughout

the specified epochs.

Figure 4.17: Gameover Dataset Training Loss & Accuracy / Validation Loss & Accuracy

2. Confusion Matrix: The results obtained from the Gameover Dataset shed light on

the performance of a classification model trained on initial classes, each consisting

of 750 lines of data in a CSV file. The dataset was meticulously split, allocating

around 80% (600 lines) for training and reserving the remaining 20% (150 lines)

for validation. Notably, the original DGA (Domain Generation Algorithm) class

exhibited robust recognition, successfully identifying 613 instances. Similarly, the

DGA with LRS (Long Range Dependencies and Syntactic Structures) class demon-

strated a commendable performance, recognizing 606 instances effectively. However,

the DGA with Noise class displayed a slightly lower recognition rate, successfully

identifying 581 instances. These results imply varying levels of proficiency within

the model across different DGA classes. The original DGA and DGA with LRS
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classes showcased higher accuracy compared to the DGA with Noise class, prompt-

ing further analysis and potential refinement of the model to optimize its overall

performance and address specific challenges posed by individual DGA classes.

Figure 4.18: Gameover Dataset Confusion Matrix

3. F1 Score and ROC Curve: The remarkable F1 Score and ROC Curve results illus-

trated in Figures 4.19 and 4.20 for the Gameover dataset can be elucidated by the

specific characteristics intrinsic to the dataset. In this instance, the strings undergo-

ing comparison are notably longer, each comprising approximately 34 alphanumeric

characters. Additionally, every character in these strings is selected from a set of 36

possible options.

The extended length of the strings introduces a heightened level of complexity to the

dataset, challenging the model to discern intricate patterns within a more extensive

context. Moreover, the expansive character space intensifies the model’s task by

requiring it to generalize its learning across a diverse set of possibilities for each

character. These combined factors contribute to the exceptional performance of the
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model, resulting in elevated F1 Score and ROC Curve metrics.

Figure 4.19: Gameover Dataset F1 Score

Figure 4.20: Gameover Dataset ROC Curve
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The 2D scatter graph results for the Gameover dataset offer a visual representation

that aids in understanding the distinct patterns and characteristics of different DNS

activities within the dataset. A single purple circle, denoted as the Actual Original,

is located near grid coordinates -53, -3, representing benign DNS behavior. On the

left side of the grid, three long strands of yellow boxes are annotated as Actual and

Predicted DGAs with noise. This arrangement suggests instances of Domain Gener-

ation Algorithms (DGAs) exhibiting less structured or potentially noisy patterns in

the DNS data. The scattered and elongated nature of these yellow boxes indicates

a lack of a well-defined pattern or regularity in the DNS activities associated with

DGAs featuring noise.

On the right side of the grid, blue Xs are positioned in a left-to-right loose swarm

diagonal pattern, representing Actual and Predicted DGAs with Long Range Depen-

dencies (LRS). This pattern suggests a more organized and intentional structure in

the DNS behaviors associated with DGAs with LRS modifications. The loose swarm

diagonal arrangement implies a certain level of complexity and intentional design in

the DNS activities.

In summary, the 2D scatter graph provides a clear visual separation of different

DNS behaviors within the Gameover dataset, enabling the identification of patterns

associated with noise and LRS in the context of DGAs.
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Figure 4.21: Gameover Dataset 2D Scatter

The 3D scatter graph Figure 4.22 results for the Gameover dataset provide a com-

prehensive view of the DNS activities, revealing distinct patterns and characteristics

associated with different types of behaviors. A single blue circle, representing the

Actual Original, is positioned near grid coordinates 0, -1, indicating benign DNS

behavior. On the left side of the grid, there is a loose grouping of two rows of

clustered green circles, annotated as Actual and Predicted DGAs with noise. This

arrangement suggests instances of Domain Generation Algorithms (DGAs) that ex-

hibit less structured or potentially noisy patterns in the DNS data. The clustered

nature of the green circles implies a concentration of DNS activities associated with

DGAs featuring noise, showcasing a distinctive pattern in the left region of the grid.

On the right side of the grid, there is a large vertical cluster of orange circles, de-

noted as Actual and Predicted DGAs with Long Range Dependencies (LRS). This

arrangement suggests a more organized and intentional structure in the DNS behav-
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iors associated with DGAs with LRS modifications. The vertical cluster indicates a

concentration of DNS activities with specific characteristics associated with DGAs

that exhibit Long Range Dependencies.

In summary, the 3D scatter graph provides a comprehensive visualization of DNS

behaviors within the Gameover dataset, effectively highlighting the separation of

patterns associated with noise and LRSs in the context of DGAs.

