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ABSTRACT

Internet of Things (IoT) is commonly utilized in domestic and industrial environments

to automate various tasks. Due to this, an enormous amount of data is being generated

and transmitted through IoT networks. These data may contain sensitive information

depending on the context. Access control is one of the frontline security measures that any

information system should adopt. The dynamic nature of the IoT requires access control

policies should be able to adapt to their environments. However, it is very challenging

to specify access control policies manually because of their dynamic nature. Current

literature suggests the need for automating the process of policy generation. Machine

Learning and Deep Learning techniques can enable the required automation. The main

objective of this dissertation is to answer the following research questions: 1) How can we

self-generate contextual access control policies for the Internet of Things during unforeseen

situations? 2) What are the existing challenges while specifying dynamic policies for

access control in IoT? 3) How realistic are the generated access control policies to be used

in real-time situations? In this research, we proposed a mixed-method approach where

we implemented and evaluated two baseline Tabular Generative Adversarial Network

models. We evaluated the performance of the solution using two datasets, namely the

CAV Policies and Amazon Access Logs datasets. We obtained different perspectives

based on our experiments. The common findings that our results demonstrate are that

the models were able to generate synthetic access control policies by training from the

datasets, and the models were able to learn the background knowledge specified during

training to generate policies without any constraint violation.
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Chapter 1

Introduction

1.1 Internet of Things and IAM

Internet of Things (IoT) provides many conveniences to users in domestic and industrial

environments. Statista estimated that 75 billion devices would be connected to the Inter-

net worldwide by 2025 [1]. Security and privacy are two major concerns revolving around

the IoT. IoT device manufacturers and service providers are required by regulations to

ensure the security of the devices, thereby protecting the users’ privacy.

Identity and Access Management (IAM) is one of the most important services in

security and a prime module in implementing security for any IoT application [2], [3].

Imagine a car manufacturer that sells smart cars to its customers. The manufacturer

must design the vehicle’s system in a way that it constantly collects and processes data

from its surrounding environment through sensors embedded in the vehicle. The system

might occasionally transmit the collected data to the manufacturer via the Internet. The

data may contain the driver’s personal information and sensitive information such as

locations. The data that is being sent and shared with the manufacturer should be

accessed by authorized users only. Furthermore, appropriate controls must be placed on

the shared data if the manufacturer facilitates remote start functions for vehicle owners.

Access control provides the desired service to protect against unauthorized use of ac-

cessible resources. Traditional access control techniques are being adopted or extended for
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access provisioning and management for the IoT. However, the design and implementation

of access control for the IoT are complicated. IoT networks include devices with different

hardware and software configurations. Their heterogeneous nature raises a considerable

challenge for any access control solution. In addition, IoT devices are resource-constrained

devices with limited memory, computation power, and battery [4]. The constrained re-

sources on the IoT devices limit the use of complex algorithms when designing an access

control solution. Further, IoT networks have encountered major attacks in recent years on

a global scale [5]–[7]. Governments of many countries have already initiated to formulate

policies for IoT devices. Hence, an appropriate access control solution is required for any

IoT network.

1.2 Statement of the Problem

Access control policies provide the specifications at a higher level as to which subject has

access to what resources in a given context. Traditional approaches such as Discretionary

Access Control (DAC), Role-Based Access Control (RBAC) with static policies are not

suitable for such dynamic and heterogenous environments. Attribute-Based Access Con-

trol (ABAC) is considered as one of the most suitable models due to its expressiveness

by supporting the use of multiple attributes. However, ABAC is still not considered as a

completely dynamic model due to static policies.

Access control policies should be able to adapt to its environment for IoT systems.

Calo et. al. [8] suggests the need for dynamic access control in which the system should

be able to generate policies by itself according to the varying contexts. Machine Learning

(ML) and Deep Learning (DL) models are being utilized in order to realize the required

automation at policy level.

Consider a smart city platform where various types of IoT devices are connected to

a network and operated at scale. In a case of a smart street light system, it is expected
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that multiple players, such as, device manufacturers, municipality, smart city solution

providers, all interoperate with the devices at varying situations. Situations shall be the

access to maintenance data by the manufacturer, access to statistical data by the mu-

nicipality, collection, and storage of real time sensor data by solution provider, access

to device information by the devices gateway etc. For an autonomous vehicle, varying

situations such as, driver requesting autonomous mode for a particular time period, driv-

ing system requesting access to location information, driving system is unable to access

the policy repository etc. In addition to those discussed above, there may be use cases

where a policy may not exist for a given situation. In such dynamic situations, it will be

expected that the system generates its own policies. Automated policy generation could

be considered to overcome the challenges. In automated policy generation, the high-level

policies required to administer a system are generated by a set of processes without the

need for manual input. In IoT systems, automated policy generation has benefits in terms

of scalability and flexibility by eliminating the need for a human administrator to specify

the policies. Calo and Cunnington introduced various scenarios where dynamic genera-

tion of policies are required [8], [9]. They used Answer Set Grammar and inductive logic

programming to generate policies.

To sum up, the traditional access control models mentioned above utilize static poli-

cies and are not suitable for IoT environments. The challenge in creating and enforcing

adaptive and contextual access control policies for IoT, particularly in unforeseen situa-

tions still exists, and the scope to propose novel solutions to self-generate the policies is

wide open.

On the other hand, we posit that the generated policies should adhere to the system

and environmental requirements. IoT devices and systems are used to automate various

physical processes. Hence, the access control policies should not only conform to the

technical security requirements, but also consider the physical safety of the environment.

Let us consider a situation where a policy states to turn water sprinkler on when a smoke
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is detected. At the same time, if there is another policy to turn the water valve off

when moisture is detected, then these two rules are not only contradicting, but they will

also cause violation to physical safety. There are many IoT platforms nowadays such as

IFTTT, OpenHAB, Zapier takes policies as input in the form of natural languages and

then convert them into their respective symbolic representations. Also, [9] states a future

scenario where a driver in an autonomous vehicle can communicate with a driving system

through a natural language interface. With this, there are many tools proposed in the

academic literature that analyze these natural language policies. Recently, [10] performed

a survey of tools that performed security and safety verification of IoT systems. In

another work, [11] discusses the challenges related to the quality of access control policies.

However, the models that generate access control policies should be able to learn the

requirements and generate policies that conform to these requirements.

1.3 Objective of this Dissertation

To overcome the challenges presented in the previous section, the main research questions

this dissertation will address is,

• RQ1: What are the existing challenges while specifying dynamic policies

for access control in IoT?

• RQ2: How can we self-generate contextual access control policies for the

internet of things during unforeseen situations?

• RQ3: How realistic are the generated access control policies to be used

in real-time situations?

To this end, we propose that Tabular Generative Adversarial Networks shall be used

for the automated generation of access control policies. We will utilize two datasets
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that are publicly available to experiment and evaluate our approach. Hence, the specific

objectives of this dissertation are as follows:

• Answer RQ1 by conducting an extensive survey of the literature to identify the

challenges while specifying dynamic policies for access control in IoT.

• Explore the potential of Tabular Generative Adversarial Networks (GANs) to gen-

erate access control policies.

• Answer RQ2 by implementing the baseline Tabular GANs and compare them with

other existing solutions in the literature.

• Answer RQ3 by evaluating the generated access control policy data against the

requirements specified during the model learning process.

1.4 Outline of this Dissertation

This dissertation is organized as follows. Chapter 1 provides a general introduction about

Internet of Things and Identity & Access Management, statement of the problem, and

objective of this dissertation. In Chapter 2, we performed a comprehensive survey of

existing literature on access control in IoT. Chapter 3 discusses the methodology we

adopt for this research, the datasets we use, and our experimentation strategy. Chapter

4 describes our results and analysis. Chapter 5 provides a discussion on the significance

of our approach and the limitations of the research. Chapter 6 concludes the dissertation

and discusses the scope for future work.
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Chapter 2

Literature Review

This chapter conducts a comprehensive survey of access control in the IoT, including access

control requirements, authorization architecture, access control models, access control

policies, access control research challenges, and future directions. A few survey articles

discuss IoT access control [12]–[14]. However, none of them discuss the issues regarding

IoT access control policies. The key contributions of the chapter are summarized as

follows.

• The latest development of the access control in the IoT is provided to understand

the recent progress on the access control.

• Access control requirements are discussed to help design and implement access con-

trol solutions for effective IoT IAM.

• Three major access control authorization architectures, namely, policy-based eXten-

sible Access Control Markup Language (XACML), token-based Open Authorization

(OAuth), and hybrid User-Managed Access (UMA) architectures are discussed and

their essential components are briefly summarized.

• We have compared different IoT access control models, including discretionary ac-

cess control, role-based access control, organization-based access control, usage-

based access control, capability-based access control, attribute-based access control,
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blockchain-based access control, and relationship-based access control to facilitate

the adoption of access control solutions.

• Access control policies such as dynamic policies specification are thoroughly dis-

cussed and challenges faced by the current solutions are highlighted.

• To guide future research in access control, we have summarized the research chal-

lenges in access control and also pointed out future research directions in the IoT.

The remainder of this chapter is organized as follows: Section 2.1 presents an overview

of access control in IoT. Section 2.2 summarizes the requirements for access control in

IoT. Section 2.3 focuses on authorization issues in access control, followed by discussions

of access control models and policies in Section 2.4 and 2.5, respectively. Section 2.6

discusses the challenges in access control in IoT.

2.1 Access Control in IoT

IoT interconnects computing devices embedded in everyday objects. IoT has been widely

adopted in consumer and business environments to bring convenience and facilitate busi-

ness processes. Due to the large amount of data IoT collects and the sensitivity of the

data, IoT security is critical.

2.1.1 Identity and Access Management

IAM is at the core of security in the IoT and coming up with an effective IAM solution

designed and developed for the IoT is an important step [15], [16]. Unfortunately, there

is no well-defined and established standard for the IAM in the IoT. Different manufac-

turers have developed their solutions to identify, provision, authenticate, and authorize

their devices. As a result, IoT systems from different manufacturers are not able to com-

municate with each other and thus are not able to take advantage of capabilities already
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available in other devices. Even if the manufacturers agree to use the same IAM system to

manage their devices for better interoperability, there are challenges to identifying such

an IAM system. The current IAM systems focus on managing users, not the devices.

The solutions for user authentication are very mature. However, the solutions for device

authentication are still in development. Further, the scale of the devices to be supported

in the IoT is also far more than the number of users an IAM system supports in a typical

enterprise network.

2.1.2 Communication Models

The Internet Architecture Board (IAB), which oversees the development and growth of the

Internet, published RFC 7452 in March of 2015. RFC 7452 outlined four communication

models for IoT devices: (1) device-to-device model; (2) device-to-gateway; (3) device-to-

cloud; and (4) backend data sharing.

In a device-to-device communication model, two devices directly connect and com-

municate with each other rather than through an intermediary. Communications are

often conducted through a wireless network using protocols like Bluetooth or ZigBee.

