Outlet Title

Computers, MDPI

Document Type

Article

Publication Date

Fall 9-8-2025

Abstract

Artificial intelligence (AI) is rapidly redefining both computer science and cybersecurity by enabling more intelligent, scalable, and privacy-conscious systems. While most prior surveys treat these fields in isolation, this paper provides a unified review of 256 peer reviewed publications to bridge that gap. We examine how emerging AI paradigms, such as explainable AI (XAI), AI-augmented software development, and federated learning, are shaping technological progress across both domains. In computer science, AI is increasingly embedded throughout the software development lifecycle to boost productivity, improve testing reliability, and automate decision making. In cybersecurity, AI drives advances in real-time threat detection and adaptive defense. Our synthesis highlights powerful cross-cutting findings, including shared challenges such as algorithmic bias, interpretability gaps, and high computational costs, as well as empirical evidence that AI-enabled defenses can reduce successful breaches by up to 30%. Explainability is identified as a cornerstone for trust and bias mitigation, while privacy-preserving techniques, including federated learning and local differential privacy, emerge as essential safeguards in decentralized environments such as the Internet of Things (IoT) and healthcare. Despite transformative progress, we emphasize persistent limitations in fairness, adversarial robustness, and the sustainability of large-scale model training. By integrating perspectives from two traditionally siloed disciplines, this review delivers a unified framework that not only maps current advances and limitations but also provides a foundation for building more resilient, ethical, and trustworthy AI systems.

Share

COinS