Figure 4.22: Gameover Dataset 3D Scatter

4.1.2.5 Murofetweekly Dataset

The Murofetweekly dataset tables 4.13 through 4.15 provide insights into three

classes: LRS Modified (Class 1), Noise Modified (Class 2), and Original (Class

0). Each table contains information on Initial Domains, Modified Domains, Class

assignment, DLD, NDL, Entropy, Compressed, Similarity, Smith-Waterman Simi-

larity, Euclidean Distance, and Jaccard Similarity. In the LRS Modified class, DLD

77



values range from 31 to 39, indicating a moderate to high number of edit operations

in transforming the domains. Normalized DLD varies from 0.738 to 0.886. Entropy

ranges from 4.26 to 4.63, reflecting diverse levels of unpredictability. Compression

values consistently fall between 1.41 and 1.95. Similarity and Smith-Waterman

Similarity metrics range from 26 to 38 and 0.11 to 1.24, respectively. Euclidean

Distance varies from 151.539 to 193.822, and Jaccard Similarity ranges from 0.273

to 0.429. In the Noise Modified class, DLD values are notably lower, ranging from

2 to 8, indicating fewer edit operations and character substitutions. Normalized

DLD is lower, varying from 0.049 to 0.19. Entropy values range from 4.26 to 4.63,

and Compression is consistently at 1.41 to 1.95. Similarity and Smith-Waterman

Similarity metrics are uniformly high at 81 to 95 and 1.02 to 1.19, respectively.

Euclidean Distance ranges from 1.414 to 9.381, and Jaccard Similarity varies from

0.8 to 0.966. In the Original class, DLD values are consistently 0, indicating no

edit operations. Normalized DLD is 0, and other metrics, including Entropy, Com-

pression, Similarity, Smith-Waterman Similarity, Euclidean Distance, and Jaccard

Similarity, are at their maximum values, indicating identical Initial and Modified

Domains. Comparing the LRS Modified, Noise Modified, and Original classes, it is

evident that the LRS Modified class involves more complex modifications, resulting

in higher DLD and varied similarity metrics. The Noise Modified class exhibits

intentional character substitutions with lower DLD and consistent high similarity

metrics. The Original class represents unchanged domains with maximum simi-

larity values. These insights provide an understanding of the characteristics and

intentional modifications within the Murofetweekly dataset examples.
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Table 4.13: Murofetweekly Dataset LRS Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

ovpzl48k57fvhycrcscuatosp42c39n50jxhx.com fajzvgxisbrbsdqdcarhyi.com 1 32 0.78 4.56 1.77 35 1.12 153.935 0.424
mzbtfza57bygzbrl28d60a57o41d20drowc19h14.net jsdvjqsivjrbtqutbfsy.net 1 39 0.886 4.45 1.83 26 1.07 151.539 0.273
ouoso31aymwp62l38dsmwi65j16f42hxiuj66or.org ecphgaucgywxhxdzc.org 1 35 0.814 4.32 1.95 29 1.00 159.54 0.429
f32mriyl68lskteydxe61jvg33p12o21psmso11.info vbyibduiuiuzfwabb.info 1 37 0.841 4.26 1.82 27 0.11 162.398 0.276
c39e41dqhznzo11m49gqbudyhym69bqgqpzl58.biz sutykkwretiyhrawaj.biz 1 36 0.857 4.29 1.91 32 0.83 173.11 0.258
m59a67huhta27cziskybuixlsb38h64iuaql28.ru qxdyeqsjybziseyhbsxydpa.ru 1 32 0.78 4.38 1.77 38 0.80 163.003 0.414
c19gwcukvh54gyftk37dxowl68gqe51bumwd30.com swgsezgywivdzuhgwurdgu.com 1 31 0.738 4.63 1.77 38 1.12 188.457 0.375
bto21oynrn50dyhypsn60oya27nufvjtewhv.info rdictixiabiqdvfzdtfxg.info 1 32 0.78 4.32 1.77 31 1.20 181.538 0.367
ivfzoudun10o61budzi65d10i25mug33prgxk47.org yfwjetdreukytxewacwiz.org 1 37 0.86 4.36 1.80 29 0.79 193.822 0.355
l18htaxktcyitfxn30puguc39i55ete31fvj46.biz xdqhzerixdvhdwesxuduwf.biz 1 34 0.81 4.49 1.77 27 1.24 157.487 0.303