The device-to-device communication model is often suitable for home automation sys-

tems such as thermostats, smartwatches, and light bulbs where the packet size is small,

and the data throughput is relatively low.

In a device-to-gateway model, IoT devices access cloud services using intermediate

gateways. Although gateway devices may come in many different forms, they serve the

same purposes, i.e., aggregating received data, bridging the gaps between devices using

different communication protocols, implementing security, and forwarding data to the

cloud. In some cases, a gateway device may relay the data to another gateway which will

then forward the data to the cloud.

In a device-to-cloud model, customers build and devise rules to filter data generated

from IoT devices and take actions accordingly through cloud computing services. For
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example, Microsoft Power BI is a cloud service that gives non-technical users the ability

to analyze and visualize data generated by IoT devices. As the IoT devices continuously

generate data and transmit the data to the cloud, network congestion may occur. The

network traffic should be monitored constantly, and appropriate settings and actions

should be taken to avoid lagging data throughput.

IoT devices often upload data to a particular cloud service provider, leading to data

silos where data is isolated from other applications. A backend data-sharing model extends

the device-to-cloud communication model. It prevents data silos by allowing the generated

data to be shared among trusted parties. The backend data-sharing model also allows

a user to export, aggregate, and analyze data generated from IoT devices from other

applications.

2.1.3 Identities of Things

IAM systems focus on managing the identities of users. The IoT requires extending

identity management to include devices. Identities of Things (IDoT), a general term

describing the IoT entities (e.g., users and devices), has been adopted.

The IDoT includes the identities of both users and devices. Identities of users have

been studied extensively. Three primary authentication factors could be used to identify

users: something you know (e.g., username and password), something you have (e.g., a

physical token or a smartcard), and something you are (e.g., fingerprint or face recogni-

tion). Identities of devices are still in development. New schemes for uniquely identifying

devices need to be further studied. Due to the vast number of devices available, the

scalability of any new scheme is essential.

2.1.4 Access Control

Access control is primarily implemented within centralized and distributed architecture

categories in the IoT. In a centralized architecture, a single node is used for policy ad-
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ministration and management, i.e., access provisioning and revocation happening from a

single entity [14]. One of the limitations in centralized architecture is the single point

of failure. In a dynamic environment like IoT, the entity that administers access control

decisions is expected to be available anytime.

Distributed architecture, in contrast, can handle multiple nodes for administration

[14]. Although it is easier to facilitate delegation and scalability, a challenge in designing

access control solutions for distributed architecture is coherence. A decision or a change

made at one node should reflect in all the other managing nodes. Designing an appropriate

access control solution depends on the architecture of the IoT network.

An access control system in IoT includes essential functions such as authentication

function, access control function, audit function, managing policies function, and admin-

istration function as shown in Figure 2.1. The authentication function verifies the identity

of a user, a process, or a device. Access control function grants and denies specific requests

from a user, a process, or a device to access resources. Access control policies describe

high-level requirements that specify how access is managed and who may access informa-

tion under what circumstances. An access control system also includes an administration

function to create, provision, and effectively manage different users, groups, roles, de-

vices, and policies. The audit function provides an independent review and examination

of records and activities to assess the adequacy of access control to ensure compliance

with established policies and operational procedures. Authorization takes place after au-

thentication is complete to determine which resources/services are available to a user or

a device.

In this paper, we focus on IoT access control. Since authentication and policies are

also essential components in an access control system as shown in Figure 2.1, this paper

also reviews available IoT authorization architectures and policies specification.
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Figure 2.1: Access Control in IoT

2.2 Access Control Requirements

This section presents a summary of the concerns related to IoT access control.

1. Granularity: The fine-grained nature is the most important characteristic for any

solution that is designed to manage access rights. Due to the heterogeneity property

of the IoT networks and their dynamic nature, granularity is a major concern while

designing the models [13], [17].

2. Policy Specification: The policies developed for the access control models should

be able to handle dynamicity, allow and monitor delegation. An IoT network may

contain a large number of devices presented in various forms and locations. There-

fore, access control should consider the granularity and the policies specification to

govern the network effectively [13].

3. Handling Complexity: IoT networks are heterogeneous networks which are char-

acterized by resource-constrained devices, multiple hop links, unreliable communi-

cations, and limited physical security. Access control models shall be designed to

handle the complex nature of the IoT networks [14].

4. Interoperability: Many device manufacturers provide a variety of IoT devices to

customers. There is a high possibility that an IoT network may contain devices
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from different manufacturers and must function together. Therefore, access control

must support this interoperable nature in the IoT [18].

5. Facilitation of Users: IoT devices may be shared and accessed by multiple users.

For example, virtual assistants and smart home products can be used by family

members and guests at home. Access control must be able to allow users to delegate

access to other users instead of handling all at a single administrative point [19],

[20].

6. Automation: The complex nature of IoT environments and the number of access

decisions to be made at a given time make it difficult to provision or make decisions

individually. Hence, the processes of policy generation, decision, and evaluation

should be automated in the IoT [17], [21].

7. Resource Constraints: IoT devices possess low memory and processing power

when compared to regular computing machines. These constraints also raise chal-

lenges in developing access control solutions for the IoT [14], [22].

8. Coherence: In the case of multiple administrative points adopted in an access

control model, all the administrative nodes should be coherent with management

and provisioning of access control. The variant types of IoT networks create a

challenge when ensuring coherence across multiple administrative domains in the

IoT [13].

9. Resolving Identities: IoT devices can be characterized by attributes such as

model number, serial number, IP address, physical address, location, etc. In turn,

these devices are accessed by other devices and human users when connected to a

network. Leveraging the combination of the device attributes to uniquely identify

a device in a network poses a concern during the access control specification and

implementation [17].
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10. Downtime: The dynamic nature of the IoT environments tests the limits of any

access control solutions. Since access decisions are made frequently, there should be

no downtime [12], [13], [21]. The design of a centralized administrative point or a

distributive model decides the downtime. In a centralized model, if the administra-

tive node fails, it causes a single point of failure.

11. Security: The security of an access control model is another major concern. Access

control solutions should be resistant to any cyber attack [14], [16], [22].

The concerns discussed above should all be considered while designing and imple-

menting an access control solution for effective IoT IAM. Table 2.1 summarize these

requirements.

Table 2.1: Access Control Requirements for IoT.
Requirement Description

Granularity Access control solution should be fine-grained.

Policy Specifica-
tion

Access control policy should handle dynamicity and delega-
tion.

Complexity Access control can handle the complex nature of IoT net-
works.

Interoperability Access control solution should support interoperability.

Facilitation of
Users

Access control policy should allow users to configure and
delegate controls.

Automation Policy enforcement process shall be automated to support
dynamicity and scalability.

Resource Con-
straints

Access control solution should consider the constrained na-
ture of IoT devices.

Coherence Access control solution should be coherent at administrative
level.

Identity Access control solution should possess attributes used for
device identification.

Downtime Access control solution should possess multiple administra-
tion points to avoid downtime.

Security Access control solution should be secure and resistant to any
cyber attack.
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2.3 Access Control Authorization Architecture

There are different types of authorization architectures available. The common types are

the policy-based eXtensible Access Control Markup Language architecture, the token-

based Open Authorization architecture, and the hybrid User-Managed Access architecture

[12]. Other customized architectures are either derived from those three or specific to the

proposed applications.

2.3.1 Policy-based XACML Architecture

XACML is an access control language based on Extensible Markup Language (XML),

which is standardized by the OASIS consortium [12]. XACML is a popular standard

that provides fine-grained access control. XACML describes access control language,

request/response language, and reference architecture. The architecture consists of com-

ponents, namely the Policy Enforcement Point (PEP) to perform access control, Policy

Decision Point (PDP) to offer authorization, Policy Information Point (PIP) as a source

of attributes, Policy Administration Point (PAP) to create and administer the policy.

XACML and attribute-based access control in combination can offer rich and fine-grained

solutions. The interpretation of attributes and the language used to define the access

control policies is complex making this standard a limitation in terms of usability [14].

The essential components present in an access control solution may include PAP, PEP,

PDP, PIP, and Policy Refinement Point (PRP). Figure 2.2 demonstrates the policy-based

XACML architecture. These essential components are briefly discussed below.

1. Policy Administration Point: The PAP, also known as a policy repository, is

where all the policies required to grant or deny permissions are stored. Typically, the

policies are stored in a specific format, for example, XACML. In addition, the PAP

makes the complete access control policy available for the policy decision point to
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Figure 2.2: XACML Architecture [12].

grant or deny permissions [9], [23]. In an IoT environment, PAP should be designed

so that policies can be added, removed, or modified at run time.

2. Policy Enforcement Point: The PEP acts as an intercept between the PDP and

the requesting subjects. It forwards every request made by a subject along with the

attribute values related to the subjects, the resources, the actions to be performed,

and the environment to the PDP. Once the evaluation is performed at the PDP, the

PEP retrieves the decision and forwards it to the subject that made the request.

Moreover, based on the decision, the PEP is responsible for enforcing the actions

that the subject can perform on a resource (e.g., read, write, or both) [23]–[25].

3. Policy Decision Point: The PDP evaluates the requests it receives based on

the subject that makes the request, the resource that the subject is requesting to

access, and the contextual (attributes) information. The PDP triggers the PIP

to provide all the required contextual information, such as attribute values of the

requester, the resources, the action that is being requested, and the environmental

variables. Based on the information that is received, the PDP evaluates the decision
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by verifying them against the policies [23]–[25].

4. Policy Information Point: The PIP is responsible for collecting and storing all

the contextual information related to the system. In an IoT network, granting or

denying permissions based on the context is one of the important requirements of

access control. Hence, whenever the PDP requires the contextual information and

the attribute information, the PIP sends them through the PEP to make an access

decision [23]–[25].

5. Policy Refinement Point: The PRP is a component that is responsible for re-

fining policies at run time and updating the policy repository. The refining process

can be triggered for several reasons such as any change for the context in the en-

vironment or detection of an abnormal or unauthorized access behavior [9], [26].

Various techniques have been adopted in the literature for the policy refinement

process. Most of these techniques are based on machine learning and deep learning.

The PRP contributes to automating policies specification for access control which

is essential in a dynamic environment like IoT.

2.3.2 Token-based OAuth Architecture

OAuth is an open-source authorization standard that is mainly used to provide access

to web applications and services. With OAuth, users can access protected resources to

third-party applications without disclosing their login credentials. Major OAuth service

providers include Google, Microsoft, and Facebook [12]. These service providers are iden-

tity providers, who verify the users and provide external applications access to the users’

information stored on the providers’ domains with the users’ consent. OAuth has several

advantages in terms of scalability, interoperability, and flexibility. However, research finds

that it lacks fine-grained property during implementation. Due to the requirement of the

user registration, the client registration, and the nature of IoT networks, implementation
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and configuration are challenging for service providers.

