Document Type
Article
Publication Date
8-2021
Abstract
Covid-19 Diagnosis needs new Information Systems technologies as Deep learning methods, especially in medical image screening. We aim to review the applications of deep learning augmented systems in Covid-19 predictions with the help of a large literature collection from four major databases IEEE explore, ACM, Web of Science, and PubMed. We have identified three major research themes from the current literature, Image Classification, Image segmentation, and evaluation methods for DL models. Among the DL techniques, Transfer Learning is identified as the most popular method for different tasks on Chest X-rays and CT scans. Pre-trained models such as ResNet, VGG, DenseNet, and Unet are widely used in the covid-19 diagnosis. While these models are pre-trained on natural images, a Chest X-ray image pre-trained model CheXnet is gaining popularity in Covid-19 image tasks helping in improving accuracies of classifications.
Recommended Citation
Noteboom, Cherie Bakker; Zeng, David; Godasu, Rajesh; and Sutrave, Kruttika, "Applications of Deep Learning Augmented Systems for Covid-19 Predictions- A Literature Review" (2021). AMCIS 2021 Proceedings. 31.