Table 4.14: Murofetweekly Dataset Noise Modified Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

ovpzl48k57fvhycrcscuatosp42c39n50jxhx.com pvpzl48k67fvhycrcscuatosp42c49n50jxhx.com 2 3 0.073 4.56 1.49 93 1.02 1.732 0.931
mzbtfza57bygzbrl28d60a57o41d20drowc19h14.net mzbufza57bygzbrl28d60a67o51d30drowc19h14.net 2 4 0.091 4.45 1.45 91 1.09 2.0 0.931
ouoso31aymwp62l38dsmwi65j16f42hxiuj66or.org ouoso31azmwp62l38dsmwi65j16f52hyiuj66or.org 2 3 0.07 4.32 1.47 93 1.07 1.732 0.885
f32mriyl68lskteydxe61jvg33p12o21psmso11.info f32nsiyl68lsktezdye61jvg33p12o21psnso21.info 2 6 0.136 4.26 1.41 86 1.14 2.449 0.84
c39e41dqhznzo11m49gqbudyhym69bqgqpzl58.biz c49f41dqhznzo11m49grbueyhym60cqgrpzl68.biz 2 8 0.19 4.29 1.48 81 1.19 9.381 0.815
m59a67huhta27cziskybuixlsb38h64iuaql28.ru m59a67huhta27cziskybuixmsb38h65iuaql28.ru 2 2 0.049 4.38 1.49 95 1.05 1.414 0.96
c19gwcukvh54gyftk37dxowl68gqe51bumwd30.com c29gwcvkvh54gyftk47dxowl68gqe51bumxd30.com 2 4 0.095 4.63 1.48 90 1.10 2.0 0.966
bto21oynrn50dyhypsn60oya27nufvjtewhv.info bto21ozoro60dyhypsn60oya27nufvjtexhw.info 2 6 0.146 4.32 1.49 85 1.15 2.449 0.889
ivfzoudun10o61budzi65d10i25mug33prgxk47.org ivgzoueun10o61budzi65d10i25mug43prgxk48.org 2 4 0.093 4.36 1.47 91 1.09 2.0 0.846
l18htaxktcyitfxn30puguc39i55ete31fvj46.biz m19htaxktcyitfxn30puguc39i55ete31fvj57.biz 2 4 0.095 4.49 1.48 90 1.05 2.0 0.8

Table 4.15: Murofetweekly Dataset Original Example
Initial Modified Class DLD Normalized Entropy Compressed Similarity Smith Waterman Euclidean Jaccard
Domains Domains Similarity Distance Similarity

ovpzl48k57fvhycrcscuatosp42c39n50jxhx.com ovpzl48k57fvhycrcscuatosp42c39n50jxhx.com 0 0 0.0 4.56 1.49 100 1.00 0.0 1.0
mzbtfza57bygzbrl28d60a57o41d20drowc19h14.net mzbtfza57bygzbrl28d60a57o41d20drowc19h14.net 0 0 0.0 4.45 1.41 100 1.00 0.0 1.0
ouoso31aymwp62l38dsmwi65j16f42hxiuj66or.org ouoso31aymwp62l38dsmwi65j16f42hxiuj66or.org 0 0 0.0 4.32 1.47 100 1.00 0.0 1.0
f32mriyl68lskteydxe61jvg33p12o21psmso11.info f32mriyl68lskteydxe61jvg33p12o21psmso11.info 0 0 0.0 4.26 1.45 100 1.00 0.0 1.0
c39e41dqhznzo11m49gqbudyhym69bqgqpzl58.biz c39e41dqhznzo11m49gqbudyhym69bqgqpzl58.biz 0 0 0.0 4.29 1.48 100 1.00 0.0 1.0
m59a67huhta27cziskybuixlsb38h64iuaql28.ru m59a67huhta27cziskybuixlsb38h64iuaql28.ru 0 0 0.0 4.38 1.49 100 1.00 0.0 1.0
c19gwcukvh54gyftk37dxowl68gqe51bumwd30.com c19gwcukvh54gyftk37dxowl68gqe51bumwd30.com 0 0 0.0 4.63 1.48 100 1.00 0.0 1.0
bto21oynrn50dyhypsn60oya27nufvjtewhv.info bto21oynrn50dyhypsn60oya27nufvjtewhv.info 0 0 0.0 4.32 1.49 100 1.00 0.0 1.0
ivfzoudun10o61budzi65d10i25mug33prgxk47.org ivfzoudun10o61budzi65d10i25mug33prgxk47.org 0 0 0.0 4.36 1.47 100 1.00 0.0 1.0
l18htaxktcyitfxn30puguc39i55ete31fvj46.biz l18htaxktcyitfxn30puguc39i55ete31fvj46.biz 0 0 0.0 4.49 1.48 100 1.00 0.0 1.0

1. Accuracy and Loss/Training and Validation Performance: The outcomes from the

analysis of the Murofetweekly dataset unveil in Figure 4.23 significant trends in

the model’s performance across the training and validation phases. In the training

phase, the accuracy initiates at approximately 55 percent and undergoes a healthy

growth, eventually achieving a perfect 100 percent by the 50th epoch. Concurrently,

the training loss demonstrates a robust decline, commencing around 95 percent and

gradually reducing to near zero percent over the course of 50 epochs.