The Internet Engineering Task Force (IETF) has extended OAuth 2.0 for devices, and

browserless clients under RFC8628 [27]. Figure 2.3 shows the OAuth device flow. As

shown in the figure, the authorization flow is the sequence of steps (A) through (F). The

client initially sends an access request along with its client identifier to the authorization

server. Following the request, the authorization server responds with a device code, an

end-user code, and end-user verification Uniform Resource Identifier (URI). Next, the

client provides instruction to the end-user to use a user-agent on another device and visit

the end-user verification URI. After the end-user is authenticated, the authorization server

prompts the user to input the end-user code for validation. During this step, when the end-

user reviews the client’s request, the device client continually polls the authorization server

to identify if the user has completed the authorization step. Finally, the authorization

server validates the device code and issues the access token to the client if the access is

granted, an error in case of denial, or notify the client to poll the authorization server

continually.

Figure 2.3: OAuth Device Flow [27].

Protocols such as Constrained Application Protocol (CoAP) and Message Queuing
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Telemetry Transport (MQTT) are mainly used for resource-constrained devices, leverag-

ing OAuth 2.0 tokens for authorization purposes.

• Constrained Application Protocol: CoAP is a protocol specially designed for in-

teraction between endpoints and networks that are resource-constrained [28]. Specif-

ically, this protocol is designed for machine-to-machine applications. The structure

of CoAP is logically divided into two layers [29]. The first layer is used for requests

and responses. CoAP uses a Representational State Transfer Constraints approach,

allowing the clients to use HTTP methods to send requests [29]. The second layer,

called the message layer, is used for retransmitting lost packets [29]. CoAP uses

Datagram Transport Layer Security (DTLS) protocol for security.

• Message Queuing Telemetry Transport: MQTT is a messaging protocol for

the IoT standardized by the OASIS consortium. MQTT offers bidirectional com-

munication and supports scalability and reliability. MQTT is considered a great

communication protocol for the IoT due to its simple, lightweight, and easy deploy-

ment properties [30]. Moreover, the use of MQTT has advantages on the ability

to work with low-end devices [31], implementing machine learning algorithms in

the cloud by interfacing the device with the Internet [32], and easy integration of

new devices [32]. MQTT also comes with limitations. The default plain-text data

exchange mechanism is a significant threat to data security [30]. Several security

attacks on IoT communication protocols were analyzed in [29].

2.3.3 Hybrid User-Managed Access Architecture

User-Managed Access is developed as part of the Kantara Initiative [33]. UMA is an

OAuth-based protocol. Unlike OAuth, access to third-party applications for resources is

granted regardless of where those resources reside. Hence, UMA follows a capability-based

approach, in which an entity with a defined capability and an access token will have access
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to a resource [12], [14]. UMA is a user-oriented standard and is evolving to be adopted

in IoT environments.

Figure 2.4 shows an example of UMA architecture. A resource owner manages all

the resources stored in a resource server. The function of the authorization server is

to protect the resource server. The resource server registers the resources that need to

be protected with the authorization server and then configures them with appropriate

policies for the registered resources. The client first sends a request to the resource server

to receive an authorization grant. On the first attempt, the resource server registers the

permission with the authorization server and issues a permission ticket to the client. The

client presents the ticket to the authorization server. If the permission is granted, the

authorization server issues a requesting party token (RPT) to the client. The client uses

the RPT to access the requested resources.

Figure 2.4: UMA Architecture [14].

UMA provides a unified control point for authorization [34]. There are many use

cases where UMA can be utilized for IoT networks. However, research has identified four

major challenges including availability, transparency, traceability, and maintainability

[35]. UMA follows a centralized architecture and therefore is at risk of a single point of
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failure [35]. In a third-party access control service utilizing UMA, it can be a difficult

task to trace authorization history [35]. In terms of maintenance, it is challenging to

upgrade in a centralized solution [35]. The blockchain technology that follows distributed

architecture is being researched to assist UMA for the IoT [35], [36].

2.4 Access Control Models

There are many access control models for traditional computing and networking environ-

ments. An overview of such models implemented for the IoT and their issues are discussed

below.

1. Discretionary Access Control (DAC): DAC is one of the primary access control

techniques introduced in computing. It grants access by managing an access control

matrix or an Access-Control List (ACL) [37]. Once access is granted in DAC, it

remains forever until the administrator revokes access. In IoT, access should be

continually monitored and evaluated for timely revocation. As new devices are

being added or when existing devices are removed, access control must be updated

automatically. Access decisions should be made based on the various criterion in

different situations. DAC is a static model and the ACL must be manually updated

by an administrator. For a dynamic environment like IoT, DAC is not suitable.

2. Role-Based Access Control (RBAC): In RBAC, a user is granted access based

on roles which are in turn assigned with appropriate permissions to access resources

[38]. Although it is easy to assign permissions to roles, many users may fall under

a single role. RBAC is suitable for access rights in regular computing environments

but not in the IoT. As IoT devices come with a variety of functionalities and offer a

wide range of services, the administrator must create a new role whenever a device

with new functionality is added to a network. In a large enterprise network, this

may lead to role explosion. In addition, RBAC does not support dynamicity.
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3. Attribute-Based Access Control (ABAC): ABAC is considered by many as

one of the suitable models for IoT to provision access rights because of its ability to

support additional attributes with user roles. Using ABAC, different attributes of

IoT such as device ID and location can be included for evaluation while providing

access. Even though this model is being used in large-scale projects like smart grid,

ABAC faces the issue of complexity due to its centralized architecture [39], [40].

4. Organization-Based Access Control (OrBAC): OrBAC is an extension of the

role-based access control by including a new dimension called “organization” [41].

This additional attribute helps in granting access when multiple organizations play

a role or when an organization has many subdivisions. However, other than the

above-mentioned concept, this model is no different from its parent model RBAC

and is considered unsuitable for heterogeneous and dynamic IoT environments.

5. Usage-Based Access Control (UCON): UCON was introduced as a framework

to protect digital resources that come under digital rights management (DRM). This

model comes with three main concepts: authorization, obligation, and condition

[42]. The authorization represents evaluation as to whether a subject is eligible

to be provided access. The obligation is a criterion that a subject must perform

to be provided with or sustain access. The condition represents the criteria that

a subject must satisfy. Due to the three evaluation categories, UCON provides

high dynamicity where the access is continually monitored, thereby revoking access

whenever required by policies. However, this model does not explain the delegation

property and follows a centralized architecture.

6. Capability-Based Access Control (CapBAC): The concept of CapBAC was

started as part of the IoT@Work project [43]. It is an initiative by the European

Union to leverage IoT to automate various services in public sector entities [43].

CapBAC follows a distributed approach. It is implemented through various nodes by
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using PDP and PEP [44]. In CapBAC, a resource requester must show a particular

capability to request an access token. The PDP decides whether to issue the token

to the requester. Once issued, the token is evaluated at the PEP for the requester

to access the resource. Another advantage of CapBAC is the property of delegation,

where nodes can be given the authority to provide access to other nodes. The level

of delegation is determined while designing the model. Nevertheless, the model must

depend on a central server for either identity verification or certificate whether to

trust the requester or not. Access is issued based on the requester’s capability.

CapBAC does not consider context while provisioning access [12].

7. Blockchain-Based Access Control (BBAC): Blockchain technology has had

explosive growth in security and privacy applications in recent years. The important

characteristic of this technology is its distributed nature. The methods through

which access control using blockchain is described in the literature can be further

divided into transaction-based and smart contract-based access control [45]–[47].

Transactions can be used to grant, delegate, or revoke access rights. Smart contracts

can evaluate access requests and make decisions based on the access policies defined

by the resource owner. In either case, an access token is generated and passed on

to the requester which signifies the right to access. The main disadvantage of the

transaction-based approach is that access decisions must be made by a centralized

node. In contrast, the smart contract-based approach may invoke large overheads

due to the creation of contracts between nodes.

8. Relationship-Based Access Control (ReBAC): In ReBAC, permission is granted

based on the relationship between a subject and a device. For example, if a subject

is the owner of a device, the device can access a resource. The relationship as an

‘owner’ of the device grants the permission [48]. The ReBAC is one of the recent

models and it is gaining more attention due to its dynamic nature [15].
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Table 2.2 summarizes the discussed models and their concerns to fulfill the access

control requirements. As shown in Table 2.2, all access control models have limitations

when adopted in IoT. These limitations indicate that more research efforts are desired in

the field.

In addition to the models discussed above, a few more access control models can

also be found in the literature [12], [19], [49], [50]. In History-Based Access Control

(HBAC), an access decision is made dynamically based on the context of access history in

a given state. The model requires a centralized authorization system such as a certificate

authority in place [49]. Two access control models, Risk Adaptive and Proximity-Based

Access Controls [50], are available for implantable medical devices. In the risk adaptive

model, a decision is made by considering the risk factor evaluated by policies. In the

proximity-based model, a device’s programmer must be in close proximity with a patient

to generate the key to decrypt the communications from the device. This model has a

potential physical security issue that an adversary should not be near the patient [50].

The proximity-based model is used widely in implantable devices. Trust-based models

allow devices to be attached to use spaces within a short period [19]. In this model, the

access permissions are assigned to users based on their levels of trust. However, it is

difficult to define how trust and relationships are established between users and devices.

Examples of trusted-based models include Billing-Based Access Control and Privilege-

Based Access Control. The billing-based approach is a business-driven control where

a service is provided to any user who receives an adequate reward [12]. Identity does

not matter in this model. In the privilege-based model, a decision is made based on an

organization’s policies, and the access is restricted only to particular users [12]. Trust is

one of the important criteria in a heterogeneous environment such as IoT. It enhances

both security and privacy [51]. However, trust systems in the IoT face challenges such as

heterogeneity, scalability, and integrity [51].
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Table 2.2: Access Control Models and Feature Matrix
Features DAC RBAC ABAC OrBAC CapBAC UCON ReBAC BBAC

Granularity Coarse Coarse Fine Coarse Coarse Fine Fine Fine

Context-
Aware

No No Yes Yes No Yes Yes Yes

Dynamicity No No Yes No Yes Yes Yes Yes

Complexity More More More More Less More More More

Distributed
Nature

No No No No Yes No No Yes

Interoperability No No Yes Yes Yes No Yes Yes

Delegation No No No No Yes No Yes Yes

Revocation No No No No Yes Yes Yes Yes

Scalability No No Yes No Yes Yes Yes Yes

2.5 Access Control Policies

An access control policy defines access permissions when an IoT device connects to a

network. Access control policies primarily administer and manage the entire solution.

The process of formulating access control policies for IoT networks should meet several

objectives [12]. The process should not be too complex for a device owner to understand,

and the usability should be of primary importance to the policy [52]. Further, IoT devices

that connect to the network should be flexible to conform to the network’s policies, so

that risk is not introduced into the network. Due to the nature of the IoT, framing access

control policies is domain-specific. Policies must adapt to a particular environment and

its characteristics. For example, smart home products available in the market today can

facilitate users to generate policies that allow access delegation. However, the generated

policies might not be as fine-grained as the users expect and may lead to over-privilege [53],

[54]. For instance, the Nest thermostat allows a homeowner to add a family member. This

will give the family member complete access to the device, although the homeowner might

not intend to give the family member full access [53]. Many access control solutions define

the properties of delegation and context which are required for dynamicity. However, this

generally happens at a single node when it comes to access decisions or administration.
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Additionally, various commercial IoT services such as AWS IoT and NiagaraAx support

ACL and role-based policies [55]. ACL-based policies are administered manually. It

becomes unsuitable for the creation of roles and permissions when devices are added at

scale.

