Date of Award

Spring 3-2020

Document Type


Degree Name

Doctor of Philosophy in Cyber Operations (PhDCO)


Computer Science

First Advisor

Yong Wang

Second Advisor

Jun Liu

Third Advisor

Wayne Pauli


While many solutions have been proposed for smart home security, the problem that no single solution fully protects the smart home environment still exists. In this research we propose a security framework to protect the smart home environment. The proposed framework includes three engines that complement each other to protect the smart home IoT devices. The first engine is an IDS/IPS module that monitors all traffic in the home network and then detects, alerts users, and/or blocks packets using anomaly-based detection. The second engine works as a device management module that scans and verifies IoT devices in the home network, allowing the user to flag any suspect device. The third engine works as a privacy monitoring module that monitors and detects information transmitted in plaintext and alerts the user if such information is detected. We call the proposed system IoT-Home Advanced Security System or IoT-HASS for short. IoT-HASS was developed using Python 3 and can be implemented in two modes of operation. The in-line mode allows the IoT-HASS to be installed in-line with the traffic inside a Raspberry Pi or a Router. In the in-line mode IoT-HASS acts as an IPS that can detect and block threats as well as alert the user. The second mode is the passive mode where IoT-HASS in not installed in-line with the traffic and can act as an IDS that passively monitors the traffic, detecting threats and alerting the user, but not blocking the attack. IoT-HASS was evaluated via four testing scenarios. It demonstrated superior performance in all testing scenarios in detecting attacks such as DDoS attacks, Brute Force Attacks, and Cross Site Scripting (XSS) Attacks. In each of the four test scenarios, we also tested the device management functionality, which we found to successfully scan and display IoT devices for the homeowner. The extensive evaluating and testing of IoT-HASS showed that IoT-HASS can successfully run in a small device such as a Raspberry Pi, and thus, it will most likely run in an embedded device as an IoT device. Our future research will concentrate on strengthening the current features of IoT-HASS to include additional functionalities.