Shifting focus to the validation phase, the accuracy displays a dynamic pattern.

It sporadically increases from an initial 95 percent, experiences some fluctuations

until about epoch 10, and then consistently progresses to reach nearly 100 percent

accuracy by the 50th epoch. Simultaneously, the validation loss exhibits a gradual
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decrease, starting around 75 percent and steadily diminishing to zero by the 50th

epoch.

These findings collectively suggest that the model effectively learns from the Muro-

fetweekly dataset during the training phase, achieving a substantial increase in ac-

curacy while minimizing loss. The sporadic increments in validation accuracy may

indicate some variability in performance during the early stages, but the model

stabilizes and consistently improves over time. The gradual decrease in validation

loss underscores the model’s ability to generalize well to new data and optimize its

overall performance throughout the specified 50 epochs.

Figure 4.23: Murofetweekly Dataset Training Loss & Accuracy / Validation Loss & Ac-
curacy

2. Confusion Matrix: The results from the Murofetweekly Dataset offer insights into

the performance of a classification model trained on initial classes, each comprising

750 lines of data within a CSV file. The dataset was systematically partitioned,

with approximately 80% (600 lines) allocated for training and the remaining 20%

(150 lines) reserved for validation. Notably, the original DGA (Domain Generation

Algorithm) class demonstrated a solid performance, successfully recognizing 600 in-

stances. Similarly, the DGA with LRS (Long Range Dependencies and Syntactic

Structures) class displayed commendable recognition, successfully identifying 588

instances. Intriguingly, the DGA with Noise class outperformed the others, achiev-
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ing the highest recognition with 612 instances successfully identified. These results

suggest that the model exhibits varying levels of proficiency across different DGA

classes. While the original DGA and DGA with LRS classes showed robust per-

formance, the DGA with Noise class surpassed them, indicating potential nuances

in the characteristics of the datasets. Further analysis and refinement may be nec-

essary to optimize the model’s accuracy and address specific challenges posed by

distinct DGA classes within the Murofetweekly Dataset.

Figure 4.24: Murofetweekly Dataset Confusion Matrix

3. F1 Score and ROC Curve: The impressive F1 Score and ROC Curve results de-

picted in Figures 4.25 and 4.26 for the Murofetweekly dataset can be attributed to

the unique characteristics of the dataset itself. In this scenario, the strings subjected

to comparison are notably longer, ranging approximately between 31 to 39 alphanu-

meric characters. Furthermore, each character in these strings is chosen from a set

of 36 possible options.

The increased length of the strings introduces a heightened level of complexity to the
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dataset, challenging the model to discern intricate patterns within a more extensive

context. Moreover, the expansive character space intensifies the model’s task by

requiring it to generalize its learning across a diverse set of possibilities for each

character. These combined factors contribute to the exceptional performance of the

model, resulting in elevated F1 Score and ROC Curve metrics.

Figure 4.25: Murofetweekly Dataset F1 Score

4. ROC Curve: Review the Receiver Operating Characteristic (ROC) curve to assess

the trade-off between true and false positive rates. AUC (Area Under the Curve)

can quantify the model’s discriminative ability.
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Figure 4.26: Murofetweekly Dataset ROC Curve

The 2D scatter graph Figure 4.27 results for the MurofetWeekly dataset showcase

distinct patterns and clusters, aiding in the interpretation of various DNS activities.

A single purple circle, situated near grid coordinates -55, -3, represents actual orig-

inal data points associated with DNS behavior. On the left side of the grid, three

long strands of yellow boxes, annotated as Actual and Predicted DGAs with noise,

suggest instances of Domain Generation Algorithms (DGAs) exhibiting less struc-

tured patterns or possibly noise in the DNS data. Conversely, on the right side of

the grid, a series of blue Xs, denoting Actual and Predicted DGAs with Long Range

Dependencies (LRS), are arranged in a left-to-right swarm diagonal pattern. This

organized distribution implies a more systematic and sophisticated pattern in the

DNS activities, potentially indicating a higher level of complexity and intentional

design. The visual representation of the MurofetWeekly dataset through this scat-

ter graph facilitates the identification and differentiation of various DNS behaviors,

enabling further analysis of distinct patterns associated with different types of DNS
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activities.