2.5.1 Dynamic Policies Specification

Specifying access control policies at run time is desired to fulfill many requirements as

listed in Table 2.1. This section summarizes the techniques adopted for dynamic policies

specification in the IoT.

1. Traditional Access Control Model-Based Approaches: Liu et al. proposed an

access control model for resource sharing in [56]. The approach is based on RBAC.

The authorization mechanism uses a planning graph-based technique to search for

an optimal route. The policy encompasses user roles, permissions, and resources.

This approach is completely static and based on the experiments performed. Its

performance is not optimal. In [24], Alkhresheh et al. designed a dynamic access

control framework based on ABAC. A novel algorithm, namely the automatic pol-

icy specification algorithm, in which the policy is generated based on the extraction

of the attributes from the subject, the object, the operation to be performed, and

evaluated against a set of primitive facts, was presented. In addition, the policy

enforcement algorithm adjusts the policies continually and automatically. In [57],

Gabillon et al. proposed an ABAC-based framework for the MQTT protocol to

which sensors could subscribe for topics. In their approach, the policy language is

based on Shapes Constraints Language introduced by the World Wide Web Consor-

tium. Although the policies are expressive and contextual by means of attributes,

the administration is still static. In [58], Riad et al. extended XACML from adap-

tive policies to suit the distributed IoT environment. Their architecture follows the

ABAC model and allows the policies to be adjusted at run time [58]. The gen-
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erated policies are validated using the MD5 message-digest algorithm checksums.

The scheme protects the IoT network from two attacks, i.e., the masquerade attack

and the man-in-the-middle attack. Similarly, a conceptual framework that enforces

access control policies in a smart health environment was proposed in [59]. This

framework follows a centralized architecture but can refine policies at run time to

ensure dynamism. The policy language is based on XML. The XML was utilized

due to its flexibility to exchange policies between domains. The framework in [59]

is based on the ABAC model. In fact, many approaches utilize the ABAC model to

enforce access control policies due to its support for multiple attributes. However,

the ABAC model, due to multiple attributes used in access control, may also have

performance issues compared to others as shown in [60].

2. Artificial Intelligence-Based Approaches: Bertino et al. conducted a case

study on XACML policies to analyze their model developed based on symbolic

learning in the Generative Policy Model (GPM) in [26]. A public dataset, including

XACML policies requests and responses, was used to perform the study. Based

on the dataset, they generated a set of examples that contain ABAC parameters

that were based on answer-set-grammar. Cunnington et al. proposed a centralized

architecture based on GPM for connected and autonomous vehicles in [9]. The

adopted method is based on inductive logic programming. Their solution does not

generate access control policies, but it refines and stores policies dynamically. Liu

et al. proposed a risk prediction-based access control model for the Internet of

Vehicles (IoV) in [61]. In their approach, they use a generative adversarial network

model based on LSTM to improve the training dataset. The risk prediction model

is determined by the risk. The vehicle can access the requested resource if the risk

is below a predefined threshold. This approach follows a centralized architecture.

Yu et al. proposed a learning-based approach that learns contextual access control

policies from the behavior patterns of multiple smart home devices in [62]. This
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approach uses a federated learning framework that incorporates temporal modeling.

In [63], Chu et al. proposed a multi-access control technique based on battery

prediction with energy harvesting in IoT. The proposed solution utilizes an LSTM

based deep neural network. It is designed for a wireless network where sensor nodes

are dispersed geographically. The nodes are granted access to the base station based

on the sensor node’s battery state. In the proposed two-layer LSTM network, the

first layer predicts and generates the battery level of the sensor node, and the second

layer uses the channel information and predicted values to generate the access control

policies.

3. Blockchain-Based Access Control Approaches: Blockchain has been explored

to make access control decisions in IoT due to its distributed nature. A smart

contract-based access control system was proposed in [64]. In the blockchain-based

approach, a policy created by a resource owner is stored in the blockchain as a

transaction. The policy is written in XACML and is transformed into a smart

contract. To update or delete a policy, the contract is replaced with a new smart

contract. In [65], Liu et al. proposed a distributed ledger-based approach to protect

the privacy of IoT data. In the approach, policy updates are done through the

edge node by adding a new policy to the blockchain, thus enabling dynamic access

control. In [66], a distributed blockchain-based access control system is proposed

for the smart grid domain. The approach consists of three layers: the first layer is

the network layer, the second layer consists of the raw RBAC and ABAC policies,

and the third layer consists of the distributed ledger. Context information updates

to the PDP are performed by virtual auditors. These updates assist the PDP in

performing dynamic access control decision-making. In [67], Zhang et al. proposed

a smart contract-based access control approach utilizing the ABAC paradigm. The

policies are not hardcoded in the smart contracts, allowing the approach to have

less overhead. This solution also contains predefined functions to add, delete and
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update the policies, thus assisting the concept of dynamic access control.

4. Policies that Carry Data: With the contextual nature and the amount of sen-

sitive data transmitted and processed, IoT devices can also embed policies within

the data. This embedded data policy allows for constant monitoring and revoca-

tion of access. First introduced in [68], sticky policies provide a data owner-centric

approach for the IoT and allow users to embed policies into data. This concept was

applied in many approaches in the field of IoT. For example, an approach called

policy-carrying data was proposed in [69]. In the approach, the policy can specify

information regarding permissions, obligations, and restrictions of the data, which

brings dynamism. The policy language is based on first-order logic. However, the

language is considered complex, and there is a need for a centralized server to eval-

uate both data producers and consumers. In [70], Sicari et al. use a middleware

architecture to handle policy requests and responses by utilizing ABAC. The ap-

proaches in [71], [72] use sticky policies by utilizing the edge computing architecture.

JavaScript Object Notation format was used to define policies, and end-to-end com-

munication was encrypted to preserve data privacy. Sticky policies allow intelligent

control over the authorization of IoT resources. However, it comes with limitations

too. There are no established languages for policies due to the pinning of the policies

with the data. It may also increase the computational overhead on the devices due

to the encryption that is being used during data transmission [73].

2.5.2 Dynamic Policies Specification Challenges

The challenges faced by the current dynamic policies specification solutions are discussed

below.

• Centralized Architecture vs. Distributed Architecture: A number of solu-

tions including [23], [24], [26] have adopted centralized architecture to specify dy-
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namic policies. For a heterogeneous environment, centralized architecture is complex

to design, and does not scale well. Many IoT networks depend on cloud platforms

for management. Therefore, it is recommended to utilize the technologies such as

edge computing which supports distributed architecture. The solution proposed in

[62] utilizes an edge computing paradigm [74] to learn context-aware access control

policies from multiple smart homes.

• Policy Generation, Decision, and Evaluation at Run Time: Many solutions

in the literature proposed their own approaches for dynamic policies specification.

For example, the solution in [23] uses supervised machine learning to classify device

access behavior based on a real-life data set. Access control solutions should be able

to make access decisions based on policies automatically, in case the connection to

the backend system is lost [9] or in a large-scale project like a smart city where

numerous devices are added at scale [75]. A solution should consider these scenarios

when enabling dynamic policies specification.

• Eliminating Policy Violation and Policy Conflict: IoT devices are often used

to automate physical processes such as detecting water leaks, adjusting tempera-

ture, controlling security cameras, and enabling autonomous driving. Hence, dy-

namic policy specification or policy automation should address policy conflict and

policy violation identified from the generated policies. Policy validation provides

the opportunity to invoke several issues related to the security of the devices and

physical safety.

• Selection of Required Features: Almost all the discussed solutions use machine

learning approaches for extraction or refining policies at run time. The machine

learning-based solutions depend on a specific set of defined features for operations.

The features used in machine learning in IoT include, but are not limited to, the

contextual attributes of the subject that requests access, resources, and other en-
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vironmental attributes. When implemented in real-time, frequent requests to the

current state or attribute values may potentially reduce the performance of the de-

vices. Therefore, the machine learning solutions must consider the memory and

processing capabilities while performing feature selection.

• Accuracy of Real-Time Classification: Access control authorizes a user or a

device’s request to access a particular resource. Hence, in a classification scenario, a

machine learning solution must predict a request with utmost accuracy. Otherwise,

at times of misclassification, there is a chance that a legitimate subject is denied

access. In generative models, it is believed that any policy that is being generated

should not conflict with the existing policies in the repository and should not violate

the security and privacy requirements of the network. Designing a solution to verify

these issues automatically is a challenge.

• Using Balanced Dataset: Unfortunately, identifying a relevant publicly available

dataset is a challenge for access control research in IoT. Various constraints such as

security and privacy might be part of the reasons. However, the machine learning

models should learn from a balanced dataset to provide accurate classification or

policy generation. For example, Bertino et al. evaluated their proposed solution

with the help of a noisy XACML dataset [26]. Their models led to issues such as

overfitting. Hence, a well-balanced dataset is highly essential to realize the true

potential of a machine learning solution.

• Real-Time Implementation: A number of the proposed solutions have not been

evaluated in real-time. For example, studies such as [25], [76], [77] have been pro-

posed as generalized frameworks that can be utilized for dynamic policy specification

in the IoT. Solutions tend to behave differently in a test environment and a real-time

environment. Consequently, when they are implemented in real-time, the actual is-

sues and the challenges the solutions may face shall be captured enhancing the scope
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for further research.

2.6 Access Control Research Challenges and Future

Directions

This section summarizes the research challenges in access control and points out future

research directions in the IoT.

2.6.1 Research Challenges

Table 2.2 reveals the research gaps in access control in the IoT. Many challenges exist

in designing an ideal access control solution to fulfill the access control requirements

identified in the IoT.

1. Device Identification: Access control assumes IoT devices can be uniquely iden-

tified and access control policies can be applied to network traffic. As users are

identified in a digital network by their unique identities, IoT devices also require

their unique identities when connecting to a network. While users are often iden-

tified by something the users know, something the users have, and something the

users are IoT devices can only be identified by something they have. A common

technique to identify a device in a network is using the device’s MAC address. How-

ever, the MAC address is easy to be spoofed. Given the heterogeneity and the need

to protect the data that IoT devices collect, device identities need to be addressed

before access control [78].

2. Relationships and Access Control: Relationships such as user-to-user, user-to-

device, and device-to-device relationships can be utilized for identity management

and access control. It is expected by many consumers that the IoT device manufac-

turers include the concept of relationships for access provisioning. Thus, Identity
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Relationship Management (IRM) is gaining attention and has been identified as a

promising IAM system for the IoT [79].

