Document Type

Conference Proceeding

Publication Date

12-2016

Abstract

The Cloud Security Alliance lists data theft and insider attacks as critical threats to cloud security. Our work puts forth an approach using a train, monitor, detect pattern which leverages a stateful rule based k-nearest neighbors anomaly detection technique and system state data to detect inside attacker data theft on Infrastructure as a Service (IaaS) nodes. We posit, instantiate, and demonstrate our approach using the Eucalyptus cloud computing infrastructure where we observe a 100 percent detection rate for abnormal login events and data copies to outside systems.

Share

COinS