Figure 4.27: Murofetweekly Dataset 2D Scatter

The 3D scatter graph Figure 4.27 results for the MurofetWeekly dataset provide a

comprehensive visualization of different DNS activities, allowing for a nuanced un-

derstanding of the dataset’s characteristics. A single blue circle positioned near grid

coordinates 0, -1 represents actual original data points associated with benign DNS

behavior. On the left side of the grid, a loose grouping of green circles, annotated

as Actual and Predicted DGAs with noise, forms two rows, suggesting instances

of Domain Generation Algorithms (DGAs) exhibiting less structured or potentially

noisy patterns in the DNS data.

On the right side of the grid, a large vertical cluster of orange circles, denoting Ac-

tual and Predicted DGAs with LRS, indicates a distinct and organized pattern in

the DNS activities. This clustered arrangement suggests a higher level of complex-

ity and intentional design in the DNS behaviors associated with DGAs featuring
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LRSs. Overall, the 3D scatter graph provides a visual representation that facilitates

the identification and differentiation of various DNS behaviors within the Muro-

fetWeekly dataset, offering valuable insights into the nature and structure of DNS

activities associated with differences between DGAs with no modifications and ones

with noise or LRS modifications.

Figure 4.28: Murofetweekly Dataset 3D Scatter
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Table 4.16: Datasets Reviewed

Dataset Class Precision Recall F1-Score Support

Banjori

Original DGA = 0 1.00 1.00 1.00 596
DGA with LRS = 1 1.00 1.00 1.00 597
DGA with Noise = 2 1.00 1.00 1.00 607

Accuracy 1.00 1800
Macro Avg 1.00 1.00 1.00 1800
Weight Avg 1.00 1.00 1.00 1800

Dnschanger

Original DGA = 0 1.00 1.00 1.00 591
DGA with LRS = 1 1.00 1.00 1.00 591
DGA with Noise = 2 1.00 1.00 1.00 618

Accuracy 1.00 1800
Macro Avg 1.00 1.00 1.00 1800
Weight Avg 1.00 1.00 1.00 1800

Dyre

Original DGA = 0 1.00 1.00 1.00 609
DGA with LRS = 1 1.00 1.00 1.00 607
DGA with Noise = 2 1.00 1.00 1.00 584

Accuracy 1.00 1800
Macro Avg 1.00 1.00 1.00 1800
Weight Avg 1.00 1.00 1.00 1800

Gameover

Original DGA = 0 1.00 1.00 1.00 613
DGA with LRS = 1 1.00 1.00 1.00 606
DGA with Noise = 2 1.00 1.00 1.00 581

Accuracy 1.00 1800
Macro Avg 1.00 1.00 1.00 1800
Weight Avg 1.00 1.00 1.00 1800

Murfetweekly

Original DGA = 0 1.00 1.00 1.00 600
DGA with LRS = 1 1.00 1.00 1.00 588
DGA with Noise = 2 1.00 1.00 1.00 612