3. Policies Specification and Automation: A comprehensive review of the policies

specification in the IoT reveals that the existing solutions lack the dynamicity in

policy generation, decision, and evaluation [80]. Machine learning can be utilized

for policies automation. With automation, there is no need to edit policies manu-

ally when devices are added at scale. Therefore, the use of machine learning will

directly help in achieving dynamicity in an access control solution although machine

learning-based approaches also face the challenges as discussed in Section 2.5.2.

4. Interoperability Issues: In an IoT network, not all the devices come from the

same manufacturer. Devices should be interoperable when connected to a network,

allowing access control to function as expected.

5. Blockchain and Access Control: The operation of blockchain for access control

in IoT is still in its infancy. Due to its distributed nature and property of delegation,

blockchain is well suited to IoT networks. Research on the blockchain is needed for

access provisioning in IoT environments.

6. Computational and Communication Overhead: IoT devices come with a num-

ber of constraints, particularly in terms of memory and processing power. The so-

lutions proposed should not invoke any overhead on the devices, which may reduce

their performance. One way to overcome this challenge is to bring the computation

and storage to the edge, which may enhance the network’s performance.

7. Access Control vs. Security and Privacy: The security of access control mod-

els is also a concern. Access control is one of the important services in security.

Therefore, the access control solution itself should be resistant to attacks. The se-

curity flaws in access control may occur in many places, including design, protocols,
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implementations, and configurations. Although many access control models have

been proposed for IoT, limited research has been conducted on access control secu-

rity analysis [81]. Due to the importance of access control for any network, access

control security analysis is desired. Moreover, an IoT network tends to consist of a

large amount of sensitive information. Thus, the access control policies must comply

with privacy regulations such as General Data Protection Regulation (GDPR) and

Health Insurance Portability and Accountability Act (HIPAA).

2.6.2 Future Directions

Access control is essential to secure the IoT. Future research is desired in the following

areas:

1. New Scalable Schemes for Identities of Things: IDoT includes identities of

both users and devices. Identities of users have been studied extensively. Identities

of devices are still developing. Due to the vast number of devices available, the

scalability of the new schemes is essential. Most of the identification schemes are

based on symmetric or asymmetric cryptography. However, both symmetric and

asymmetric cryptography have limitations when used for identifications [82]. New

schemes for uniquely identifying devices need to be further studied.

2. Novel Multi-factor Authentication (MFA) Methods for the IoT: MFA pro-

vides alternative approaches to verify a user’s identity. It has been proven to be

effective for many internet-based applications and services. MFA is essential and

desired for the IoT. However, using MFA in IoT applications is challenging since

many IoT devices do not come with screens and keyboards. Novel MFA methods

are desired for small form factor IoT devices that do not have input devices.

3. Utilizing Relationships for Authentication and Access Control: Relation-

ships among users, devices, applications, and services can be used to describe the

33



dynamic intelligence that an IRM system seeks. The dynamic intelligence can be

embedded into the context when authentication and access control are requested.

However, there are challenges on how to characterize and define relationships and

how relationships can be used for authentication and access control.

4. Standards and Interoperability: Global standardization bodies need to define

specifications for a borderless identity and access management system adopted by

the communities. The system needs to be built in a modular and pluggable manner

without requiring a single organization to maintain its system. The standardization

of identity and access management systems will also help resolve the challenges

when multiple information systems are adopted in an organization.
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Chapter 3

Methodology

This chapter discusses the research methodology adopted in this dissertation. First, we

describe the methodology we adopt for this research. Next, we briefly discuss Generative

Adversarial Network (GAN) architecture, the GAN variant used for tabular data genera-

tion, and how it can be utilized to generate access control policy data. We then discuss the

types of GAN models we plan to use for our experiments, the datasets, experimentation

strategy, and evaluation strategy.

Our research addresses the challenge of generating contextual and usable access control

policies for the Internet of Things. In Chapter 2, we identified the scope and need for

further research in the domain of automated policy generation for access control in IoT.

While architectures like the Generative Policy Model (GPM) have been proposed for

automated policy generation, they follow a centralized approach. However, our literature

review reveals that IoT networks are heterogeneous and distributed. We propose the

use of Deep Generative Models (DGMs), specifically Generative Adversarial Networks

(GANs), which can be effectively deployed in various architectures, including distributed

environments. On the other hand, we also plan to identify how realistic are the generated

policies and if they can be used for real-time scenarios.

We formulate our research as a case study to explore the feasibility and challenges

of the proposed approach. As part of this, we implement two baseline tabular GAN

models, which serve as the foundation for our proposed solution. This structured approach
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allows us to systematically evaluate the effectiveness of our solution and compare it to

existing approaches. We conduct several experiments using the GAN models and utilize

quantitative methods to analyze and evaluate our approach. Finally, we also evaluate the

quality of the generated policy using manual evaluation.

3.1 Theoretical Background

We consider the proposed automated policy generation as a synthetic data generation

problem. We derive the concept of generative adversarial networks (GAN) [83]. GANs

consist of two neural networks, namely a Generator and a Discriminator. The generator

takes, as input, a random Noise and, through a number of iterations, learns to generate

samples as realistic as the original data. Meanwhile, the role of the discriminator is to

distinguish whether the generated data is real or fake. Thus, the two networks are trained

alternatively together to play a Minimax game to compete with each other forming an

adversarial learning process. This architecture is based on game theory. [85]. Hence, we

provide the preprocessed policies as input data to the GAN model. The model trains with

the help of neural network layers and produces synthetic policies. We then perform an

evaluation of the obtained policies. GANs possess several advantages. They will be able

to effectively generate synthetic data by training from limited real data. Additionally,

IoT networks are distributed in nature. The literature suggests there may be situations

where a device is not able to contact the policy repository. Then, devices should be able to

generate policies themselves. GANs can also be implemented in a distributed architecture

where local generators and discriminators shall be deployed in individual local nodes and

a model globally available at the server.

According to [84], tabular data is the most commonly identified data type in busi-

nesses today and the second most common format in academia. The need for synthetic

data has risen in the past few years, and several techniques have been introduced to gen-
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Figure 3.1: Basic Structure of a GAN

erate synthetic data from learned distributions, from modeling multivariate probability

distributions, hidden Markov models, Gaussian copulas, and randomization-based meth-

ods [84]. Due to their success in generating realistic image data, neural network-based

generative techniques, such as Generative Adversarial Networks (GANs), have also been

utilized widely in language modeling and the synthetic generation of tabular data. Access

control, especially Attribute-based access control data, is similar to tabular data. The

feature set of tabular data may contain both continuous and discrete datatypes. Similarly,

access control data takes both continuous and discrete values such as user attributes, en-

vironmental attributes, and operational attributes. We utilize two baseline tabular GAN

models to experiment and analyze the efficacy of these models in generating access control

policies. The figure below shows the structure of a tabular GAN with conditional inputs.

3.1.1 Conditional Tabular GAN

The Conditional Tabular Generative Adversarial Network (GAN) was introduced by [85].

It is an extension of the Tabular Generative Adversarial Network (TGAN) [84] that em-

ploys a conditional generator to produce synthetic data conditioned on one of the discrete

columns present in real data. Both the generator and discriminator comprise two fully

connected hidden layers. The generator utilizes Batch Normalization and Rectified Lin-

ear Unit (ReLU) for activation, while the discriminator employs Leaky ReLU activation

and dropout on each hidden layer. Lastly, in the generated data, the scalar values are
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Figure 3.2: Structure of a Tabular GAN with Conditional Inputs [85]

produced using hyperbolic tangent (tanh), and the discrete values are generated through

the gumbel-softmax function.

3.1.2 Copula GAN

The Copula GAN is a variant of CTGAN and has been introduced by [86]. This approach

utilizes probability integral transforms and establishes relationships between uniform

marginals and the GAN framework. This way, a probabilistic G model is implemented

which estimates univariate marginals and multivariate copula density in the learning pro-

cess. In Copula GAN, the data is transformed using the distribution that best achieves

uniformity and their relationship is modeled after the transform. This architecture applies

the Gaussian copula CDF-based transformation [87] to enhance the learning process. Syn-

thetic data is generated by implementing inverse transformation sampling and randomly

generating the samples from a uniform distribution.
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3.2 Learning Background Knowledge

Over the years, GAN models have proven to be very efficient in generating high-quality

synthetic data. In other words, generative models can perform a good approximation of

the distribution of the learned data. However, it is critical that the models learn the

background knowledge required to generate data and comply with the constraints [88].

This is essential, especially when generative models are deployed in real-time information

systems like IoT networks. Verifying compliance is as equal as evaluating how realistic the

generated data is. In access control for IoT, specifying constraints based on the underlying

business rules is critical. Any policy generated and enforced that violates the business

rules results unauthorized access. In real-time environments like IoT, this may impact

physical security or safety. In this research, we plan to incorporate constraints in the

GAN models we implement by considering any rules explicitly mentioned in the literature

or by learning the background knowledge of the domain we plan to experiment.

3.3 Proposed Experiments and Evaluation

3.3.1 Datasets Description

We employ two datasets for our research.

CAV Policies: We use the CAV policies dataset published by [9]. It is created via policy

learning tasks for connected and autonomous vehicles (CAVs). CAVs are an instantiation

of IoT. The dataset was created to evaluate a Generative Policy Model where CAVs

learn and generate high-level policies to operate autonomously during various unseen

scenarios. Each policy includes information pertaining to who is responsible for controlling

the vehicle, monitoring the driving environment, and who is the fallback responsibility for

the driving task. Depending on varying contexts, the vehicle is controlled by the human

driver, the system, or both. The monitoring and fallback responsibilities are held by either
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the driver or the system. Three environmental conditions, such as weather, visibility, and

traffic congestion, are considered, with values of each ranging from 0 to 10, both inclusive,

and they are represented collectively by their weighted average. Eventually, a policy is

either approved or rejected depending on the values pertaining to three facts: the level

of autonomies (LOA) of the driving task, vehicle, and region. A policy is approved only

if the driving task is lesser or equal to both vehicle LOA and region LOA. Otherwise,

the policy is rejected. Although the data is not used for an access control system, the

characteristics are fully consistent with an ABAC model. Hence, we choose to utilize the

dataset to evaluate access control policy generation. The dataset contains 239,480 unique

policies and eleven features by which a decision is computed.

Table 3.1: CAV Policies Dataset Description
Column Datatype Description
Driving Task Type Categorical adaptive speed control, high speed

cruising, parking, performing turn,
residential driving

Control Categorical human, system, human and system
Monitoring Categorical human, system
Fallback Categorical human, system
Weather Numerical 0-10
Visibility Numerical 0-10
Traffic Congestion Numerical 0-10
Environmental Weighted Average Numerical Weighted average of weather,

visibility, and traffic congestion
Driving Task LOA Numerical 0-5
Vehicle LOA Numerical 0-5
Region LOA Numerical 0-5
Result Categorical approved, rejected

Amazon Access Logs Dataset:

The Amazon Access logs dataset was released in 2013 as part of a Kaggle competition

[89]. The purpose of the competition is to automate the access provisioning and revocation

process as an employee moves through different roles in a company. The dataset consists

of 32769 records. Each record pertains to an access request to resource by a user and
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its corresponding decision. There are about 9000 unique users and eight user-attribute

combinations that are used to determine if a user has access to a specific resource. The

user attributes include the Role Code, Role Title, Role Family, Role Family Description,

Role Department Name, Role Rollup 1, Role Rollup 2, and the reporting Manager ID.

