Disrupting Agriculture: The Status and Prospects for AI and Big Data in Smart Agriculture

Omar El-Gayar, Dakota State University
Martinson Ofori

Abstract

The United Nations (UN) Food and Agriculture (FAO) estimates that farmers will need to produce about 70% more food by 2050. To accommodate the growing demand, the agricultural industry has grown from labor-intensive to smart agriculture, or Agriculture 4.0, which includes farm equipment that are enhanced using autonomous unmanned decision systems (robotics), big data, and artificial intelligence. In this chapter, the authors conduct a systematic review focusing on big data and artificial intelligence in agriculture. To further guide the literature review process and organize the findings, they devise a framework based on extant literature. The framework is aimed to capture key aspects of agricultural processes, supporting supply chain, key stakeholders with a particular emphasis on the potential, drivers, and challenges of big data and artificial intelligence. They discuss how this new paradigm may be shaped differently depending on context, namely developed and developing countries.