Accuracy 1.00 1800
Macro Avg 1.00 1.00 1.00 1800
Weight Avg 1.00 1.00 1.00 1800
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Table 4.17: Classification Reports by Accuracy
DGA Original DGA = 0 DGA with LRS = 1 DGA with Noise = 2 Data
Datasets Accuracy Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Size
bamital 1 1 1 1 1 1 1 1 1 1 1800
banjori 1 1 1 1 1 1 1 1 1 1 1800
bedep 1 1 1 1 1 1 1 1 1 1 1800
beebone 1 1 1 1 1 1 1 1 1 1 501
blackhole 1 1 1 1 1 1 1 1 1 1 1800
bobax 1 1 1 1 1 1 1 1 1 1 1800
chinad 1 1 1 1 1 1 1 1 1 1 1800
conficker 1 1 1 1 1 1 1 1 1 1 1800
corebot 1 1 1 1 1 1 1 1 1 1 1800
diamondfox 1 1 1 1 1 1 1 1 1 1 1800
dircrypt 1 1 1 1 1 1 1 1 1 1 1800
dnschanger 1 1 1 1 1 1 1 1 1 1 1800
downloader 1 1 1 1 1 1 1 1 1 1 285
dyre 1 1 1 1 1 1 1 1 1 1 1800
ebury 1 1 1 1 1 1 1 1 1 1 1800
ekforward 1 1 1 1 1 1 1 1 1 1 1800
emotet 1 1 1 1 1 1 1 1 1 1 1800
fobber 1 1 1 1 1 1 1 1 1 1 1800
gameover 1 1 1 1 1 1 1 1 1 1 1800
gameoverp2p 1 1 1 1 1 1 1 1 1 1 1800
gozi 1 1 1 1 1 1 1 1 1 1 1800
goznym 1 1 1 1 1 1 1 1 1 1 871
locky 1 1 1 1 1 1 1 1 1 1 1800
matsnu 1 1 1 1 1 1 1 1 1 1 1800
mirai 1 1 1 1 1 1 1 1 1 1 1800
modpack 1 1 1 1 1 1 1 1 1 1 1024
murofet 1 1 1 1 1 1 1 1 1 1 1800
murofetweekly 1 1 1 1 1 1 1 1 1 1 1800
mydoom 1 1 1 1 1 1 1 1 1 1 1800
necurs 1 1 1 1 1 1 1 1 1 1 1800
nymaim 1 1 1 1 1 1 1 1 1 1 1800
nymaim2 1 1 1 1 1 1 1 1 1 1 1800
padcrypt 1 1 1 1 1 1 1 1 1 1 1800
pandabanker 1 1 1 1 1 1 1 1 1 1 1800
pitou 1 1 1 1 1 1 1 1 1 1 1800
proslikefan 1 1 1 1 1 1 1 1 1 1 1800
pushdo 1 1 1 1 1 1 1 1 1 1 1800
pushdotid 1 1 1 1 1 1 1 1 1 1 1800
pykspa 1 1 1 1 1 1 1 1 1 1 1800
pykspa2 1 1 1 1 1 1 1 1 1 1 1800
qadars 1 1 1 1 1 1 1 1 1 1 1800
qakbot 1 1 1 1 1 1 1 1 1 1 1800
qsnatch 1 1 1 1 1 1 1 1 1 1 1800
ramdo 1 1 1 1 1 1 1 1 1 1 1800
ramnit 1 1 1 1 1 1 1 1 1 1 1800
ranbyus 1 1 1 1 1 1 1 1 1 1 1800
rovnix 1 1 1 1 1 1 1 1 1 1 1800
sedhgUKM9 1 1 1 1 1 1 1 1 1 1 1800
shifu 1 1 1 1 1 1 1 1 1 1 1800
simda 1 1 1 1 1 1 1 1 1 1 1800
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Table 4.18: Classification Reports by Accuracy Continued
DGA Original DGA = 0 DGA with LRS = 1 DGA with Noise = 2 Data
Datasets Accuracy Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Size
sisron 1 1 1 1 1 1 1 1 1 1 1800
sphinx 1 1 1 1 1 1 1 1 1 1 1800
suppobox 1 1 1 1 1 1 1 1 1 1 1800
sutra 1 1 1 1 1 1 1 1 1 1 1800
symmi 1 1 1 1 1 1 1 1 1 1 1800
szribi 1 1 1 1 1 1 1 1 1 1 1800
tempedrevetdd 1 1 1 1 1 1 1 1 1 1 1800
tinba 1 1 1 1 1 1 1 1 1 1 1800
tofsee 1 1 1 1 1 1 1 1 1 1 1800
torpig 1 1 1 1 1 1 1 1 1 1 1800
ud2 1 1 1 1 1 1 1 1 1 1 1800
vawtrak 1 1 1 1 1 1 1 1 1 1 1800
vidro 1 1 1 1 1 1 1 1 1 1 1800
vidrotid 1 1 1 1 1 1 1 1 1 1 1800
virut 1 1 1 1 1 1 1 1 1 1 1800
wd 1 1 1 1 1 1 1 1 1 1 1800
xxhex 1 1 1 1 1 1 1 1 1 1 1800
madmax 0.99 1 1 1 0.98 1 0.99 1 0.98 0.99 1149
makloader 0.99 0.96 1 0.98 1 1 1 1 0.96 0.99 1226
feodo 0.92 0.79 1 0.88 1 1 1 1 0.77 0.87 458
ud4 0.89 0.75 1 0.86 1 1 1 1 0.66 0.79 237
volatilecedar 0.88 0.74 1 0.85 1 1 1 1 0.65 0.79 1192
Avg 0.995 0.989 1 0.994 1 1 1 1 0.986 0.992 1671

88



Chapter 5

Conclusion

5.1 Contributions

This section covers contributions thorough evaluation of Domain Generating Algorithm

(DGA) datasets, analyzing their performance in various scenarios. Notably, consistent

high accuracy and robust metrics are observed, with resilience to challenges in specific

datasets. The subsequent section distills key lessons in cybersecurity, highlighting the

dynamic evolution of malware tactics and the crucial role of adaptive defense against Do-

main Generating Algorithms (DGAs), facilitated by machine learning. The dissertation

outlines future research directions, including multi-classifications of LRS-modified DGAs,

variations in LRS starting points, assessments of different LRS versions, and visual identi-

fication through 2D modeling and neural networks. The dissertation provides insights into

cybersecurity challenges and charts a roadmap for future research and defense strategies.