The Resource ID specifies the resource an employee is requesting access to. According

to [89], the employees in a given role will access the same or similar resources. and the

Action column specifies the access decision. If the value is 1, then the access is approved,

and if the value is 0, then access is denied. All the features in the dataset are of type

Categorical.

Table 3.2: Amazon Access Logs Dataset Column Description
Column Description No. of Categories
ACTION Access decision. 1 if the request is 2

approved. 0 if the request is denied
Resource ID ID assigned for each resource 7517
Manager ID Employee ID of the manager of a given 4243

employee
Role Rollup 1 Company role grouping category 1 128
Role Rollup 2 Company role grouping category 2 177
Role Department Company role department description 449
Name
Role Title Company role title description 343
Role Family Company role family extended description 2358
Description
Role Family Company role family description 67
Role Code Company role code. This value is unique to 343

each role.

3.3.2 Data Processing

Our data pre-processing involved converting the metadata into the appropriate datatypes

to be consistent with the data. The SDV requires extracting the metadata and specifying

it explicitly as a parameter to the model before training. For the CAV Policies dataset,

the metadata API recognized the driving task type as a Vehicle Identification Number
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(VIN) and a primary key. Similarly, due to the lesser range of values in driving task loa,

vehicle loa, and region loa, the API recognized them as categorical types. Hence, we

transformed all the features into their appropriate types as categorical and numerical

respectively and updated the metadata. For the Amazon Access Logs dataset, except for

the ACTION column, the metadata API identified all other features as numerical types.

Hence, we converted all these features into categorical. The RESOURCE ID column

contains more than 7000 categories. Hence, we used the Reversible Data Transform

(RDT) library to encode the feature using the label encoder. For CTGAN, all other

features categorical features are one-hot encoded. For Copula GAN, the gaussian copula

transformer was used on both numerical and categorical variables and then the RDT

transformer was used for appropriate transformation.

3.3.3 Constraints

We created custom constraints for the training of both datasets. For the CAV Policies

dataset, the primary constraint is that a policy is approved only if the driving task loa

value is lesser than or equal to both the vehicle loa and region loa values. Otherwise,

the policy should be rejected. This is explicitly mentioned in [9]. We found it necessary

to include the constraint for the environmental weighted average. The authors provided

the weights for all three features: weather, visibility, and traffic congestion. For the

Amazon Access Logs dataset, the constraints are not provided explicitly, but based on

analyzing the data, we found one that can be a potential constraint. For any given

ROLE CODE category, the values of ROLE TITLE and ROLE FAMILY is the same.

The aforementioned constraints are coded using the SDV custom constraints class for

both CTGAN and CopulaGAN.
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3.3.4 Training Strategy

We follow different strategies to train both datasets. As mentioned previously, the CAV

Policies dataset consists of 239,480 unique policies. We decided to train the models on 20

percent of the entire data and 40 percent of the entire data to analyze the difference in

the distribution a model is able to learn and generate. We consider the Amazon Access

Logs dataset as is. The reason is there is a separate test set that we could compare if

the model is able to generate similar distributions as the real data. We trained all the

datasets without applying constraints first and then with constraints.

3.3.5 Evaluation Strategy

Once the models are trained, the first evaluation we perform is whether the synthetic data

generated are completely new or whether and how many rows correlate with the training

data. Next, an important evaluation we consider is how many rows in the synthetic data

are in compliance with the defined constraints and whether and how many rows have

violated the constraints. The third evaluation we perform is the efficacy of the supervised

machine learning algorithms when trained on synthetic data and tested on real data,

and vice versa. This is called the Train Synthetic Test Real strategy used in various

publications such as [88], [90]–[92].

3.3.6 System Configuration

We performed all our experiments in an Ubuntu box (v22.04.1) hosted on VMWare. All

model training was performed on the Nvidia Tesla T4 GPU implemented in Jupyter

Notebook on the Anaconda Navigator platform. All versions of trained models are saved

in the pickle format utilizing the CPU. The CPU is an Intel Xeon Gold 6242 @ 2.80 GHz

x 4. The available system memory was 32 Gigabytes.
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Chapter 4

Results and Analysis

This chapter details the results we obtained performing the experiments described in the

previous chapter and our analysis of the results.

4.1 Data Generation

We obtained results for different dataset sizes mentioned in the previous chapter for

the GAN models, CTGAN, and CopulaGAN. The CAV Policies dataset contains both

numerical and categorical data. However, the number of categories is significantly less in

every corresponding feature. Hence, we did not perform any transformation on the data.

We tried training the model for varying batch sizes, learning rates, and the number of

epochs. We found that the models were able to learn the data distributions significantly

well around 300 epochs, and after that, there was no further improvement in the training.

Hence, we decided to train the models for both dataset sizes for 300 epochs, with the

generator and the discriminator learning rate of 2e-4 and a batch size of 700.

4.2 Analyzing Synthetic Data Characteristics

Initially, our focus was to verify the quality of the generated data. That is if the records

in the generated data are different than the ones in the real data. the continuous features

in the CAV policies dataset to see how well the model has learned the data distribution
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and whether it can adhere to the boundary from the real data to generate the values

within that range. Next, we also considered the number of records based on the values in

the “result” column to see how many records resulted in an ‘approved’ decision and how

many records resulted in a ‘reject’ decision. An important consideration is to find the

number of violations when the constraints were not specified. The Amazon Access Logs

dataset is different, with all the features being categorical and eight features representing

the user attributes. For this dataset, we focused on identifying how many unique users

were present in the generated data, how many records resulted in ‘0’, and how many

records resulted in ‘1’ in the ACTION column.

To compare the generated data with the corresponding data on which the model was

trained, we generated an equal number of samples based on the corresponding training

dataset sizes. Table 4.1 shows the count for the rows that resulted in ‘Approved’ and

‘Rejected’. As the results show, there is an increase in the difference between the “Ap-

proved’ and ‘Reject’ decisions in all the scenarios, and ‘Rejected’ dominates in all the

cases. We recorded the result count only for our experiments specifying the constraints

because approved decisions that violate the constraints are not valid.

Table 4.1: CAV Policies - No. of Approved and Rejected Policies

Model Training Set Size Result Count

Approved Rejected

CTGAN 20 percent 21081 28919
40 percent 37376 58456

CopulaGAN 20 percent 22486 27514
40 percent 37565 52435

Table 4.2 shows the synthesis score for all experiments performed on the CAV policies

dataset. The row synthesis is a measure that identifies whether each record in the synthetic

data is new, or it exactly matches the training data. The score ranges between 0 and 1,

with 0 being the worst and 1 being the best. The scores obtained on all our experiments

are almost close to perfect. The models trained on dataset size of 20 percent obtained a
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score of approximately 0.99 each and the models trained on the dataset size of 40 percent

obtained a score of approximately 0.98 each. For the Amazon Access Logs dataset we

obtained a similarity score of 1 on all our experiments.

Table 4.2: CAV Policies - Comparison of Synthesis Scores

Model Training Set Size Score-(unconstrained) Score-constrained

CTGAN 20 percent 0.9944 0.9920
40 percent 0.9859 0.9830

CopulaGAN 20 percent 0.9967 0.9940
40 percent 0.9871 0.9837

Next, we analyzed if and how many violations exist on the generated data. Table 4.3

shows the results obtained for our experiments on different dataset sizes without applying

constraints and with constraints applied while fitting the model. Models trained based

on both CTGAN and CopulaGAN have resulted in a significant number of violations.

When the models were trained on the dataset size of 20 percent, there were about 17

percent and 19 percent violations on the generated data for CTGAN and CopulaGAN,

respectively. Similarly, the same models trained on the dataset size of 40 percent resulted

in about 18 percent violations for CTGAN and CopulaGAN respectively. However, when

these models were trained after applying the constraints, all models were able to generate

data that was in compliance with the constraints.

Table 4.3: CAV Policies - Violations Comparison

Model Training Set Size Violations

No Constraints With Constraints

CTGAN 20 percent 8313 0
40 percent 17447 0

CopulaGAN 20 percent 9178 0
40 percent 17700 0

The Amazon access logs dataset contains all categorical features. Also, it is highly

imbalanced with more records containing access approvals. One more challenge is that
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some features contain thousands of categories. Hence, one-hot encoding is not an optimal

processing technique for those features, and the dimension of the dataset would become

large. We trained the model by transforming the data into two types of encoders, one-hot

encoder and label encoder. While analyzing the generated synthetic data, we identified

that the models generated the synthetic data with the imbalance, although CTGAN uses

the training by sampling technique. We trained the models with and without constraints.

When we trained the model without constraints, we identified that almost the entire gen-

erated data violated the constraint requirement. We wrote a custom logic for the models

to comply with the fact that for a given ROLE CODE, the corresponding ROLE TITLE

and ROLE FAMILY must be the same for all instances of that role code. However, the

custom logic did not fit well with both the models and generated data again violated the

constraints. Researching further, we identified a fixed combination constraint available as

part of the SDV library. Both models were able to comply with this constraint.

In the tables 4.4 and 4.5 respectively, we report the number of users, and the number

of rows generated for each action for both the CTGAN and CopulaGAN models. As

mentioned earlier, the number of records containing approved decisions is significantly

higher than the number of records with denied decisions. In Table 4.5 we report the

number of unique resources generated from both the models.

Table 4.4: Amazon Access Logs - Access Decisions by Model

Model No. of Users Action Count

CTGAN 32765 Approved – 30010, Denied – 2759

CopulaGAN 32754 Approved – 30780, Denied - 1989

Table 4.5: Amazon Access Logs - Unique Users and Resources

Model No. of Users No. of Resources

CTGAN 32765 6507

CopulaGAN 32754 5403
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4.3 Visual Evaluation

To understand the generated data visually, we plotted the correlation tables for both the

real and generated datasets, and the difference between them using the visual evaluation

tool available in the table evaluator library. For the CAV Policies, we generated correla-

tion tables for all the conducted experiments. The correlation tables of our interest are the

ones for data we generated by applying the constraints. All models we trained were able

to generate data that is similar to real data. As seen in the figures, the differences in cor-

relation are not high. For example, in the real data, driving task loa has high correlation

with driving task type, control, monitoring, and fallback. The trained models generated

data with almost the same amount of correlation between the features. This indicates

that the models were able to capture the correlation between various features. However,

considerable difference in correlation is identified with vehicle loa and region loa. Overall,

CopulaGAN generated data contains more difference in correlation when compared to the

data generated by CTGAN.