The contributions within this research extend to the application of specific techniques,

including DLD and NDL feature creation, including noise and LRS obfuscation, which

further enhance the robustness and effectiveness of the models in combating Domain

Generating Algorithm (DGA) challenges.

Within the domain of natural language processing tasks, the utilization of DLD and

NDL features emerges as the optimal choice for feedforward neural networks, mainly when

tasked with discerning modifications within Domain Generating Algorithms (DGAs).

These features excel by offering a robust framework to measure sequence similarity, taking

into account a comprehensive set of operations, including insertions, deletions, substitu-

89



tions, and crucially, transpositions of adjacent characters. Their superiority is particularly

evident in their adeptness at detecting transpositions, a nuanced evasion strategy often

employed by DGAs to mimic legitimate domains. The inclusion of DL Normalization fur-

ther solidifies their prowess by enhancing the comparability of strings, especially crucial

when handling varied string lengths. The adaptability of these features in accommodat-

ing the diverse modifications inherent in DGA-generated domains establishes them as the

best choice, fortified by their historical success in diverse applications. Their effectiveness,

validated over time, makes a compelling case for their superiority, offering a comprehen-

sive solution for identifying patterns within DGAs and underscoring their indispensability

in the realm of neural network-based analysis.

Employing noise and Linear Recursive Sequence (LRS) obfuscation techniques within

the context of Feedforward Neural Networks for training on Domain Generating Algo-

rithms (DGAs) offers the best and most effective strategy. Noise injection involves in-

troducing random variations to the input data, and when applied to DGAs, it enhances

the network’s resilience against overfitting by introducing variability into the training

set. This is crucial when dealing with DGAs, as they often exhibit diverse patterns

and generate domains with subtle variations. The inclusion of noise aids in creating a

more generalized model that can better adapt to the dynamic nature of DGA-generated

domains.

Linear Recursive Sequence obfuscation involves utilizing mathematical functions to

generate sequences, adding an additional layer of complexity to the input data. In the

context of DGAs, LRS obfuscation introduces a controlled form of complexity that mimics

the unpredictable nature of algorithmically generated domains. This enhances the net-

work’s ability to capture intricate patterns and improves its robustness against adversarial

attacks that may attempt to exploit identifiable patterns within the data.

Incorporating noise and LRS obfuscation within the training process enables feedfor-

ward neural networks to learn more effectively from diverse and complex DGA datasets.

90



These techniques contribute to the model’s adaptability, generalization, and resistance to

overfitting, making them well-suited for training on DGAs where variability and obfus-

cation are inherent challenges. The synergy between these techniques and feedforward

neural networks reinforces the model’s capacity to discern subtle modifications within the

domains generated by DGAs, ultimately leading to a more robust and accurate detection

system.

5.1.1 Final Results

This section provides detailed insights into the classification results for various Domain

Generation Algorithm (DGA) datasets. The tables present comprehensive metrics, in-

cluding accuracy, precision, recall, and F1-score, which thoroughly evaluate the model’s

performance on different DGAs. The classification reports are categorized by DGA type,

with each table focusing on a specific DGA variation. Three variations in classes are

considered: Original DGA (0), DGA with Long Range Sequences (LRS) (1), and DGA

with Noise (2). Each dataset’s performance is assessed across these DGA variations.

Tables include datasets like bamital, dyre, gameover, and others, evaluated under

different DGA scenarios. These results provide valuable insights into the model’s efficacy

in distinguishing benign and malicious domains across diverse DGA patterns.

The table comprehensively assesses the performance metrics for various Domain Gener-

ation Algorithm (DGA) datasets. Each dataset undergoes evaluation under three distinct

scenarios: original DGA, DGA with (LRS), and DGA with Noise. The metrics considered

include Accuracy, Precision, Recall, and F1-Score. Across the board, the datasets gener-

ally demonstrate high accuracy, ranging from 0.89 to a perfect score of 1. This indicates

the effectiveness of the models in correctly categorizing domains generated by DGAs.

Precision, Recall, and F1-Score consistently exhibit commendable values, reflecting the

robustness of the models’ performance. Most of the datasets achieve flawless accuracy in

all scenarios, highlighting exceptional model accuracy. Conversely, datasets like ’Omexo’
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or ’Volatilecedar’ exhibit lower precision, recall, and F1-Score values, suggesting potential

challenges in accurate classification for these instances due to domain name issues and

dataset sample size. As the datasets progress further down the table and decrease in

size, the accuracy decreases. Noteworthy is the models’ ability to maintain consistent

performance across scenarios, including DGA with LRS and DGA with Noise, underscor-

ing their resilience to variations introduced by long-range dependencies and noise in the

datasets. In summary, the outcomes presented in the table underscore the overall strength

of the models in effectively classifying DGA domains, with observed challenges in specific

datasets mitigated by the models’ adaptability to variations.