On the other hand, for the Amazon Access Logs dataset, we identified significant

differences in correlation between the real and the generated data. The Amazon dataset

provides a different perspective compared to the CAV policies. The real data contains

more correlation between different features. However, when we examine the generated

data by both the models, the correlation is significantly. This also indicates that the

generated data may have a different distribution than the real data. We identified this

difference when we treated all the features as categorical. When we trained the models by

treating all features except the target, as type continuous, we identified very less difference

in correlation. We present only the visualizations of our experiments when features were

treated as type categorical.
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Figure 4.1: CAV Policies - Correlation Difference when Trained CTGAN on Dataset Size
20

Figure 4.2: CAV Policies - Correlation Difference when Trained CTGAN on Dataset Size
40

Figure 4.3: CAV Policies - Correlation Difference when Trained CopulaGAN on Dataset
Size 20
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Figure 4.4: CAV Policies - Correlation Difference when Trained CopulaGAN on Dataset
Size 40

Figure 4.5: Amazon Access Logs - Correlation Difference when Trained on CTGAN

Figure 4.6: Amazon Access Logs - Correlation Difference when Trained on CopulaGAN
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4.4 Qualitative Evaluation

We analyzed the generated data from both the datasets qualitatively. For analysis, we

only consider the data generated by applying the constraints.

CAV Policies:

As mentioned before, we used 20 percent and 40 percent of the CAV policies dataset for

training the models. For comparison, we first consider the attributes, driving task type

of both real and generated data. There are five driving task types totally. The real

datasets of both sizes contain equal distributions of every driving task type with approx-

imately 9000 and 19000 for each type respectively. While analyzing the generated data,

we identified varying counts for each driving task type, although the difference is not very

significant. The generated data of both sizes from both CTGAN and CopulaGAN were

able to capture the range of the attributes of continuous type and were able to generate

data only within the learned range. Additionally, the environmental weighted average is

also computed appropriately by adhering to the specified constraint.

In the GPM approach, there are two tasks. In the first task, the system should

first determine who holds the responsibility for controlling the vehicle, monitoring the

environment, and has the fallback. In the second task, the Driving Task LOA is assigned

depending on the environmental conditions. According to the ground truth defined in [],

if the weather conditions are poor, then the driving task is assigned for the system to

perform all three functions in the first task. However, the policy is either approved or

rejected depending on the constraint mentioned before.

Let us consider the following generated policies:

1. The requested driving task is adaptive cruise control. For this request, the system

identifies that control should be jointly performed by the human driver and the system,

and the driver must take on the monitoring and fallback responsibility. The weighted

average of the environmental attributes is 70. Finally, the Driving Task LOA is less than
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or equal to the Vehicle LOA and Region LOA, which satisfies the constraint.

2. In another policy, the requested driving task is residential driving. For the first

task, CAV identifies that the system performs all three, controlling and monitoring the

vehicle, and the fallback responsibility. The system identifies the LOA for the driving task,

the LOA of the vehicle, and, depending on the environmental conditions, the minimum

required LOA to operate in the region the vehicle is in. The weighted average is 2.1.

However, this policy is rejected because both the vehicle LOA and the region LOA are

less than the LOA of the driving task.

To be noted that the same policies were generated with decisions that violated the

constraints when the models were trained without constraints. When we examined all our

generated dataset, we did not identify any policy conflicts. This is due to the presence of

environmental weighted average feature. It is a value calculated as the weighted average

of weather visibility and traffic congestion. Remember that the initial task is to identify

the level of autonomy of the driving task given the task type and the weather conditions.

As discussed in Chapter 3, the original CAV policies dataset contains 239, 480 policies.

We used 20 percent and 40 percent of the dataset to train the GAN models. We used the

remaining data as holdout data to compare if the generated policies match with them. In

this case, we considered the holdout data as unseen scenarios. We were able to identify

the generated policies are close to those present in the larger holdout data.

Amazon Access Logs:

The nature of the Amazon Access Logs dataset is different from the former. All

given attributes are of type categorical. The features RESOURCE ID, MGR ID, and

ROLE FAMILY DESCRIPTION contain thousands of categories while the other features

contain more than hundred categories. CTGAN performs one-hot encoding of the cate-

gorical features. Performing one-hot encoding on large number of categories increases the

training time. Also, this increases the dimensionality of the feature space, and the size

of the trained model significantly becomes large. Using Label Encoding is easy to train,
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but the categories are not in a given order. All of them are nominal. The closest work

we found that used this dataset to generate ABAC data is [93]. In their approach, the

data preprocessing steps were not detailed. Per the visualizations, all the features, except

ACTION, were treated as numerical instead of categorical. We experimented treating

the features as both numerical and categorical. When we considered all the features as

categorical, the trained models generated data by adhering to the constraints. But apply-

ing the given constraint to continuous data is challenging. The only way we could apply

constraint is by specifying a range until which the difference could be tolerable. However,

this may result in challenges in a real-time scenario in identifying the category to which

the corresponding value belongs.

For the Amazon Access Logs dataset, we were able to identify significant differ-

ences in the generated data with and without training constraints. As we described

in Chapter 3, our initial data exploration revealed that the attributes ROLE TITLE and

ROLE FAMILY contain the same values for all the instances for a given ROLE CODE.

Both CTGAN and CopulaGAN models generated data with more than 30000 violations

for this pattern. When we trained the models by adding a fixed combination constraint,

then all the records in the generated data were in compliance with this constraint. How-

ever, there was a significant difference in the data distribution. This could be due to the

presence of only categorical features. Also, it is unknown how realistic are the gener-

ated access requests. For example, in a real-time organizational scenario, it is unknown

whether the generated ROLE CODE that belongs to a ROLE FAMILY exists within a

given department. The presence of more background knowledge regarding the data would

be beneficial to model the relationship between the features.

Let us compare two policies in the Amazon Access Logs on how they were generated

with and without applying constraints.

1 16619 56723 117961 118343 118301 307024 118568 6725 117898

1 16619 85475 117961 118266 118846 122290 136840 118453 117898
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1 16495 21824 117993 120141 120144 124537 133986 118638 118705

1 16495 17326 117961 118386 6725 118278 296252 118638 118705

In the policies mentioned above, two role codes were selected, namely “117898” and

“118705”. The policies were generated by CTGAN without applying the constraints. We

just considered a pair of each role codes for analyzing here. If we look at the role family

and role title, both are different in both the instances of the two role codes, which is

different than the real data. However, when we constrained the models, CTGAN and

CopulaGAN, we obtained the policies like the pair mentioned below. The role family and

role title for a given role code is the same. This is the case for all instances for all role

codes in the generated data.

1 74818 2904 130684 126975 122215 117896 287351 117887 117898

1 74818 6227 118976 118085 118825 117896 278266 117887 117898

An important consideration on the Tabular GAN models is that, they can generate

synthetic data only based on the sample space it encounters during the training process.

It is not possible for generating entirely new data as with the GAN models that generate

images. This is due to the discrete nature of the text data, and the inherent nature of

Tabular GANs to learn and generate continuous samples within the range it learns during

the training process.

4.5 Machine Learning Efficacy

We analyzed how efficient are the machine learning classifiers if the generated synthetic

data are replaced and trained on machine learning classifiers for classification tasks. Both

the datasets, CAV Policies, and Amazon Access Logs, possess a target column that a

classifier could potentially predict after learning from a data distribution. We split both

the real and generated datasets from all experiments into training and test sets, 80 percent

and 20 percent, respectively. We followed the approach presented in [90], in which, the

54



Figure 4.7: Workflow to Analyze Efficacy of Supervised ML Classifiers [90]

evaluation is performed by training a machine learning classifier on the synthetic dataset

and testing on the real dataset and vice versa. The split data are named real train,

real test, generated train, and generated test. The machine learning classifiers are trained

on both real train and generated train sets, and the trained models are tested on both

the real test and generated test sets. The classifiers we used are Decision Trees, Logistic

Regression, Multi-Layer Perceptron, and Random Forests. We use the F1-score as a metric

to evaluate the classifiers. TSTR is a well-known approach to evaluating the quality of

synthetic data. We considered the hyperparameter space specified in [94]. We performed

Grid Search and used the best hyperparameter configuration for testing. The Tables

4.6, 4.7, 4.8, 4.9, 4.10, 4.11, show the F-1 metrics of the real and generated data of the

classifiers test on all the results we obtained using CTGAN and CopulaGAN.

We achieved close to 100 percent performance for the CAV Policies data generated by

applying constraints. Although this result is in consistency with the experimental results

discussed in Generative Policy Model approach [9], the main reason to achieving such high

performance is due to the fact that the test data is very similar to the training data in both
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real and generated datasets. Also, the data is less complex. When we trained the classifiers

on the data generated without applying constraints, there is a significant decline in the

performance. This is potentially due to the presence of so many violations in the data

captured by the trained model. The Amazon Access Logs provides a different perspective.

As discussed in the previous section, all features in the dataset are of type categorical.

We did not identify a significant difference in the F-1 scores between the models trained

on the data generated by applying constraints and without constraints. A primary reason

could be the preprocessing performed before training the GAN models where all features

were treated as categorical. This also resulted in a difference in correlation as shown in

figures 4.5 and 4.6.

Table 4.6: CAV Policies with Constraints - ML Efficacy for Dataset Size 20

CTGAN CopulaGAN

Classifiers F1 Real F1 Generated F1 Real F1 Generated

DecisionTree generated 0.9980 1.000 0.9959 0.999
DecisionTree Real 1.0000 1.000 1.000 1.000
LogisticRegression generated 0.9612 0.9706 0.9597 0.9670
LogisticRegression Real 0.9140 0.9138 0.9126 0.9036
MLP generated 0.9960 1.0000 0.9947 1.000
MLP Real 1.000 1.000 1.000 1.000
RandomForest generated 0.9960 0.9987 0.9943 0.9990
RandomForest Real 1.000 0.9995 0.9998 0.9998

Table 4.7: CAV Policies with Constraints - ML Efficacy for Dataset size 40

CTGAN CopulaGAN

Classifiers F1 Real F1 Generated F1 Real F1 Generated

DecisionTree generated 0.9961 1.000 0.9989 1.000
DecisionTree Real 1.000 1.000 1.000 0.9991
LogisticRegression generated 0.9506 0.9547 0.9516 0.9716
LogisticRegression Real 0.9095 0.8951 0.9119 0.9024
MLP generated 0.9981 1.000 0.9970 1.000
MLP Real 1.000 1.000 1.000 1.000
RandomForest generated 0.9943 1.000 0.9993 0.9999
RandomForest Real 0.999 0.999 1.000 0.9991
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Table 4.8: CAV Policies without Constraints - ML Efficacy for Dataset Size 20

CTGAN CopulaGAN

Classifiers F1 Real F1 Generated F1 Real F1 Generated

DecisionTree generated 0.8166 0.7732 0.8176 0.8294
DecisionTree Real 1.0000 0.8039 1.000 0.7729
LogisticRegression generated 0.8164 0.8386 0.8205 0.8754
LogisticRegression Real 0.9124 0.8850 0.9139 0.8135
MLP generated 0.8166 0.8395 0.8166 0.8759
MLP Real 1.000 0.8910 1.000 0.8178
RandomForest generated 0.8170 0.8138 0.8179 0.8664
RandomForest Real 1.000 0.8577 1.000 0.7970

Table 4.9: CAV Policies without Constraints - ML Efficacy for Dataset Size 40

CTGAN CopulaGAN

Classifiers F1 Real F1 Generated F1 Real F1 Generated

DecisionTree generated 0.8153 0.7521 0.8186 0.7627
DecisionTree Real 1.0000 0.7804 1.000 0.8078
LogisticRegression generated 0.8142 0.8184 0.8038 0.8144
LogisticRegression Real 0.9105 0.8927 0.9091 0.9012
MLP generated 0.8172 0.8234 0.8197 0.8230
MLP Real 1.000 0.9138 1.000 0.9299
RandomForest generated 0.8161 0.7966 0.8208 0.8035
RandomForest Real 0.9999 0.8663 1.000 0.8778

Table 4.10: Amazon Access Logs with Constraints

CTGAN CopulaGAN

Classifiers F1 Real F1 Generated F1 Real F1 Generated

DecisionTree generated 0.8355 0.8398 0.8578 0.8808
DecisionTree Real 0.9319 0.8500 0.9281 0.8670
LogisticRegression generated 0.9167 0.9167 0.9405 0.9405
LogisticRegression Real 0.9446 0.9446 0.9451 0.9451
MLP generated 0.9519 0.9162 0.9405 0.9405
MLP Real 0.9448 0.9446 0.9452 0.9452
RandomForest generated 0.9132 0.9095 0.9345 0.9364
RandomForest Real 0.9480 0.9371 0.9484 0.9402
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Table 4.11: Amazon Access Logs without Constraints

CTGAN CopulaGAN

Classifiers F1 Real F1 Generated F1 Real F1 Generated

DecisionTree generated 0.8656 0.8785 0.8012 0.7977
DecisionTree Real 0.9323 0.8882 0.9310 0.8305
LogisticRegression generated 0.9420 0.9420 0.8683 0.8682
LogisticRegression Real 0.9397 0.9397 0.9439 0.9437
MLP generated 0.9368 0.9164 0.8374 0.8460
MLP Real 0.9391 0.9271 0.9220 0.9127
RandomForest generated 0.9387 0.9396 0.8647 0.8602
RandomForest Real 0.9458 0.9379 0.9500 0.9081

From our analysis, we identified both CTGAN and CopulaGAN were able to learn the

data distribution and generate the synthetic data appropriately, for the CAV policies data.

For the Amazon Access Logs, we were able to identify the difference between the real and

generated data in in terms of correlation. The size of the training dataset has less impact

on synthetic data generation, but the nature of training data has more impact on the

generated data. The supervised machine learning classifiers trained using the synthetic

data has reasonable performance on the classification tasks. The GAN models obtained

almost perfect scores that the almost all generated data are new, and and unseen from

the real data.
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Chapter 5

Discussion

In the previous Chapter, we analyzed the results obtained by training CTGAN and Cop-

ulaGAN on two datasets, namely CAV Policies and Amazon Access Logs. Our results

show that Generative Adversarial Networks can effectively generate access control policies

for unforeseen contexts. In CAV policies, an unforeseen scenario is a request made by

the human driver to the CAV to perform an action, for a specific driving task, under

an environmental condition that the CAV did not encounter before. The environmental

condition is defined by the weighted average of weather visibility, and traffic congestion.

Likewise, in the Amazon Access Logs, an unforeseen scenario could be a request made by

a user to access a specific resource that the access control system has never encountered

before, or a request made new user to access a resource for which a policy does not ex-

ist. Our results achieved an almost perfect similarity score for all experiments using the

CAV policies dataset, and a perfect score for the Amazon Access Dataset. As explained

in our analysis, achieving a near perfect similarity score means almost all records in the

generated data are different from the real data. Given the nature of the data, these new

scenarios are dependent on the environmental weighted average attribute in CAV poli-

cies. However, for the Amazon Access Logs, the generated new policies are all several

combinations of existing categories in the real dataset.

Our experiments and results answer RQ2. Research on policy generation in access

control is being done for more than a decade. However, the use of GANs as a method
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to automatically generate policies is unexplored. This method can potentially be de-

ployed in various information systems for policy generation tasks. [9], [26], [95] discuss

the generative policy architecture. However, the architecture require methods by which

parties can generate and evolve their own policies. The National Institute of Standards

and Technology, in its report on machine learning based access control policy verification

mentioned, policy rules in some systems are automatically generated from previous access

logs or by intelligent mechanisms [96]. [97], in their dissertation stresses the need for an

automated method for ABAC policy data extraction. Automated policy generation is

essential, especially in heterogeneous systems such as IoT.

We also demonstrated the importance of constraining the models to learn the back-

ground knowledge for the generated data to be in compliance with them. We discussed

constrained generative models in Chapter 3. Policy generation approaches with learned

constraints could prove beneficial and be a part of the defense in-depth approach in many

information systems, especially IoT. A defense in-depth approach is a layered approach

where an adversary should encounter several layers of security before exploiting an infor-

mation system. Our experiments show that adding constraints during the training process

enable the models to generate data without any violations. This answers our RQ3. Vi-

olations are nothing but over-permissions. Over-provisioning access poses a major risk

to any information system. This may also lead to insider threats. Let us consider two

real-time incidents. In the case of [98], a former employee of the company was able to

use his credentials to access the personal information of customers, such as brokerage

accounts, etc. In general, once an employee exits an organization, access to all systems

pertaining to the employee should be revoked and the credentials should be disabled. In

some scenarios, this could be overlooked. [99] says 1 in 4 employees still have access to

data at their previous job. Machine Learning based access control approaches, includ-

ing generative models are being adopted today in information systems security. Hence,

constraining these models with business rules will add an additional layer of security.
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5.1 Limitations

Our research comes with the following limitations:

• An important limitation we consider in this study is the data. As we mentioned in

Chapter 2, there are not many publicly available labeled datasets for access control

research in IoT. The CAV policies dataset we used in our research is well-balanced,

containing an almost equal number of Approved and Rejected decisions. The num-

ber of categories (discrete features) present in the dataset is smaller. However, the

authors mentioned a potential future direction for identifying more scenarios for

further research. On the other hand, the Amazon Access Logs dataset has all cate-

gorical features and is highly imbalanced. Both datasets contain about ten features.

The availability of more features potentially leads to more robust and expressive

policies.

• Another limitation we posit is the constraints that we adopted in our experiments.

All constraints we discussed in our experiments are statically coded and the models

generated data by learning only those constraints. As mentioned in Chapter 2,

IoT networks, in real-time, are dynamic in nature. Hence, the constraints within

the network may change over time. Incorporating additional constraints requires

retraining the model. Also, applying constraints for the Amazon dataset is also a

challenge due to limited background information regarding the features.

• Limited work is performed using generative models for access control policy genera-

tion. The closest works we could compare our approach to are the generative policy

model proposed in [9] and ABAC data generation using CTGAN [93]. The authors

proposed a web-based tool where we can download a synthetic ABAC dataset by

specifying the desired number of rows.
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Chapter 6

Conclusion

In this chapter, we discuss an overview of the research, contributions, and scope for future

work.

6.1 Research Summary

The purpose of this research is to implement and evaluate the efficacy of Generative

Adversarial Networks (GANs) to generate contextual and usable access control policies

during unforeseen scenarios. We formulated our research as a synthetic data generation

problem and utilized mixed methods to evaluate the implemented models.

Our research study answered the following three questions.

RQ1: What are the existing challenges while specifying dynamic policies for access

control in IoT?

To answer this question, we performed a literature review and arrived at the following

findings:

• Centralized architecture is inefficient for a heterogeneous environment like IoT.

Hence, it is recommended to adopt technologies such as edge computing that follows

distributed architecture.

• The scope for research exists in the area of IoT for policy generation, decision,

evaluation at runtime. Using balanced dataset, and the appropriate selection of
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features for machine learning are among the key challenges in access control research

• Machine learning classifiers trained on the access control policy data for decision

making should be as accurate as possible. Any misclassification constitutes either

policy violation, or over-privileges.

RQ2: How can we self-generate contextual access control policies for the internet of

things during unforeseen situations?

We considered the findings from RQ1 to formulate our research study. We proposed

to utilize GANs to generate access control policies. We chose two baseline models, namely

CTGAN and CopulaGAN for experimentation. We chose two datasets namely the CAV

policies dataset and the Amazon Access Logs dataset. We followed a mixed methods

approach to quantitatively evaluate the implemented models and evaluate the quality of

generated policies using manual evaluation. We utilized 20 percent and 40 percent of the

CAV policies for our experimentation. We utilized the Amazon Access Logs as is. The

results demonstrated that the GAN models were to generate data that is similar to the

distribution of the real data.

RQ3: How realistic are the generated access control policies to be used in real-time

situations?

Our initial results identified a significant number of policy violations. Hence, we

trained the models by applying constraints on both datasets. Our results demonstrate

that the models were able to generate policies without any violation of the specified

constraints. However, although the Amazon Access Logs generated data is in compliance

with the constraints, the generated data distribution is not similar to that of the real data.

As we discussed earlier, this could be due to the presence of only categorical features in

the dataset.

Our results answer RQ2 and RQ3, stating that GANs shall be used to generate con-

textual and usable access control policies for IoT. GANs can learn constraints applied to

the model and generate policies that comply with the constraints.
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6.2 Research Contributions

Our research contributes to the field of access control for the Internet of Things. The

primary objective of research is to dynamically generate access control policies for IoT.

Our research suggests that GANs can be used for automated policy generation in ac-

cess control for IoT. GAN models shall be deployed in various architectures including

distributed and federated architectures which are most suitable for IoT networks. Next,

our research demonstrates the importance of the background knowledge of the domain

the models will be trained and deployed. Training with constraints is very essential for

a model to generate policies without any violations. Existing studies related to GANs in

cybersecurity did not discuss training the models with constraints. Hence, our research

provides a novel perspective to generating constrained access control policies, and stresses

the need for further research in this area.

6.3 Future Work

Our research study has provided scoping for further research in the following areas:

• Addition of more features. As we described earlier, both the datasets we utilized

for our experiments contained less features. Adding new features paves the way for

generating more expressive access control policies.

• Zero-Trust Architecture (ZTA). ZTA is widely adopted in organizational information

systems today. Future research can focus on how automated access control policy

generation can be utilized within the context of ZTA.

• Other GAN models. It will be another research direction to experiment other GAN

models like Wasserstein GAN (WGAN), WGAN with gradient penalty in conjunc-

tion with how these models can ensure the privacy of the generated policies.
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• Dynamic Constraints. Although the policies were generated dynamically, the con-

straints were manually coded before training the model. IoT networks are dynamic

in nature and it is possible that the background constraints may change over time.

Currently the only way to adapt to the constraints is to retrain the model. Fu-

ture research can focus on adaptability of the models to varying constraints in the

environment.
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