5.2 Lessons Learned

5.2.1 Understanding the Evolution of Malware Tactics

Recognizing the historical context of Domain Generating Algorithms (DGAs) is crucial.

The evolution from static blacklists to dynamic, dynamically generated domains highlights

the adaptability of malicious actors in response to cybersecurity measures.

5.2.2 Sophistication of Malicious Software

Malware strains like Conficker, Emotet, and GameOverZeus showcase the multifaceted

capabilities of malicious software. Understanding their persistence, propagation methods,

and adaptability is vital for developing effective defense strategies.

5.2.3 Cat-and-Mouse Game in Cybersecurity

The dynamic evolution of Domain Generation Algorithms (DGAs) underscores the crucial

need for cybersecurity professionals to adopt adaptive and proactive defense mechanisms.

The ongoing cat-and-mouse game between defenders and attackers emphasizes the impor-
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tance of continuous vigilance to stay ahead of rapidly evolving tactics. Traditional static

security measures are insufficient in countering the sophistication of modern cyber threats,

particularly those leveraging DGAs. To effectively mitigate risks, organizations must em-

brace agile security strategies, incorporating advanced threat intelligence, machine learn-

ing, and artificial intelligence for real-time threat detection and response. Additionally,

fostering collaboration and information-sharing within the cybersecurity community is

essential to create a unified defense against the ever-changing tactics employed by cyber

adversaries.

5.2.4 Challenges in DGA Defense

Protecting against DGAs involves addressing challenges such as the dynamic and evolv-

ing nature of DGAs, the large number of potential domains, algorithm variability, fast

flux networks, false positives, encryption, tunneling, and resource-intensive analysis. A

comprehensive defense requires a multi-faceted approach.

5.2.5 Role of Machine Learning

Machine learning, particularly Feedforward Neural Networks (FNNs), plays a pivotal role

in combating DGAs. ML models, trained on extensive datasets, can effectively discern

patterns and anomalies in domain generation, contributing to enhanced threat detection.

5.2.6 Complexity of Linear Recursive Sequences (LRS)

Linear Recursive Sequences (LRS) introduce complexity to DGAs, posing challenges in

detection. Understanding the mathematical properties and behaviors of LRS-based DGAs

is crucial for developing advanced defense strategies.
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5.2.7 Interdisciplinary Applications of LRSs

Linear Recursive Sequences find applications in various fields, including computer sci-

ence, signal processing, and cryptography. Recognizing their interdisciplinary significance

provides a broader perspective on their implications in the context of cybersecurity.

5.2.8 Machine Learning Challenges and Future Directions

Acknowledging challenges in machine learning, such as model interpretability, bias, and

ethical considerations, highlights the ongoing need for research to address these issues.

Responsible deployment and continuous improvement are essential in leveraging machine

learning effectively.

5.2.9 Versatility of Feedforward Neural Networks

FNNs, as universal approximators, demonstrate versatility across many different applica-

tions, including pattern recognition, image processing, and natural language understand-

ing. Their simplicity and effectiveness contribute to their widespread use in machine

learning.

5.2.10 Ongoing Evolution in Cybersecurity Practices

The dynamic nature of cyber threats, as exemplified by evolving DGAs, emphasizes the

need for ongoing research and adaptation in cybersecurity practices. Staying informed

about emerging tactics and technologies is critical for effective defense.
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5.3 Future Work

5.3.1 2D FNN Modeling

Another avenue for exploration involves extending the identification of Linear Recursive

Sequences (LRS) modified Domain Generating Algorithms (DGAs) by incorporating vi-

sual identification through 2D modeling and neural networks. Leveraging advanced neural

network architectures for visual pattern recognition, particularly in 2D modeling, could

provide a novel approach to discerning subtle variations in LRS-modified DGAs. This

entails exploring the use of Convolutional Neural Networks (CNNs) or similar visual pro-

cessing models to analyze patterns in the representation of DGAs. By visualizing the

modifications introduced by LRS in a 2D space, the neural network could potentially

uncover distinct visual signatures associated with these modifications. This interdisci-

plinary approach, combining mathematical sequence analysis with visual pattern recog-

nition through neural networks, can enhance the accuracy and efficiency of identifying

LRS-modified DGAs, contributing to the continuous evolution of cybersecurity defense

mechanisms.
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